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Abstract: We report on the observation of second order infrared plasmon resonances in 

lithographically prepared gold nanorods investigated by means of far-field microscopic 

infrared spectroscopy. In addition to the fundamental antenna-like mode, even and odd higher 

order resonances are observed under normal incidence of light. The activation of even-order 

modes under normal incidence is surprising since even orders are dipole-forbidden because of 

their centro-symmetric charge density oscillation. Performing atomic force microscopy and 

calculations with the boundary element method, we determine that excitation of even modes 

is enabled by symmetry breaking by structural deviations of the rods from an ideal, straight 

shape. 
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PACS numbers: 78.67Qa (optical properties of nanorods), 78.67Un (optical properties 

of nanowires), 84.40Ba (Antennas), 61.46Df (structure of nanoparticles), 78.30Er (infrared 

spectroscopy of metals) 

 

Antenna-like metal nanoparticles offer a large variety of applications in today's 

technologies, because their plasmonic properties and thus their optical excitations can be 

tuned over a broad frequency range. Of special interest is the huge near-field enhancement at 

resonance, because it enables extraordinarily sensitive detection of molecules.1-7 The exact 

frequency of the plasmonic resonance depends not only on the kind of metal (described by the 

plasma wavelength λP ), but also on length L, diameter D (or the spatial cross section) and 

overall shape of the particle.8-12 Considering a cylindrical antenna with L > D and with very 

good metallic conductivity, the relation between L and the fundamental optical resonance 

wavelength λres is well described by the linear relation11

2L = n1 + n2λres / λP .                                                                         (1) 

The coefficients n  depend on geometry and conductivity of the nanorod and on the dielectric 

background of the environment (with effective refractive index, e.g. Ref. 10). From the mid to 

far infrared (IR), for gold nanorods with µm lengths (and L/D>10),  becomes very small 

and  which is a relation like that of an ideal antenna where b = 2. 

Besides the strong fundamental (l = 1) mode, such nanoantennas also exhibit multipolar (l > 

1) resonances at 

i

n1

λres = 2λpn2
−1 ⋅ L = b ⋅ L

λres / l .9,12-14 Only multipolar modes with an antisymmetric charge 

distribution (odd l) can be optically excited at normal incidence of light, because their total 

dipole moment does not vanish.13,15 In contrast to these bright modes, plasmonic excitations 

with a centro-symmetric charge distribution (even l)16 cannot be excited under such 

conditions and are known as dark modes. Dark modes become visible when some type of 
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symmetry-breaking is present. At oblique incidence, symmetry-breaking arises due to 

retardation effects and excitation of the dark modes becomes possible because of the phase 

difference of the incoming wave at the two nanorod ends. Indeed, such behavior was observed 

in nanorods15,14,17 and also in other metallic nanostructures18. In addition, dark modes are 

observed in spectroscopic studies of complex multimer structures.19-22 In this paper we report 

on the appearance of dipole-forbidden second-order modes (l=2) in the IR spectra of some 

single gold nanorods under normal incident radiation and we identify the origin of this effect.  

As done in Ref. 4 and 12, homogeneous nanorod arrays were prepared by electron beam 

lithog

mic

ental plasmonic band for parallel 

polari

raphy (EBL) on zinc sulfide (ZnS) substrates. The distances between single nanorods 

were chosen to be 5 µm (30 µm) in both directions to suppress the near-field interaction. L 

varies from 0.5 to 2.5 µm. The width w and the height h are about 60 nm in 5 µm arrays; 

h ≈100 nm in 30 µm arrays. By use of scanning electron microscopy (SEM) and atomic force 

roscopy (AFM) we determined the actual size and shape of the nanorods (for each rod in 

the 30 µm arrays and for a statistically relevant selection in the 5 µm arrays, respectively). 

Microscopic IR spectroscopy (with an aperture diameter of 8.3µm and 16.7µm, respectively) 

was performed using radiation both from a synchrotron light source (ANKA) and from a 

thermal light source (globar), measured with a mercury-cadmium detector (MCT).7,10,12 The 

reference measurements were taken on the bare substrate at least 30 µm away from nanorods. 

IR transmittance spectra were recorded by acquisition of at least 1000 scans in the spectral 

range from 700 to 7000 cm-1 with a resolution of 8 cm-1.  

The example spectra in Fig. 1 feature the fundam

zation; the plasmonic signal for perpendicular polarization remains below the noise 

level. For various L, the optical resonance wavelength for l=1 follows Eq. 1 with n1 ≈ 0 and 

λres = b(l = 1) ⋅ L ≈ 4.6 ⋅ L  as can be seen in Fig. 2.  In Fig. 1, not only does the fun ntal 

ar in the spectrum, but additional bands, probably higher order 

dame

resonance (l = 1) appe
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excitations, also show up. Surprisingly, a plasmonic band at twice the optical resonance 

wavenumber of the fundamental mode is observed in the spectra of some nanorods (for 

example nanorod B in Fig. 1). If λres = b(l = 1) ⋅ L  is compared to the experimental relations 

between the other resonances and ment to higher order resonances (l = 2,3) 

becomes unambiguous, see Fig. 2 and inset with table.   

Because both collection and condenser lens hav

 L, their assign

e a numerical aperture of 0.52, the 

incident IR radiation is not strictly incident along the normal direction and a small fraction of 

the light scattered away from the normal is detected. To identify clearly the effect of non-

normal incidence of light on the appearance of the l=2 mode, we tilted the sample to various 

angles  (30°, 45°, and 60° with an error of about °± 5 ) between the substrate normal and the 

direction of the incident light in air, which corresponds to angles of 13°, 19° and 23° in ZnS 

according to Snell's law. As known from literature15,17,18, dark modes appear for such 

configurations, because the incident electrical field is no longer constant along the length of 

the nanoantenna and phase shifts occur over the full nanorod length. For increasing incident 

angle, the coupling between the incident radiation and the dark modes becomes more efficient 

(up to a certain angle depending on the surrounding medium) while coupling to bright modes 

is less efficient.15 We observe similar behavior for the IR antennas as shown in Fig. 3 where a 

quantitative comparison of extinction cross sections is given. To verify further these 

experimental results, we performed calculations using the boundary element method (BEM) 

9,23  for different angles of incidence. By means of BEM we solve Maxwell’s equations for the 

scattering of a cylindrical gold nanorod (with bulk dielectric properties24) in an isotropic 

environment (with effective refractive index 71.1=ffen 12). The computational results 

qualitatively show the appearance of the second-o  and the decrease in intensity of 

bright modes for increasing incident angle. Good agreement between the experiments and the 

calculations is achieved for the various angles of incidence (see Fig. 3). The second order 

rder mode
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mode clearly does not appear at normal incidence as experimentally observed for many of the 

nanorods (e.g. rod A in Fig. 1).  

What other effect explains the unexpected appearance of dark modes of some nanorods 

in normal incidence experiments? Any possible asymmetric beam profile of the synchrotron 

radiation, which might also couple light to dark modes, can be excluded, because 

measurements with a thermal light source show the same behavior. However, a deviation 

from the ideal shape of a perfectly smooth nanorod might break the symmetry of the 

collective charge oscillation. Therefore we performed AFM height scans of various nanorods 

along their long axis (see inset of Fig.1). Obviously, the nanorods differ in surface roughness: 

whereas nanorod A features a more or less smooth surface with steps of less than 10 nm, 

nanorod B exhibits several large steps with a height difference of up to 50 nm. Moreover, the 

largest step is away from the rod center so that the rod symmetry is clearly broken, which 

enables the appearance of the l=2 mode. The symmetry-breaking effect of defects is verified 

by BEM calculations using a simplified model of a defective cylindrical nanorod using a neck 

in the rod, offset from the rod center (see Fig. 4). The BEM calculations were performed as 

described before, but now for normal incidence of light. With this neck, the second-order 

mode indeed appears clearly in the spectral signature of the rod (see Fig. 4). According to the 

calculations, the signal strength of the l = 3 mode should be similar for nanorods A and B. 

However, above 3500 cm-1, a broadband decrease of transmission is observed for nanorod B, 

which may originate from the multiple steps on the nanorod which are not accounted for in 

the model. Nevertheless, the calculations confirm that the experimental appearance of the 

second-order modes is induced by the presence of defects in the nanorod. The appearance of 

even-order modes under normal incidence can therefore be used as a fingerprint to detect the 

presence of inhomogeneities in micron-sized nanoobjects. 
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In conclusion, we observed dark modes in IR spectra of linear gold nanoantennas at 

normal incidence. The appearance of such dark modes could be clearly attributed to the 

presence of defects in the nanorod that break symmetry. This interpretation is proven 

conceptually by BEM calculations and corroborated in AFM studies. Such lithography defects 

may be induced by inhomogeneities in the substrate’s surface (scratches, for instance) or 

imperfections arising from the preparation process for the nanorods. Therefore, the 

observation of even modes could be used as an indicator for the quality of nanorod arrays.  
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Figure captions 

 

 
Fig. 1: Relative IR transmittance spectra of two similarly prepared nanorods (A, B) with 

1500 nm, w = 60 nm and h = 100 nm. The resonance order l is indicated.  The inset shows 

AFM height profiles along the rod’s long axis. The main defect of nanorod B is indicated with 

an arrow.  

L ≈

 

 

Fig. 2: Relation between λres and length L for different orders l. The solid lines are linear fits 

of λres = b(l)L/l to the experimental data with the fit parameter b(l) for  the lth order. The inset-

table compares b  to the ideal ratio 1 / . The error bars indicate the experimental 

error in the resonance frequency and length as estimated from SEM images. 

(l) / b(l = 1) l
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Fig. 3: Experimental extinction cross section (σext, derived from transmittance as in Ref. 10 

and 12, normalized to the geometric cross section σgeo) of a nanorod with nm, 

compared to BEM calculations for a cylindrical nanorod (D = 68 nm, ) of the 

same length L = 1500 nm for various incident angles α as indicated.  

60≈≈ hw

πD2 = 4wh

 

 

Fig. 4: Simulated extinction spectra of an ideal (red line) and an inhomogeneous (black line) 

nanorod with L = 1500 nm and D = 60 nm. The detailed shape of the nanorod with defects is 

shown in the inset (d = 30 nm, s = 100 nm, the neck position is 155 nm away from the rod 

center).  
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