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Abstract

In a three dimensional bounded possibly multiply-connected domain, we prove the existence and uniqueness of
vector potentials in Lp theory, associated with a divergence-free function and satisfying some boundary condi-
tions. We also present some results concerning scalar potentials and weak vector potentials. Furthermore, various
Sobolev-type inequalities are given.

To cite this article: C. Amrouche, N. Seloula, C. R. Acad. Sci. Paris, Ser. I 340 (2010).

Résumé

Théorie Lp pour les potentiels vecteurs et inégalités de Sobolev pour des champs de vecteurs. Dans
un ouvert borné tridimensionnel, éventuellement multiplement connexe, nous prouvons l’existence et l’unicité
des potentiels vecteurs en théorie Lp, associés à des champs de vecteurs à divergence nulle et vérifiant plusieurs
conditions aux limites. On présente également des résultats concernant les potentiels scalaires et les potentiels
vecteurs faibles. De plus, plusieurs inégalités de Sobolev sont données. Pour citer cet article : C. Amrouche,
N. Seloula, C. R. Acad. Sci. Paris, Ser. I 340 (2010).

Version française abrégée

Dans cette Note on s’intéresse à la théorie des potentiels vecteurs dans un ouvert Ω borné tridimension-
nel éventuellement non simplement connexe à bord Γ de classe C 1,1. Le cadre hilbertien est déjà traité par
C. Amrouche, C. Bernardi, M. Dauge et V. Girault [1]. L’originalité de notre travail est de développer
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des résultats similaires en théorie Lp lorsque 1 < p < ∞. Le résultat de base concernant l’existence
d’un potentiel vecteur sans conditions aux limites est donné dans le Théorème 3.1. En particulier dans
le Théorème 3.2, le Théorème 3.3 et le Théorème 3.4, plusieurs conditions aux limites sont proposées.
Les autres résultats concernent la régularité de tels potentiels vecteurs. On s’intéresse ensuite au cas des
potentiels scalaires et potentiels vecteurs très faibles.

1. Introduction

In this work, we assume that Ω is a bounded open connected set of R3 of class C 1,1 with boundary Γ.
Let Γi, 0 ≤ i ≤ I, denote the connected components of the boundary Γ, Γ0 being the exterior boundary
of Ω. We do not assume that Ω is simply-connected but we suppose that there exist J connected open
surfaces Σj , 1 ≤ j ≤ J , called ’cuts’, contained in Ω, such that each surface Σj is an open subset of a
smooth manifold. The boundary of each Σj is contained in Γ. The intersection Σi∩Σj is empty for i 6= j,
and finally the open set Ω◦ = Ω \ ∪J

j=1Σj is simply-connected. We denote by [·]j the jump of a function
over Σj , for 1 ≤ j ≤ J . The pair 〈·, ·〉X,X′ denotes the duality product between a space X and X ′. We
then define the spaces:

H p(curl,Ω) = {v ∈ Lp(Ω); curl v ∈ Lp(Ω)} , H p(div,Ω) = {v ∈ Lp(Ω); div v ∈ Lp(Ω)}

X p(Ω) = H p(curl,Ω) ∩H p(div,Ω),

equipped with the graph norm. We also define their subspaces:

H p
0 (curl,Ω) = {v ∈ H p(curl,Ω); v × n = 0 on Γ} ,

H p
0 (div,Ω) = {v ∈ H p(div,Ω); v · n = 0 on Γ} ,

X p
N (Ω) = {v ∈ X p(Ω); v × n = 0 on Γ} , X p

T (Ω) = {v ∈ X p(Ω); v · n = 0 on Γ}
and X p

0 (Ω) = X p
N (Ω) ∩X p

T (Ω). We also define the space

W 1,p
σ (Ω) = {v ∈ W 1,p(Ω), div v = 0 inΩ}.

As in the Hilbertian case, we can prove that the space X p
0 (Ω) coincides with W 1,p

0 (Ω) for 1 < p < ∞.
We can also prove that D(Ω) is dense in H p(curl, Ω), H p(div, Ω) and X p(Ω). Also D(Ω) is dense in
H p

0 (curl, Ω) and H p
0 (div, Ω). For any function q in W 1,p(Ω◦), grad q can be extended to L p(Ω). We

denote this extension by g̃rad q. We finally define the spaces:

K p
T (Ω)={v ∈ X p

T (Ω), curl v = 0, div v = 0 inΩ} ,

K p
N (Ω)={v ∈ X p

N (Ω), curl v = 0, div v = 0 inΩ} .

As shown in [1], Proposition 3.14, for the case p = 2, we can prove that the space K p
T (Ω) is of dimension

J and is spanned by the functions g̃rad qT
j , 1 ≤ j ≤ J , where each qT

j ∈ W 1,p(Ω◦) is unique up to an
additive constant and satisfies ∆ qT

j = 0 in Ω◦, ∂n qT
j = 0 on Γ,

[
qT
j

]
k

= constant, [ ∂n qT
j ]k = 0; 1 ≤

k ≤ J and
〈
∂n qT

j , 1
〉
Σk

= δj k, 1 ≤ k ≤ J . We note that K p
T (Ω) = {0} if J = 0, where J is the second

Betti number. Similarly, we can prove that the dimension of the space K p
N (Ω) is I and that it is spanned

by the functions grad qN
i , 1 ≤ i ≤ I, where each qN

i ∈ W 1,p(Ω) is the unique solution to the problem
∆ qN

i = 0 in Ω, qN
i = 0 in Γ0, qN

i = constant in Γk, 〈∂n qN
i , 1〉Γ0 = −1 and 〈∂n qN

i , 1〉Γk
= δi k, 1 ≤ k ≤ I.

We note that I is the first Betti number and if Γ = Γ0, then K p
N (Ω) = {0}. In the sequel, the letter C

denotes a constant that is not necessarily the same at its various occurences. The detailled proofs of the
results announced in this Note are given in [3].

2



2. Sobolev’s inequality and compactness properties

We introduce the following two operators:

T λ(x ) = − 1
2π

∫
Γ

λ(ξ)
∂

∂n
|x − ξ|−1 dσξ, Rλ(x ) =

1
2π

∫
Γ

curl
( λ(ξ)
|x − ξ|

)
× n dσξ,

where T is compact from Lp(Γ) into Lp(Γ) and R is compact from Lp(Γ) into Lp(Γ) (see [6]). Using
the Fredholm alternative, we can check that the null spaces Ker(Id + T ) and Ker(Id + R) are of finite
dimension and are respectively spanned by the traces of the functions grad qN

i ·n on Γ for any 1 ≤ i ≤ I

and the traces of the functions g̃rad qT
j × n on Γ for any 1 ≤ j ≤ J . The next lemma is a generalization

of the one in [6] to the case I ≥ 1 and J ≥ 1. We expect that to estimate ∇ v , in addition to div v and

curl v , the quantity
J∑

j=1

〈v · n , 1〉Σj is necessarily in the case where v · n vanish on Γ (respectively the

quantity
I∑

i=1

〈v · n , 1〉Γi
is necessarily in the case where v × n vanish on Γ).

Lemma 2.1.

i) Any function v ∈ W 1,p(Ω) ∩X p
N (Ω) satisfies:

‖∇ v‖Lp(Ω) ≤ C
(
‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

I∑
i=1

|〈v · n, 1〉Γi |
)
.

ii) Any function v ∈ W 1,p(Ω) ∩X p
T (Ω) satisfies:

‖∇ v‖Lp(Ω) ≤ C
(
‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

J∑
j=1

|〈v · n, 1〉Σj |
)
.

Sketch of the proof. We use the integral representations, the properties of the operators T and R and
the Calderon-Zygmund inequalities. 2

Using the previous result, the density of W 1,p(Ω) ∩X p
N (Ω) in X p

N (Ω) and the density of W 1,p(Ω) ∩
X p

T (Ω) in X p
T (Ω), we obtain the following theorem:

Theorem 2.2. The spaces X p
N (Ω) and X p

T (Ω) are both continuously imbedded in W 1,p(Ω) and we have
the following estimates:

i) Any v ∈ X p
N (Ω) satisfies:

‖ v ‖W 1,p(Ω) ≤ C
(
‖ v ‖Lp(Ω) + ‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

I∑
i=1

|〈v · n, 1〉Γi |
)
.

ii) Any v ∈ X p
T (Ω) satisfies:

‖ v ‖W 1,p(Ω) ≤ C
(
‖ v ‖Lp(Ω) + ‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

J∑
j=1

|〈v · n, 1〉Σj
|
)
.

We now introduce the following spaces for s ∈ R, s ≥ 1:

X s,p(Ω) = {v ∈ Lp(Ω); div v ∈ W s−1,p(Ω), curl v ∈ W s−1,p(Ω) and v · n ∈ W s− 1
p ,p(Γ)},
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Y s,p(Ω) = {v ∈ Lp(Ω); div v ∈ W s−1,p(Ω), curl v ∈ W s−1,p(Ω) and v × n ∈ W s− 1
p ,p(Ω)}.

The following result is an extension of Theorem 2.2 to the case where the boundary conditions v · n = 0
and v × n = 0 on Γ are replaced by inhomogeneous ones.

Theorem 2.3. The spaces X 1,p(Ω) and Y 1,p(Ω) are both continuously imbedded in W 1,p(Ω):
i) Any v in X 1,p(Ω) satisfies

‖v‖W 1,p(Ω) ≤ C
(
‖v‖Lp(Ω) + ‖curl v‖Lp(Ω) + ‖div v‖Lp(Ω) + ‖v · n‖

W
1− 1

p
,p

(Γ)

)
.

ii) Any v in Y 1,p(Ω) satisfies

‖v‖W 1,p(Ω) ≤ C
(
‖v‖Lp(Ω) + ‖curl v‖Lp(Ω) + ‖div v‖Lp(Ω) + ‖v× n‖

W
1− 1

p
,p

(Γ)

)
.

iii) Let m ∈ N∗ and Ω of class Cm, 1. Then, the space Xm,p(Ω) is continuously imbedded in Wm,p(Ω)
and Ym,p(Ω) is continuously imbedded in Wm,p(Ω)).

iv) Let s = m + σ, m ∈ N∗ and 0 < σ ≤ 1, Assume that Ω is of class Cm+1,1. Then, the space X s,p(Ω)
is continuously imbedded in W s,p(Ω) and Y s,p(Ω) is continuously imbedded in W s,p(Ω)).

The first point of the following result is proven by Costabel [4] for the case p = 2 in a bounded simply
connected domain. We extend this result to the case of a multiply connected domain Ω and for any
1 < p < ∞.

Theorem 2.4.

(i) Let u ∈ X p(Ω) with u · n ∈ Lp(Γ) (respectively with u × n ∈ Lp(Γ)). Then, u ∈ W
1
p ,p(Ω) and

satisfies the inequality

‖u ‖
W

1
p

,p
(Ω)

≤ C
(
‖u ‖Lp(Ω) + ‖ curlu ‖Lp(Ω) + ‖divu ‖Lp(Ω) + ‖u · n ‖Lp(Γ)

)
,(

respectively ‖u ‖
W

1
p

,p
(Ω)

≤ C
(
‖u ‖Lp(Ω) + ‖ curlu ‖Lp(Ω) + ‖divu ‖Lp(Ω) + ‖u× n ‖Lp(Γ)

))
.

(ii) If in addition u · n ∈ W s−1/p,p(Γ) (respectively u × n ∈ W s−1/p,p(Γ)) with 1/p < s ≤ 1, then
u ∈ W s,p(Ω).

As for the case p = 2 (see [1]), we can prove that the imbedding of X p(Ω) into Lp(Ω) is not compact
and that the homogeneous normal or tangential boundary conditions are sufficient to insure compactness.
More precisely we have the following result.

Theorem 2.5. The imbeddings of X p
N (Ω) and X p

T (Ω) into Lp(Ω) are compact.

3. Vector potentials

We begin with a first result concerning vector potentials without boundary conditions. The result is
known for p = 2 (see [1]) and we can give a different proof for 1 < p < ∞ by using the fundamental
solution of the Laplacian.
Theorem 3.1. A vector field u in H p(div, Ω) satisfies

divu = 0 in Ω and 〈u · n, 1〉Γi
= 0, 0 ≤ i ≤ I, (1)

if and only if there exists a vector potential ψ0 in W 1, p(Ω) such that

4



u = curlψ0.

Moreover, we can choose ψ0 such that divψ0 = 0 and we have the estimate
‖ψ0‖W 1,p(Ω) ≤ C ‖u‖Lp(Ω),

where C > 0 depends only on p and Ω.
Theorem 3.2. A function u in H p(div, Ω) satisfies (1) if and only if there exists a vector potential ψ
in W 1,p(Ω) such that

u = curlψ and divψ = 0 in Ω, ψ · n = 0 on Γ, 〈ψ · n, 1〉Σj
= 0, 1 ≤ j ≤ J. (2)

This function ψ is unique and we have the estimate:
‖ψ‖W 1,p(Ω) ≤ C‖u‖Lp(Ω). (3)

Sketch of the proof. Let ψ0 ∈ W 1,p(Ω) be the function associated with u by Theorem 3.1 and
χ ∈ W 1,p(Ω) be a unique solution up to an additive constant, of the problem: −∆ χ = 0 in Ω and
∂n χ = ψ0 · n on Γ. Then, the vector function

ψ = ψ0 − gradχ−
J∑

j=1

〈 (ψ0 − gradχ) · n , 1〉Σj
g̃rad qT

j ,

satisfies the properties in (2) and the estimate (3). 2

Applying the Peetre-Tartar Lemma, (cf. references [5], Chapter I, Theorem 2.1), we can prove the following
Poincaré-type inequality.

Corollary 3.3. On the space X p
T (Ω), the seminorm

w 7→ ‖curlw‖Lp(Ω) + ‖divw‖Lp(Ω) +
J∑

j=1

|〈w · n, 1〉Σj
|,

is equivalent to the norm ‖ · ‖Xp(Ω).

Theorem 3.4. A function u in H p(div, Ω) satisfies:

divu = 0 in Ω, u · n = 0 on Γ and 〈u · n, 1〉Σj
= 0, 1 ≤ j ≤ J, (4)

if and only if there exists a vector potential ψ in W 1,p(Ω) such that

u = curlψ and divψ = 0 in Ω, ψ × n = 0 on Γ, 〈ψ · n, 1〉Γi
= 0, for any 0 ≤ i ≤ I. (5)

This function ψ is unique and we have the estimate:

‖ψ‖W 1,p(Ω) ≤ C‖u‖Lp(Ω). (6)

Sketch of the proof. We solve the problem−∆ ξ = 0 and div ξ = 0 in Ω, ξ·n = 0, curl ξ×n = ψ0×n on
Γ, 〈ξ ·n , 1〉Σj

= 0, where ψ0 is the function associated with u by Theorem 3.1. This problem is equivalent
to the following: find ξ ∈ V p

T (Ω) such that
∀ϕ ∈ V p′

T (Ω),
∫

Ω

curl ξ · curlϕ dx =
∫

Ω

ψ0 · curlϕdx −
∫

Ω

ϕ · curlψ0 dx , (7)

where V p
T (Ω) = {w ∈ X p

T (Ω); divw = 0 inΩ and 〈w · n , 1〉Σj
= 0, 1 ≤ j ≤ J}. We can prove that (7)

satisfies the following Inf-Sup condition:

inf
ϕ∈V p′

T
(Ω)

sup
ξ∈V p

T
(Ω)

∫
Ω

curl ξ · curlϕ dx
‖ξ‖Xp

T
(Ω)‖ϕ‖Xp′

T
(Ω)

> 0, (8)
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and that the solution ξ belongs to W 2,p(Ω). Then, the vector function

ψ = ψ0 − curl ξ −
I∑

i=1

〈(ψ0 − curl ξ) · n , 1〉Γi grad qN
i ,

satisfies (5) and the estimate (6). 2

Again, using the Peetre-Tartar Lemma, we have the following Poincaré-type inequality.

Corollary 3.5. On the space X p
N (Ω), the seminorm

w 7→ ‖curlw‖Lp(Ω) + ‖divw‖Lp(Ω) +
I∑

i=1

|〈w · n, 1〉Γi
|,

is equivalent to the norm ‖ · ‖Xp(Ω).

In a similar fashion and by characterizing the kernel space

K p
0 (Ω) = {w ∈ W 1,p

0 (Ω); curlw = 0 and div (∆w) = 0 inΩ},
we can give another type of vector potential:

Theorem 3.6. A function u in H p(div, Ω) satisfies:
divu = 0 in Ω, u · n = 0 on Γ and 〈u · n, 1〉Σj

= 0, 1 ≤ j ≤ J,

if and only if there exists a vector potential ψ in W 1,p(Ω) such that

u = curlψ and div (∆ψ) = 0 in Ω, ψ = 0 on Γ, 〈∂n(divψ), 1〉Γi
= 0, for any 0 ≤ i ≤ I.

This function ψ is unique.

4. Scalar potentials

In this section we present several results concerning scalar potentials. We begin with the following
fundamental result.
Theorem 4.1. For any function f ∈ Lp(Ω) that satisfies

curl f = 0 and
∫

Ω

f · v dx = 0 for all v ∈ K p′

T (Ω),

there exists a unique scalar potential χ ∈ W 1,p(Ω)/R such that f = gradχ and the following estimate
holds:

‖χ‖W 1,p(Ω)/R ≤ C‖ f ‖Lp(Ω).

Sketch of the proof. It suffices to prove that for any v ∈ H p′

0 (div,Ω) such that div v = 0 inΩ, we have∫
Ω
f · v dx = 0. Next, we apply [2, lemma 2.7]. 2

We are now interested in the case of singular data.

Theorem 4.2. For any f in the dual space of H p′

0 (div ,Ω) with curl f = 0 inΩ and f satisfying:

∀ v ∈ K p′

T (Ω), 〈f , v〉
[H p′

0 (div ,Ω)]′×H p′
0 (div ,Ω)

= 0,

there exists a scalar potential χ in Lp(Ω)/R such that f = gradχ and the following estimate holds:
‖χ‖Lp(Ω)/R ≤ C‖ f ‖

H p′
0 (div ,Ω)′

.

Sketch of the proof. We can prove that for any f in [H p′

0 (div ,Ω)]′, there exists ψ ∈ Lp(Ω) and
χ0 ∈ Lp(Ω) such that f = ψ + gradχ0. We then apply Theorem 4.1 to ψ. 2
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5. Weak vector potentials

The aim of this section is the proof of the existence of a new type of vector potential called weak vector
potentials.
Theorem 5.1. For any f in the dual space of H p′

0 (curl ,Ω) with div f = 0 inΩ and f satisfying:

∀v ∈ K p′

N (Ω), 〈f , v〉
[H p′

0 (curl ,Ω)]′×H p′
0 (curl ,Ω)

= 0,

there exists a vector potential ξ in Lp(Ω) such that

f = curl ξ, with div ξ = 0 in Ω and ξ · n = 0 onΓ,

and such that the following estimate holds:
‖ξ‖Lp(Ω) ≤ C‖ f ‖

H p′
0 (curl ,Ω)′

.

Sketch of the proof. We can prove that for any f in [H p′

0 (curl ,Ω)]′, there exists ψ ∈ Lp(Ω) and
ξ0 ∈ Lp(Ω) such that f = ψ+ curl ξ0 with div ξ0 = 0 in Ω and ξ0 ·n = 0 on Γ. We then apply Theorem
3.2 to ψ. 2

References

[1] C. Amrouche, C. Bernardi, M. Dauge, V. Girault, Vector potentials in three-dimensional nonsmooth domains,
Math. Meth. Applied Sc., Vol. 21, pp. 823–864, 1998.

[2] C. Amrouche,V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary

dimension, Czechoslovak Math. J., Vol. 119, No. 44, pp. 109–140, 1994.
[3] C. Amrouche, N. Seloula, Lp-Inequalities for Vector Fields and Stokes Problems with Non Standard Boundary

Conditions, submitted for publication.
[4] M, Costabel, A remark on the regularity of solutions of Maxwell’s equations on lipschitz domains, Math. Meth. Appl.

Sci. Theory, Vol. 12, pp. 365–368, 1990.

[5] V, Girault, P.-A, Raviart, Finite Element Methods for the Navier-Stokes Equations, Theory and Algorithms,
Springer, Berling, 1986.

[6] W. Von. Wahl, Estimating ∇u by div u, curlu, Math. Meth. Appl. Sci., Vol. 15, pp. 123–143, 1992.

[7] R, Temam, Theory and Numerical Analysis of the Navier-Stokes Equations, North-Holland, Amsterdam, 1977.

7


