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ABSTRACT
This paper presents an analysis of sound effect on visual gaze
when looking at videos to help to predict eye positions. First,
an audio-visual experiment was designed with two groups of
participants, with audio-visual (AV) and visual (V) condi-
tions to test the sound effect. We classify the sound in three
classes: on-screen speech, non-speech and non-sound. We
observe with statistical methods that the sound effect is dif-
ferent depending on the class of sound. Then a comparison
of the experimental data and a visual saliency model was car-
ried out, which proves that adding sound to video decreases
the accuracy of the prediction of the visual saliency model
without a sound pathway. Finally, the result of locating the
coordinates of a sound source manually provides a viable as-
pect of sound pathway for future work.

1. INTRODUCTION

In daily life, people do not look at all the objects in the visual
field but concentrate on particular regions. These regions that
attract attention and therefore, the eyes are called salient re-
gions. Modeling human visual attention which locates salient
areas is challenging work. Currently, one of the most influ-
ential models of visual attention is the saliency map model
proposed by Itti and Koch [4]. The saliency of a spatial
area depends mainly on two factors: one is task-independent
(bottom-up) and the other is task-dependent (top-down) [3].

In fact, humans usually receive visual and audio infor-
mation at the same time. Integrating information extracted
from audio and video channels is not a trivial task, as it cor-
responds to different sensor modalities (aural and visual).
An earlier application of audio-visual (AV) saliency model is
video summarization. Y. Ma et al. [6] and G. Evangelopou-
los et al. [2] proposed two different integrations of saliency
curves for aural and visual based on different saliency mod-
els. Nevertheless, they mainly focused on low-level fusion
(at the extracted saliency curves) [10]. This low-level fu-
sion could not contain the information of the saliency region.
C. Quigley et al. proposed AV integration research during
overt attention, including spatial information [9]. Recently,
cross-modal interaction of auditory and visual modalities has
played an important role in human spatial saliency and for
video coding [5].

Our aim is to study how sound affects visual gaze when
looking at videos. Hence, we first describe in Section 2 an
audio-visual experiment of two groups of participants with
audio-visual (AV) and visual (V) conditions. In Section 3, we
analyse the eye positions of the two groups of participants.
In Section 4, a comparison of the experimental data and a
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visual saliency model is presented. In Section 5, we show
the pertinence of creating a ’sound localization pathway’.

2. AUDIO-VISUAL EXPERIMENT

The research from C. Quigley [9] showed that sound influ-
ences human attention for images. Our purpose is to analyse
how sound affects human gaze when looking at videos. In
our experiment, the video database was chosen from films
which were relevant interesting for both visual and audio. In
the visual domain, the database contains various content, in-
cluding objects, events, characters, sports and so on. In the
audio domain, it contains speech, music, noise and some typ-
ical sounds, like rain, a knocking door etc.

As we only considered the bottom-up process, the partici-
pants viewed the videos without any task. Moreover, in order
to reduce top-down effects as much as possible, we created
small concatenated clips as proposed in [1]. We put small
parts of videos from different sources together with unrelated
semantic contents. In order to prevent the participants from
understanding the language in the video, we chose foreign
languages for the participants, like Chinese, Indian, Japanese
etc.

2.1 Stimuli

Sixty video excerpts lasting 5-8 seconds called clip snip-
pets were selected from heterogeneous sources for a total of
10885 frames. Each clip snippet was converted to the same
video format (25 fps, 608×272 pixels/frame). The 60 clip
snippets were then recombined into 10 clips, each clip being
the concatenation of 6 clip snippets from different sources.
Because the spatio-temporal model [7] used in section 4 did
not consider color information, we used gray level stimuli.
Two sets of stimuli were built from these clips, one with AV
condition (frames + audio signal), and one with V condition
(frames only).

2.2 Participants

Thirty human participants (10 women and 20 men, aged from
21 to 31 years old) were divided to two groups: fifteen partic-
ipants viewed clips with V condition, and fifteen participants
with AV condition. All participants had normal or corrected
to normal vision, and reported normal hearing. They were
ignorant as to the purpose of the experiment.

2.3 Apparatus and experiment design

Human eye position was tracked by an Eyetracker Eyelink
II (SR Research). During the experiment, the participants
were sitting in front of a 19-inch color monitor (60 Hz re-
fresh rate) with their chin supported. The viewing distance



between the participant and the monitor was 57 cm. The us-
able field of view was 20◦× 10◦. The two speakers carried
the stereo sound. A 9-point calibration was carried out every
five clips. 10 clips are presented to each participant with ran-
dom order. Before each clip, we present a drift correction,
then a fixation in the center of the screen. Participants were
asked to look at the 10 clips without any particular task.

2.4 Human eye position density maps
The eye-tracker records eye positions at 250 Hz. We
recorded ten eye positions (for the left eye) per frame and
per participant. The median of these positions was taken
(with X-axis median and Y-axis median) for each frame and
for each participant. A 2-D Gaussian was added to each po-
sition. The standard deviation of the Gaussian was chosen
to have a diameter at mid-height equal to 0.5◦ of visual an-
gle, which is close to the size of the maximum resolution of
the fovea [7]. Therefore, for each frame k and at position
(x,y), we obtained a human eye position density map noted
Mh(x,y,k).

3. EYE POSITION ANALYSIS

In order to investigate the effect of sound on visual gaze, we
considered the eye positions of a group of participants with
V condition compared with a group of participants with AV
condition. First, we analysed the eye positions of each group
of participants separately over time. Second, a comparison
of the different eye positions between the two groups was
presented.

3.1 Intra each group
With the purpose of evaluating bottom-up influence, we con-
sider the dispersion of the eye positions between the partici-
pants in the same group (with AV or V condition). The dis-
persion D is defined as:

D =
1

N2 ∑
i, j<i

d2
i, j (1)

where, N is the number of participants in one group, di, j is
the Euclidean distance of eye positions between participants
i and j.

In Fig. 1, the dispersion is high at the beginning, because
eye positions are on the region located at the previous clip
snippet. From frame1-9, the dispersion decreases sharply
and the minimum value appears at frame 9, because salient
regions in a new snippet attract human gaze. The situation is
the same in the two groups before frame 70. Subsequently, it
is stable in the group with V condition, and increases slowly
in the group with AV condition, which means with sound,
the regions where the participants looked seem more differ-
ent over a long period.

3.2 Inter two groups
We analysed the differences of eye positions between the two
groups of participants. Fig. 2 is an example of eye positions.
In order to measure the distance between the two groups, we
adopted the linear correlation coefficient as a criterion, noted
as cc. The cc assesses the linearity degree between the two
data sets (AV and V conditions). When the cc value is close
to -1 or 1, there is an almost perfect linear relationship be-
tween the two variables. The cc is defined as follows:

Figure 1: Dispersion DAV (respectively DV ) of eye positions
for the group of participants with AV (respectively V) condi-
tion as a function of frames. The dispersions are averaged on
60 clip snippets.

Figure 2: An example of the eye positions of two groups of
participants (with AV condition –red points, with V condition
–green points)

cc(Mhav,Mhv) =
cov(Mhav,Mhv)

σMhav σMhv

(2)

where, Mhav (respectively Mhv) represents the eye position
density maps (mentioned in section 2.4), with the AV (re-
spectively V) condition, cov(Mhav,Mhv) is the covariance
value between Mhav and Mhv.

Through observing the video with eye positions, we find
that different kinds of sound affect the eye positions differ-
ently. Hence, we manually classified the sound into three
classes: on-screen speech (the speakers appear on screen),
non-speech (any kind of audio signal other than speech) and
non-sound (intensity below 40 dB). Because our data is not
normally distributed, we used the Kruskal-Wallis test to com-
pare cc in the three classes. The Kruskal-Wallis test is a one-
way analysis of variance by rank. It is useful to test equality
of population medians among groups.

In Fig. 3, we see that the median of cc increases from
on-screen speech to non-speech, finally to non-sound. All
the differences are significant, between on-screen speech and
non-speech (χ2(1) = 26.91, p < 10−6), between non-speech
and non-sound (χ2(1) = 71.67, p < 10−16). The median of
on-screen speech is significantly different from the other two
classes. It obtains the lowest median value among these three
classes with the cc criterion, suggesting the greatest distance
between the groups with V and AV conditions.

To ensure the results, we use another criterion named me-



Figure 3: Linear correlation coefficient (cc) between the two
groups of participants (with AV and V conditions) in three
classes of sound (on-screen speech, non-speech and non-
sound).

dian distance (md) to measure the distance between the two
groups. It is defined as:

md = median(di, j), i ∈N , j ∈N
′

(3)

where N is the group with AV condition, N
′

is the group
with V condition, di, j is the Euclidean distance between par-
ticipants i and j. Then we used the Kruskal-Wallis test to
compare distance in the three classes.

Figure 4: Median distance (md) between the two groups of
participants (with AV and V conditions) in three classes of
sound (on-screen speech, non-speech and non-sound).

In Fig. 4, the median of md decreases from on-screen
speech to non-speech, finally to non-sound. All the differ-
ences are significant, between on-screen speech and non-
speech (χ2(1) = 77.87, p < 10−17), between non-speech
and non-sound (χ2(1) = 36.58, p < 10−8). The median of
on-screen speech is significant different from the other two
classes. It gets the highest median value among these three
classes with median distance criterion, suggesting the high-
est difference between the groups with V and AV conditions.
The trend among these three class is adverse compared to the
results from the cc criterion. Nevertheless, the conclusion is
the same as cc.

From the above results, we conclude that the eye posi-
tions of the two groups (with AV and V conditions) are dif-
ferent when there is sound and the difference is greater when
it is on-screen speech rather than non-speech. For the non-
sound class, the difference is much lower.

4. EFFECT OF SOUND ON A VISUAL SALIENCY
MODEL

In order to test the accuracy of prediction of a visual saliency
model for videos with sound, we compare both groups with
the spatio-temporal saliency model proposed by S. Marat et
al. [7]. This model is inspired by the biology of the first steps
of the human visual system. The model extracts two signals
from a video stream corresponding to the two main outputs
of the retina: parvocellular and magnocellular. Then, both
signals are split into elementary feature maps by cortical-like
filters. These feature maps are used to form two saliency
maps: a static (singularity on one frame) and a dynamic one
(motion along two consecutive frames).

For the evaluation, we chose the Normalized Scanpath
Saliency (NSS) criterion which was especially designed to
compare eye fixations with the salient areas emphasized by a
model saliency map [8]. The NSS metric corresponds to a Z-
score, which expresses the divergence of experimental results
from a model mean as a number of standard deviations of the
model. The larger the value of Z is, the less probable it is that
the experimental results are due to chance. We computed the
NSS metric as follows:

NSS(k) =
Mh(x,y,k)×Mm(x,y,k)−Mm(x,y,k)

σMm(x,y,k)
(4)

where, Mh(x,y,k) is the human eye position density map
standardized to mean 0 and variance 1, and Mm(x,y,k) is the
model saliency map. First, we calculated the NSS, succes-
sively from dynamic pathway and static pathway, for the two
groups. Then we analysed the difference of NSS for each
frame between two groups in three classes.

4.1 Dynamic pathway
With the purpose of testing the prediction accuracy of dy-
namic pathway, we calculated the NSS difference (NSSV −
NSSAV ) between groups with V and AV conditions in three
classes.

In Fig. 5, the median of the on-screen speech class is
significantly above 0, with the Wilcoxon signed-rank test
p < 10−19. The medians of the non-speech class (p = 0.12)
and non-sound (p = 0.06) are not significantly different from
0. From this, we conclude that the accuracy of prediction
from dynamic pathway decreases in a group with AV condi-
tion compared to a group with V condition, for the on-screen
speech class. (There is no significant difference for the non-
speech class and for the non-sound class).

4.2 Static pathway
With the same purpose as dynamic pathway, we calculated
the NSS difference (NSSV −NSSAV ) from static pathway be-
tween groups with V and AV conditions in three classes.

In Fig. 6, the median of the on-screen speech class is
significantly above 0, with the Wilcoxon signed-rank test
p < 10−32. The medians of the non-speech class (p = 0.10)



Figure 5: NSS difference (NSSV −NSSAV ) between groups
with V and AV conditions for dynamic pathway in three
classes (on-screen speech, non-speech and non-sound).

Figure 6: NSS difference (NSSV −NSSAV ) between groups
with V and AV conditions for static pathway in three classes
(on-screen speech, non-speech and non-sound).

and non-sound (p = 0.05) are not significantly different from
0. The results are very similar to those obtained from the dy-
namic pathway and the conclusion is identical. Then, in the
case of video with sound, it would be interesting to complete
the visual saliency model by a ’sound pathway’.

5. INTEREST OF A ’SOUND LOCALIZATION
PATHWAY’

From our observation, the sound source in the video seems
to attract human attention. Hence, we located the coordinates
of the sound source manually; we call it sound localization
pathway. For each frame, we only located one sound source.
Then, we applied a Gaussian to this position to obtain a sound
map Mms. At last, we compared with NSS the experimental
data of the eye positions (groups with AV and V conditions)
and the sound maps (Mms).

In Fig. 7, in most of the frames, the NSS of a group with
AV condition (mean NSS on all the clips is 2.34) is greater
than a group with V condition (mean NSS on all the clips
is 2.11). Because most of the time the sound source is also
the moving or face region on the screen, the group without

Figure 7: NSS as a function of frame. NSS is averaged on
60 clip snippets of two groups with AV and V conditions for
sound map.

sound also obtains a high value in this model. Nevertheless,
this result shows that locating the sound source is a possible
way of increasing the prediction accuracy.

In order to test the prediction accuracy of ’sound localiza-
tion pathway’, we calculated the NSS difference (NSSAV −
NSSV ) between groups with AV and V conditions in on-
screen speech class and non-speech class. Because non-
sound class had no sound source in the screen, we did not
consider this class.

Figure 8: NSS difference (NSSAV −NSSV ) between groups
with AV and V conditions for ’sound localization pathway’
in two classes (on-screen speech and non-speech).

In Fig. 8, the median of the on-screen speech class is
significantly above 0, with the Wilcoxon signed-rank test p<
10−31. The median of the non-speech class (p=0.08) is not
significantly different from 0. From this, we conclude that
the accuracy of prediction from ’sound localization pathway’
increases in the group with AV condition compared to the
group with V condition, for the on-screen speech class.

6. CONCLUSION AND PERSPECTIVES

This study presents the analysis of the sound effect on human
gaze when looking at videos. From our analysis of a group
of participants with AV and V conditions, we can conclude



that sound affects human gaze differently depending on the
sound type, and the effect is bigger for the on-screen speech
class. Compared to a visual attention model, the accuracy of
prediction decreases in a group with AV condition compared
to the group with V condition under the on-screen speech
class. If we locate the sound source as a ’sound localization
pathway’, the prediction accuracy increases a lot. Hence, in
future work, it would be interesting to create an audio-visual
attention model by adding a sound pathway which locates the
sound source automatically. In addition, the sound could be
automatically classified to adjust the saliency level.
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