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Abstract

In a three dimensional bounded possibly multiply-connected domain of class C*' , we consider the stationary
Stokes equations with nonstandard boundary conditions of the form w -n = g and curlu x n = h X n or
u Xn =g Xxn and 7 = mp on the boundary I"'. We prove the existence and uniqueness of weak, strong and
very weak solutions corresponding to each boundary condition in LP theory. Our proofs are based on obtaining
Inf— Sup conditions that play a fundamental role. And finally, we give two Helmholtz decompositions that consist
of two kinds of boundary conditions such as v - n and u X n on .

To cite this article: C. Amrouche, N. Seloula, C. R. Acad. Sci. Paris, Ser. I 840 (2010).

Résumé

Equations de Stokes et systémes elliptiques avec des conditions aux limites non standard. Dans un
ouvert borné tridimensionnel, éventuellement multiplement connexe de classe C 1!, nous considérons les équations
stationnaires de Stokes avec des conditions aux limites de la forme u-n =get curluxn =hxnouuxn =gxn
et ™ = o sur le bord I'. Nous prouvons ’existence et I'unicité des solutions faibles, fortes et tres faibles en théorie
LP. Nos preuves sont basées sur I'obtention de conditions Inf — Sup qui jouent un role fondamental. Finalement,
on donne deux décompositions d’Helmholtz qui tiennent compte des deux types de conditions aux limites u - n et
u x nsur .
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Version frangaise abrégée

L’objet de cette Note consiste essentiellement & étudier en théorie L? avec 1 < p < oo, l'existence et
l'unicité de solutions faibles, fortes et tres faibles pour les équations stationnaires de Stokes (St) dans le
cas des conditions aux limites : w-m = g et curlu x n = h x n sur I et (Sy) dans le cas des conditions
aux limites : u x n = g x n et m = my sur I'. Les résultats concernant 1’existence de solutions faibles et
fortes pour (St) sont donnés dans le Théoréme 2.1; et en ce qui a trait a (Sy), les résultats sont donnés
dans le Théoréme 3.2. Pour la preuve de solutions tres faibles pour (St) et (Sn), 'une des difficultées
consiste a donner un sens aux traces sur le bord.

1. Introduction

Let © a bounded open connected set of R? of class C ! whith boundary I'. Let T';, 0 < 5 < I, denote the
connected components of the boundary I', 'y being the exterior boundary of 2. We do not assume that
(2 is simply-connected but we suppose that there exist J connected open surfaces ¥;, 1 < j < J, called
‘cuts’, contained in €, such that each surface ¥; is an open subset of a smooth manifold, the boundary of
Y; is contained in I'. The intersection EOETJ is empty for ¢ # j, and finally the open set 2° = Q\szle
is simply-connected and pseudo-Lipschitz (see [1]). We are interested in some questions concerning the
stationary Stokes equations with non standard boundary conditions, that generally can be written as:

—Au+Vr=f and divu=0 inQ, —Au+Vr=f and divu=0 inQ,
(S7) Su-n=¢g and curluxn=hxn onl, (Sy) {uxn=gxn and 7=m onT,
(u-n, )y, =0, 1<5<, (u-m, )y, =0, 1<i<I,

where u denotes the velocity field and 7 the pressure, both being unknown, and f, g, h, g and my are
given.

To prove the existence of solutions of problems (S1) and (S ) (see the sketch of the proofs of Theorem
2.1 for (S7) and Theorem 3.2 for (Sy)) we begin by solving pressure 7 as a solution of a Neumann
problem or Dirichlet problem. Then, we are reduced to solve the following elliptic problems:

(Er) —A¢=f and divE=0 inQ, §-n=g and curlé xn=hxn onT, ({§ - n,l)s, =0,
(En) —Aé=f and divE=0inQ, &€xn=gxnonl, (£-n,1)r,=0 1<i<I.

We denote by [-]; the jump of a function over 3;, for 1 < j < J and (-, ) x,x+ denotes the duality product
between a space X and X’. For any 1 < p < oo, we then define the spaces:

H?(curl,Q) = {v € LP(Q); curl v € LP(Q)}, HP(div,Q) = {v € LP(Q); div v € LP(Q)}
XP(Q) = HP(curl,Q) N HP(div,Q),
which are equipped with the graph norm, and their subspaces:
Hl(curl,Q) ={v e HP(curl,Q); v xn=0onT}, HI(div,Q)={ve H(div,Q); v-n=0o0nT},
X)) ={veXP(Q);vxn=0onTl}, XZQ) ={veXP(Q);v-n=0o0nT}
and X2(Q) = X (Q) N X 2(Q). We also define the space W 1P(Q) = {v € W P(Q), dive = 0/1{1/(2}

For any function ¢ in W 1?(Q°), grad ¢ can be extented to L(£2). We denote this extension by grad q.
We finally define the spaces:



K2 (Q)={v e X2 (Q), curlv =0, dive =0inQ},

Ky (Q)={ve X{(Q), curlv =0, divo =0 inQ}.
We know due to [4] (see also [1] for the case p = 2) that the space K2(Q) is of dimension .J and that it
is spanned by functions grad qu, 1 < j < J, where each qJT € W1P(Q°). Similarly, the dimension of the
space K X() is I and that it is spanned by the functions grad ¢/, 1 <i < I, where each ¢/ € W 17(Q).

In what follows, the letter C' denotes a constant that does not necessarily have the same value. The
detailled proofs of the results announced in this Note are given in [4].

2. The Stokes equations with the tangential boundary conditions

We can prove that by assuming appropriate conditions on f and h, the pressure in the problem (S)
may be constant, and we are reduced to solve the elliptic system (Er):

Proposition 2.1. Let f belongs to LP(Q) with divf=0inQ , g € Wl_%’p(f‘) and h € W_%’p(I‘) verify
the following compatibility conditions:

f-n+divp(hxn)=0 onT, (1)

P/ . — =
Vv e K7 (Q), /Qf vdz+ (h x n, U>W’%’p(r)xW%’p’(F) 0 and /nga 0, (2)

where divp is the surface divergence on T'. Then, the problem (Er) has a unique solution u in WP (Q)
satisfying the estimate:

|l wir@) < C(HfHLP(Sz) + g llwr=1/e0(y + || B x nHW*l/l”P(F))'

Moreover, if g € W2 1/PP(T) and h € W'~YPP(I), then the solution u belongs to WP (Q) and satisfies
the corresponding estimate.

Sketch of the proof. For the proof of weak solutions, we reduce (E ) to a problem having homogeneous
normal boundary condition on I', where it is easy to solve it by using the Inf — Sup condition: (see [4])

curlu - curlpdz
inf sup Jo LA 0, (3)
PEVE (Q) ueVE(Q) [|w ||X§(Q)H80 ||X;’(Q)

with V2(Q) = {v € X7(Q), divo =0in Q, (v-n, 1)y, = 0}. For the regularity, we set z = curlu.
Since z xn € W ~VPP(I'), we deduce from [4] that z € W 1P(2). Therefore, since u-n € W 2-1/P2(T),
then w € W 2P(Q). O

Theorem 2.1. (Weak and Strong solutions for (St)) Let f, g, h with:

fe (HY (div, Q)), ge W 3P(), he W »?(T), (4)

and verify the compatibility conditions (2). Then, the Stokes problem (St) has a unique solution (u, 7) €
WP (Q) x LP(Q)/R satisfying the estimate:

lullwas@) + Il < CULF gy ey + 1901 gy + TBX g ).

Moreover, if f € L?(Q), g € szi’p(F), h e Wlfi’p(lj), the solution (u, 7) belongs to WP (Q) x
W LP(Q) and satisfies the corresponding estimate.



Sketch of the proof. We reduce (St) to a problem with the homogeneous normal boundary condition
on I'. We use again the Inf — Sup condition (3) in order to prove the existence of a unique u € W 1p(Q)
solution of (St) and by using De Rham’s Theorem, we prove the existence of a unique © € LP(Q). For
the regularity of the solution, we observe that 7 satisfies: div(Vw — f) = 0in Q and (Vr —f) - n =
—divp(h x m) on I' which implies that 7 belongs to W P(2). We deduce the regularity of u from
Proposition 2.1 since u is a solution of a problem (Er) with the right hand side F = f — V7. O

Remark 2.2. We can also treat the case when the divergence operator does not vanish. So we consider
the following Stokes problem

{—Au—i—Vﬂzf and divu = x in(Q, (5)

u-n=¢g and curluxn=hxn onl, <u-n,1>2j=0, 1<5< U

If we suppose that x belongs to LP(2), f, g, h as in (4) satisfying the first compatibility condition in (2)

and such that
/de:/gda, (6)
Q r

then, we can prove that the Stokes problem (5) has a unique solution (u, 7) € WP (Q) x L?(fQ) satisfying
the estimate:

lullwir@) + [I7llLe@) < C(HfH(Hé»’(diV,Q)), + [Ixllze () + ||g||W17%,p(F) + || x nllwﬁ,p(r))-
Moreover, if we suppose that y € W 1P(Q) with f€ L?(Q), g € WQ_%’p(F), he Wl_%’p(F), then the
solution (u, ) belongs to W*P(Q2) x W 1P(Q) and satifies the corresponding estimate.

We define now the spaces: TP(Q) = {p € HP(div, Q); dive € W, P(Q)}, YEQ) = {¢ €
W2P(Q); ¢-n=0, divp=0, curlpxn =0 onT} and H ,(A; Q) = {v € LP(Q); Aw € (T”/(Q))’}7
endowed with the corresponding graph norms. Note that D(Q) is dense in T'P(2) and then [TP(Q)] is
a subspace of D'(Q).

Theorem 2.3. (Very weak solutions for (St)) Let f, x, g, and h with

fe (TP (Q)), x € LP(Q), g€ W /PP, he W -V/PP(D),

and satisfying the first compatibility condition in (2) and (6). Then, the Stokes problem (5) has exactly
one solution uw € H,(A; Q) and m € W ~LP(Q)/R satisfying the estimate:

el s + Il vy 2 < C (1l o @y + Il 2o+ gl —vmsey + 1 X 2l gosos/mngry)-

Sketch of the proof. First, we prove the density of the space D(Q) in H ,(A; ). Second, we prove

that the mapping v : u — curlu|r x n on the space D(Q2) can be extended by continuity to a linear
and continuous mapping still denoted by v, from H ,(A; ) into W “l-gp (T") and we have the following
Green formula: for any u € H ,(A; Q) and ¢ € Y 7 (),

(7)

(A u, ¢>(Tp/(9)),pr,(Q) = /Qu -Apde + (curlu x n, SD>W’I*%”’(F)xWHl/M'(F)’

Finally, using the formula (7), we can write an equivalent variational formulation of the problem (5) and
we are able to conclude by using the regularity result for its dual problem presented in Corollary ?7. O
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3. The Stokes equations with the normal boundary conditions

In this section, we focus on the study of the Stokes problem (Sy). Observe that the pressure p can
be obtained independently of the velocity as a solution of a Dirichlet problem. So, the velocity u is a
solution of an elliptic system of type (E ).

Proposition 3.1. Let f € (Hg’l (curl, Q) with divf =0 in Q and g € Wlfl/p’p(l“) satisfying the
compatibility condition:

Yo e K2 (), =0 for0<i<I. (8)

<f’ >[Hp curl Q)]’XHP (curl )

Then, the problem (E y) has a unique solution u in W'P(Q) satisfying the estimate:
H U’” Wip(Q) < C(” fH[Hg’/(curl,Q)]’ + Hg X n” Wl—l/l"p(F))'

Moreover, if f € LP(Q) and g € W* YPP(T), then the solution w is in W*P(Q) and satisfies the
corresponding estimate.

Sketch of the proof. First, we lift the boundary condition and we write an equivalent variational
formulation for the homogeneous problem as follows: find u € V& () such that

Vo € VZ(Q), /curlu ~eurlpdz = (f, p)a, )
Q

where VZ(Q) = {w € XX(Q); divw = 0inQ and (w - n, 1)r, = 0, 1 < i < I'}. Next, using a result
concerning normal vector potential [4], we establish a similar Inf-Sup condition to (3), where the spaces
X 2(Q) and V2(Q) are replaced by the spaces X §(Q2) and V X (Q2) respectively. This conclude the proof
of weak solution. For the regularity of the velocity, we need some additional properties. We prove the
following trace formula for any v € W 1P (Q):

curlu-n = Z 3, x7;)-n onl, in the sense of w /PR (), (10)
As a consequence, if we suppose that u xn € W 2_1/”7(1“), then curlw-n € W1=1/P2(T). This implies

that curlu € W '*(Q) and thereafter from [4], we have u € W 27(Q). O

We can also treat the case of the following elliptic system, which is similar to (E n) but where we have
replaced the condition divu =01in Q by divae =0 on I

(Ey) —Au=f inQ, divu=0on T, uxn=0onl, (u-n,1)p =0 forany 1 <i<I.

Theorem 3.1. Let f € (Hé/ (curl, Q)) satisfying the compatibility condition (8). Then, the problem
(E'y) has a unique solution w in W'P(Q) satisfying the estimate:

lullwro < Ol g eurn (11)

Moreover, if f€ LF(Q), then the solution w is in W*P(Q) and satisfies the corresponding estimate.
Theorem 3.2. (Weak and Strong solutions for (Sx)) Let f, g, mo such that

fe (Hf (cwrl, Q)), ge WHPH(D), m e W), (12)
' —
Vv e KX (), (f, v)[H(f/(curl,Q)]leg,(cuﬂ’Q) —/FTro'v-nda—O, (13)
then, the Stokes problem (S ) has a unique solution (u, 7) € WP(Q) x W LP(Q) satisfying the estimate

5



w17 lw o < CULFl g curany + 18 Rl wicsimsqey + Imollw o) (14)
Moreover, if f € LP(Q), g € W2_1/p’p(F), o € WI=VPP(T), then the solution (u, ) belongs to
W2P(Q) x W LP(Q)and satisfies the corresponding estimate. .

Sketch of the proof. We note that the pressure is a solution of the following Dirichlet problem: —A 7w =
divf inQ and 7=m onT. Since g € W'1/PP(T), then 7 € W ?(Q). The velocity is a solution
of the problem (E y) and it suffices to apply Proposition 3.1 to obtain weak and strong solutions. O

Remark 3.3. Let w is a solution of (En). We set © = Vv. Then the function v satisfies: Av =0 inQ
and (Vv); =g onT, where (Vv); is the tangential component of V v.

And more generally, we can also solve the Stokes problem (S ) when the divergence operator does not
vanish. More precisely, we consider the following Stokes pobelem:

—Au+Vr=f and divu =x in{Q, (15)
uxn=gxn and 7=mg onl, (u-n, )r, =0, 1<i<I.
Notice that in the corresponding theorem for the problem (St), we took x € LP(Q). In the case of

the problem (Sy), we can not suppose the same, because we need to solve (15), the fact that Vx €

[Hé’l (curl, )]’, which is not checked because x is only LP(2).
Corollary 3.4. For every f, x, g, mo with

fe[HY (curl, Q), x e W'P(Q), ge W!=/PP(D), my e WI=/rr(D) (16)
V'vEKJ’\’,,(Q), (f, v)Q—/(ﬁo—x)v~nda:O. (17)
T

Then, the Stokes problem (15) has exactly one solution w € WP(Q) and 7 € WP (Q)/R. Moreover,
there exists a constant C > 0 depending only on p and §2 such that:

[ wllwir@) + I7llwie@)mr < C(Hf Iz curt, yp T IXlw o @) + 1 gllwi-1ew ) + ||7Fo||W1—1/p,p(r))-
Moreover, if we suppose that
fe LP(Q), ge W V/PP(D), y e WIP(Q), mo € W V/Pr(D), (18)
then, the solution uw e W2P(Q) and = € W P(Q) satisfy the corresponding estimate.
Theorem 3.5. (Very weak solutions for (Sn)) Let f, g, and mg with
fe [HY (curl, Q), ge W YPP(T), mg € W —V/PP(D),

and satisfying the compatibility conditions (13). Then, the Stokes problem (S n) has exactly one solution
u € LP(Q) and w € LP()/R. Moreover, there exists a constant C > 0 depending only on p and Q such
that:

el + oo m < C (1 gy urt o+ 8l w-vrmoy + Imollw-srmary ) (19)

Sketch of the proof. We use similar arguments presented for the case of problem (Sy) and the main
difference between the two proofs is the fact that we prove a global Green formula. More precisely, we set
the space

MP(Q) = {(u, 7) € Z"(Q) x LP(Q); —Au+ Ve [HY (curl, Q)]'},
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with ZP(Q) = {v € LP(), divo =0in Q and (v-n, 1)r,, 1 <i<I} and by establishing the density

(
of D,(Q) x D(Q) in M (), we prove that the trace of any (u 7)€ MP(Q) belongs to W ~Y/PP(T) x
W —1/P2(T) with the following Green formula for any ¢ € Yp (Q):

(-Au+Vm, 80>Q=—/

u-Apdz+ (uxn, curlcp>p—/Trdivgada:—&—(ﬁ,<,c>-n>p7 (20)
Q

Q

where YIZ\);(Q) = {p € W?2P(Q), divp = 0 and ¢ x n = 0 onT'}. In the first time, we prove the
existence of a unique m € W ~1P(Q), next we use [3] in order to prove that m € LP(Q).0

4. Helmholtz decompositions

According to the two types u - n and u X n of boundary conditions on I, we give decompositions of
vector fields u in LP (). Our results may be regarded as an extension of the well-known De Rham-Hodge-
Kodaira decomposition of C*°-forms on compact Riemannian manifolds into LP-vector fields on 2. We can
find similar decompositions in [6], where the authors consider more regular domain with C*°-boundary
I'. We can see also [8] for the case p = 2.

Theorem 4.1.

i) Let uw € LP(Q). Then, there exist x € WP(Q), w € W,P(Q) N X5(Q), z € KL(Q) such that:
u= z+ V x + curl w satisfiesthe estimate:

2]l 2o ) + [IXIlw 10 @)/ + Wl wre @)k @) < Cllullr @),

where z is unique, X is unique up to an additive constant and w is unique up to an additive element
of KX.(9Q).

i) Let uw € LP(Q). Then, there exist x € W, P(Q), w € WEP(Q) N XE(Q), z € KL(Q) such that:
u = z+ V x + curl w satisfies the estimate:

12l 20 @) + [IXllw 10 @) + Wl wrr ) xz@) < Cllullze@),

where z and x are unique and w is unique up to an additive element of KZ(12).

Sketch of the proof. We give a short proof of the first point and the proof of the second one is
similar. First, we introduce the solution y in W 1'?(Q), unique up to an additive constant, of the problem:
—Ax =divu in Q and (grady — u) - n = 0 on I'. Second, we solve the problem: —Aw = curlw in
Qand divew = 0 in Q, w x n = 0 on I', which has a solution w € W *(Q), unique up to an additive
element of K X (). To finish, observe that the function z = u — V x — curl w belongs to K (). O
Remark 4.2. We can prove also similar decompositions for singular vector fields u € (HJ (div, Q))’ and
for w € (Hf(curl, Q2))".
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