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ABsTrACT. This work is dedicated to the resolution of a singular equation set
in the half-space, with a diffusion coefficient that blows up on the boundary. More
precisely, for a datum g : Ri’_ — R, our problem consists in seeking w : ]Ri — R
formally solution to:

1
—diV(I—Vu) :ginRi, u:OonF:RQX{O}.
3

We give existence and uniqueness results of weak and strong solutions in suitable
weighted spaces, where the weight depends on x3.

KEY worDs. Elliptic equation, singular equation, half-space, weighted spaces,
weak solutions, strong solutions, Hardy’s inequality.

AMS SUBJECT CLASSIFICATIONS. 35Q30, 35B40, 76D05, 34C35

1 Introduction

This work is devoted to the study of a singular elliptic equation set in the half-space
Ri. More precisely, for a datum g : ]Ri — R, our problem consists in looking for
u: ]Ri — R formally solution to:

1
—div (xVu> =ginR3, u=0onT=R?x{0}. (1)
3

To understand the origins of this equation, we turn to the work of Bresch, Guillén-
Gonzalez and Lemoine in [7], who study an analogous equation set in regular bounded
domain w C R%. Given h : w — R and g : w — R, the authors are looking for
1 : w — R formally solution to:

—div <fllV\I/> =ginw, V¥ =0ondw. (2)

Basically, h is a positive Lispichtz-continuous mapping, behaving as the distance
function d(z’) = dist(2’, dw), ' € w, in a neighbourhood of dw.



The authors in [7] explain how such singular equation (2) naturally appears in the
study of models issued from oceanography, under a hydrostatic pressure assumption
and set in domains with vanishing depth. It is the case for example of the planetary
geostrophic equation [9], the vertical-geostrophic equations [§8], and the hydrostatic
Stokes or Navier-Stokes equations [1, 3, 5, 11, 15]. Before stating their main result,
we define the space

H(w) = { e 2(w) /i /29y € L2 ()%, ¥ =0 on ),
endowed with the norm ||| ;) = Hhil/Qv\PHN(w)T

Theorem 1.1. Let g be such that 5h'/%g L?(w). There exists a unique solution ¥
of (2) such that ¥ € H(w) and:

19115y < C||oR12

Moreover, if h'/?g € L*(w), then:

1 1
hl/QV(EV\I/) € L*(w)!, ’ hl/QV(EV\IJ)

e
L2(w)4

To our knowledge, no theoretical study was made in the case of the half-space
Ri, however usefull to obtain a good comprehension of the general case of a bounded
domain. This paper is therefore devoted to the study of such a case, see (1). We
present the case of the dimension 3 only for technical reasons, explained later.

On the one hand, our work enables to achieve the following result similar to Theorem
1.1, in a context of weighted spaces, where the weight depends on z3. Beforehand,
we introduce prematurely the space Wi; 2 (R3), see (11), endowed with the norm

given by (12).

Theorem 1.2. Let g € D'(R3) such that x3/2g € L*(R3). Then, there exists a
unique solution w € W7 2 (R3) of (1). Moreover, there is a positive constant C
3

such that: )
3/2
lullwrz ey < C [[257%]

EER

L2(RY)

If in addition, \/T39 € L*(R3), then

VI3V (— Vu)eL2 R3)? H\Fv Vu)

xs3

< Cllvasgll L@ )

LQ(Ri)g

On the other hand, we consider a larger class of data g in suitable weighted spaces,
and give results of existence and uniqueness of weak and strong solutions to (1), that
include Theorem 1.2.

Note that the ideas contained in this work, can be adapted to the }Rf -case where
N > 3. In the R? -case, it is necessary to introduce an additional logarithmic weight,
which complicates a bit more the presentation of the results. This is why we limit
our study to the case of the dimension 3.

An outline of this paper is as follows. In Section 2, we set the functional framework,
by introducting two kinds of weighted spaces. Firstly, we give an overview of the
weighted spaces W2 2(R3), see (4), encountered in works concerning for example
Laplace equation studied in Ri. Secondly, we will build another family of weighted
spaces Wé 32[3 (R3), see (11), where the weight depends on x5, and especially adapted

to the study of (1). Following the work of Grisvard [12], we will define a trace operator,



give density results and generalized Hardy’s inequalities. We will finish this section
with a comparaison between these two families of weighted spaces, proving continuous
and dense embeddings between them.

In Section 3, we study the existence and uniqueness of weak solutions to (1), by
considering a large class of data g. More precisely, we prove in Theorem 3.2 the
existence and uniqueness of a weak solution to (1) in W, 2 (R} ), while in Theorem
3.4, existence and uniqueness of a weak solution to (1) is obtained in W} ?(R3).
The last section of this paper is devoted to the study of strong solutions to (1),
completing the theoretical study of Problem (1). More precisely, we give two situations
where the weak solution of Theorem 3.2 is in fact a strong solution, see Theorem 4.1
and Theorem 4.5.

2 Functional framework

This first section is aimed to set the functional framework adpated to the study of
Problem (1). In particular, we define and study here the appropriate space for weak
solutions to (1).

Let us make the following observation. Let us consider a datum g such that x3g €
L*(R%). Formally, let us multiply (1) by z3u and integrate over R%. Then, using
Green’s formula and taking into account the boundary condition over u, we deduce
the following energy equality:

1
/ \Vul|® dz + f/
R 2 Jr

Therefore, we are naturally lead to look for weak solutions u such that:

u

xs3

2
dx:/ r3gu dx.
R

3
+

3
+

Vu € LA(R3)3, % €I*(R%), u=0onT. (3)

This first situation is considered in Proposition 3.1, where we establish the existence
and uniqueness of such a weak solution. Then, since |zs| < (1 4 |z|*)¥/2, any weak
solution satisfying (3) is in fact in the weighted Sobolev space Wol ’Q(Ri), where:

u

Wo t(BS) = {u DD e

€ L*(R}) and Vu € LQ(Ri)3} .
And therefore, the boundary condition v = 0 on I" is meaningfull.

Let us recall properties of the weighted Sobolev spaces Wy ?(R? ), usefull in the
sequel, and study a new familly of weighted spaces, where the weight depends on z3,
see (11).

2.1 An overview of the weighted Sobolev spaces W, ?(R?)

In a general way, the spaces Wa172(Ri), a € R, have been introduced since they
are adapted to the study of some second order elliptic equations set in Ri, and more
precisely, to the Laplace equation with inhomogeneous Dirichlet or Neuman boundary
conditions. We refer here to the work of Amrouche and Necasova [2], Boulmezaoud
[6], or the one of Hanouzet [13].

Let @ € R and set for any = € R%, p(z) = /14 |z|>, where |z| denotes the
euclidean norm of z. Then, we introduce the weighted Sobolev space:

Wa2(RE) ={ueD(RY)/p* 'ue L*(RY) and p*Vu € L*(R3)?}, (4)



which is a Hilbert space for the norm:
a— 2 a 2 v
el 2y = (07 ulagms ) + 10 Vel Fagee ) - (5)

The weight p is chosen such that the space Wy ?(R3) satisfies two fundamental

properties. On the one hand, D(R2) is dense in W) 2(R3) (see [13]). On the other
hand, if a # —1/2, any functions of W2 ?(R%) satisfies a Poincaré type inequality
(see [2]).

As 1 is bounded, note that for any o > 3, the following continuous embedding
holds:
Wa2(RY) — Wy *(RY), (6)

Then, any function w in W3 ?(R3) has a trace on I, and u|p belongs to the weighted
space Wa/> ?(T"). For more precision, we refer to [13].

Theorem 2.1. The mapping v : u — u(z’, 0) defined on D(@), can be extended in
a unique way to a linear and continuous mapping, still denoted by -y, from WO{Q(RE’F)

into Wa/* ().

The following short paragraph is dedicated to basic properties of the space W12 (R3),
the closure of D(R?) in W7 2(R3.). Firstly, when o # —1/2 and according for example
to [6], we have the following Hardy type inequality:

Vu € Wé’Q(Ri), Hl)a_luHLz(Ri) < Ha HPQVUHL%RE’LV ) (7)

where H,, is a positive constant, depending only on «. And following for example the
proof of Theorem 1.2 of [13], we can choose H, = ﬁ when 0 < a < 1, yielding
finally:

2

(2a0+1)
As a consequence of (7) and still if @ # —1/2, the mapping u ||PQVU||L2(R§;)3

Yue WH(RE), Hpa_luHLz(Ri) < 1™ Vull 2 g3 yo - (8)

defines a norm on W2-2(R3.), equivalent to the one defined in (5). Secondly, it is also
proved in [13] page 238, that for any «, 8 € R the mapping below is an isomorphism:

Tpp i€ WEARE) — pPu e Wi (RY), 9)

and one has the estimate:
Vue WIARY),  Thulwre ms) < VI+E Julyaogs, - (10)

Finally, and according to [13] page 258 Theorem II. 3, the space Walz(Ri) can be
characterized as the kernel of ~:

Wam(Ri) ={ueWy?R3)/u=0o0nT}.

We finish this Io)aragraph by introducing the space of distributions W:;’ 2(Ri) as the
dual space of W22(R3).



2.2 The spaces W2 (R?)

«, T3

For a € R, we consider the Hilbert space:

We2 (RY) ={ueDRY) /a5 ue L*(RY), 2§Vu € L*(R%)?}, (11)

o, T3

endowed with the norm:

iz 2

a, 3

= (gl gy + 2§Vl ) (12)
®) = T3 Ullp2ry) T I1T3 VUIL2(RE)s :

In the early 1960s, a similar space has been studied by Grisvard, see [12]. In his
work, Grisvard considers the case of functions u satisfying:

TeUu € LQ(Ri), zgVu € L2(R1)3.

He establishes crucial properties, such as the existence of a trace operator and density
results. Following his ideas, we begin this section by establishing that when « < 1/2,
any functions u of W2 (R%) possesses a trace in L?(R?). The idea is to prove that
any function u of W2 (R ) is continuous in the vertical direction, ensuring therefore

the existence of the expected trace.

Proposition 2.2. Let o < 1/2. The mapping u — ~yu defined by:

yu = limou(-7 x3),

r3—

is linear and continuous from W2 (R3) into L*(R?).

Proof. For convenience, we set E = L?(R?). Then, let us introduce the space ():
F= {v € L3,_1(0, +o0; E) /v € L2(0, +o0; E)} ,

and note that Wé:ﬁs (Ri) can be identified as a subspace of F', as a consequence of

the theorem of Fubini. Therefore, if we prove that F' is continuously embedded in
C([0, +00[; E), we are able to define u(0) as well as yu € E for any u € W2 (R3).

o, T3
We focus now on establishing this embedding. It follows from the inequalities below,

available for any v € F and T > 0:

T too 1/2 T 1/2
/ ||v<t>||Edt<</ ||v<t>||ét2<a”dt) (/ t“&”dt) 7
0 0 0
T +o0 1/2 T 1/2
/ ||v'<t>||Edt<(/ |v<t>||zt2adt> (/ t2adt> ,
0 0 0

that the mapping v — (v, v’) is continuous from F into L{. ([0, +oo[; E)? . As a
consequence, one has proved that:

F — C°([0, +oo[; E),

and the proof is finished. O

We follow this section by establishing a density result, adapted from [12].

112 (0, +o0; E) denotes the set of measurable functions v :]0, +oco[— E such that:

—+oo
/ lv]|% 2 dt < oco.
0



Theorem 2.3. For any o € R, the space D(R3) is dense in W22 (RY). As a

x, T3

consequence, if o < 1/2 the functions of W12 (R3) has null trace on R?.

@, T3

Proof. If we prove that D(R? ) is dense in W22, (R?), then it follows from Proposition
2.2 that whenever the trace of u is defined, it is necessarily equal to 0.

Exceptionally in this proof, we denote by £'(R?) the set of distributions with compact

support in Ri, and &’ (@) the set of distributions with compact support in @ The
proof is then divided into three steps.

Step one. It is clear that D(R?) is dense in W22 (R3)NE'(R3), since any function

&, T3
in Wi2 (R3)NE&(RY) belongs to Hg(R3) NE'(RY).
Step two. We prove that W2 (RY)NE(RY) is dense in W22 (R)NE(RY). Let
win W2 (R3) NE'(RY) and ¢ € C([0, +ool), such that 0 < ¢ < 1, 9(t) = 0 if
t<1,¥(t)=1if t > 2. Then, let us define . by:
T
TERY, gelo) = (),

and set u. = ug.. One proves with no difficulty that u. € W2 (R3)NE'(RY). Next,
observe the following computations:

“+o0
[ 000 — w2 = [

0

2e

t o
O(2) = 1 [u(t) 2@z 770 dt

2e
</0 ()72 g2y 207 dt.

We deduce from Lebesgue’s theorem that u. — u in L2_;(0, +oo, L?(R?)), when
goes to 0. It is also clear that p.Vu — Vu in L2(0,+o00, L?(R?)3). Therefore, it
remains to establish that uVy. — 0 in L2 (0, 400, L?(R?)?) and this follows from:

2 2«
t
=
L2(R2) €

u(t)y'(2)

€

+oo 5 2e
/0 [w(t)Vipe (t)][ 72 mzys t°* dt = /
€

2e
< [ Oy 2

Step three. We chek that W12 (R3) N &'(RY) is dense in W22 (R%), using the

«, T3 A @, T3
usual process of truncation. Indeed, let ¢ € C*(R%) such that 0 < ¢ < 1, ¢(z) =1
if |z] <1, p(x) = 0if |z| > 2 and define ¢, by:

x

zeRY, pp(z) = @(E)-
Then for any u € W22 (R%), ux = ugy, belongs to W22, (Ri)ﬂg’(ﬁ), and following
Step two, we deduce that uj; converges strongly to u in ngg (R3). O

Remark 2.4. According for example to [12], see Theorem 1.2 and Theorem 1.3,
observe that for any « # 1/2 the following Hardy’s inequality holds:

2
IV1’2 3 a—1 ayy
Vu € a7z(R+)? H.’E3 u”lﬂ(Ri) < |2a N 1| ||‘/B3 u||L2(R§_)3 . (13)

Let us now introduce and characterize the dual space to W2 (R%).

Definition 2.5. Let us denote by W~12 (R3) the dual space of W22 (RY).

—Q, T3 &, T3



In the previous paragraph we have proved that for any a € R, the space ’D(R?’._) is

dense in W}:2 (R3). As a consequence, the space W_, (R3 ) is a space of distribu-

a,T3 Oé xr3
tions, which can be characterized in the following way.

Proposition 2.6. Any distribution g € D'(R?) belongs to W_
if there is fo € L*(RY) and f € L*(R3)? such that:

g= x?flfo + div (25 f),

%), if and only

aacg(

with the estimate below:
g1z myy < (Iollzaen) + 1F ] cagenye) -
Moreover, if a # 1/2, one can take fo = 0.
Proof. Let fy € Lz(Ri) and f € LQ(Ri)3. Then, one has for any ¢ € D(Ri)

’<x§71fo+div(x§f), <p>’ = ‘/Rs a?g*l fopdx — /R3 x5 f-Vedz
T

+

< HfO”L"’(]RE’;_) Hx ¢’|L2(Rs + Hf”L?(R ) H333V<P||L2(R3 )3
<Cllellwaz, gy
and by density we deduce that:
3 o+ div (25 £) € W23 (RY).

Conversely, let g € W_, R3 1), and let us consider the mapping

e 13(
u s (25 u, 2§ Vu),

from W} 2 (R3) into L?(R%)*. This mapping is isometric; thus one can consider

waz (R R? ) as a closed sub-space of L?(R3)*. Thanks to the theorem of Hahn-Banach,
if g € WZ,' 2 (R%), one can extend g to a linear and continuous form on L?(R%)%. As
a consequence, one deduces from Riesz representation, that there is (fo, f) € L*(R3)*

such that:
YueWy2 (RY), / fo @y w)yde — | f-(z§Vu)dz,
R

and one deduces that:
g=a5" " fo+div(z§ f) in RY.
According to (13), if a # 1/2 the mapping u — ngVUHLQ(Ri)g defines a norm on

Wa 2. (RY) equivalent to [R[FE (ry)- Then, the above reasoning holds if we replace
-1

the mapping u — (2§ ", 5 Vu) by the following one,

u— x5 Vu,
from W} 2 (R3) into L?(R})?, and as expected we can take fo = 0. O
Remark 2.7. Note that for any 8 € R, the operator:
1,2
T/H Wolt §3 (R?) ) Wa B, x3 (Ri)7 u = J/'g’u,’ (14)

is an isomorphism, and also that the following estimates hold:

1 ——
Then, it follows for any a € R that g € W% 2(R3 ) if and only if xgg eW,. 15213 (R3),
with the estimates below:

1

bt <l ) VT Pl 0



Before finishing this section, we want to compare the space W32, (R%) to Wé)%Ri),
the closure of D(R3) in W} 2(R3).
Firstly, since p” < xg for any 8 < 0, we have the following continuous and dense
embedding: )
Vo <0, Wa2 (RY) — Wa2(RY). (17)
Secondly, when « > 0 the converse situation happens, and we have the dense and
continuous embedding below:

Va >0,  WLARL) — Wiz (RY). (18)
To explain (18), let us first prove the following lemma.
Lemma 2.8. Let a € R. Then, we have the following inequality:

vue WY,  ||E=

<21+ lah o). (19)
T3 ll2(ms) War (&)

Proof. Firstly, we prove (18) for o = 0. Let u € Wy *(R%) and (u,) C D(RY) a
sequence converging to u in W&’Z(Ri). From Hardy’s inequality (13), the sequence
(42) is a Cauchy sequence of L*(R3). Therefore, we deduce that 7 € L*(RY), with:

u

- <2 Vull 2y ys < 2lullypy 2gsy »

L2(RY)

that proves (19) when a = 0. Then, since we already have Vu € L*(R%)3, we prove
that u € Wy’2 (R3) with:

lullyy2 @) < \/5||UHW01’2(R3_)7
and (18) is proved for a = 0. Secondly, we establish (19) for any «. Let v € WC{Q(Ri)

From (9), the function p®u belongs to WO1 Z(Ri), and hence to W&”i (R3)), as we have
just proved it. As a consequence, Hardy’s inequality implies that:
LQ(Ri)>

O

pu

T3

u

<2900 ey o < 2 (npawnmm)s +al

x
a—1
B

L2(RY)

< .
< 21+ o) f[ullys e

We are now in position to explain (18). Let a > 0 and u € W1?(R3). Then, since

z§ < p®, we already have 2§Vu € L2(R3)3. Besides, if we write z3 'u in the

following way:
[
z?_lu = <933> pau7
p T3

it follows from Lemma 2.8 that 2§~ 'u € L*(R3), and then that u € W12 (R}) with:

||U||W;;§3(R3) < (1 +4(1+ \04|)2) ||U||W;;§3(R1) :

Remark 2.9. These embeddings yield several consequences. Firstly, note that:
1,2 _ 13,2
Wo ny (RY) = Wy (RY), (20)
and also that H'||W(}*2(Ri) defines an equivalent norm to ||HW01T23 (g2) ON the space

Wolﬁd (R%). Moreover, Wy ;' *(R%) and W, "*?(R3) are the same distributions. Sec-
ondly, observe more generally that:

Va0 WrLIED) o Wohim);
Voo >0, WiV 3R3) — WiL2A(RY).

oo



3 Weak solutions

Let us start off with a first situation. Here, we seek weak solutions to Problem (1) in
the space Wol,’fg (R3)). For convenience, let us write Problem (1) in the following way:

A - — in R3
u—|—$3 D2 in Ry,
u=0 onR?

(21)

where f = x3g. Then, we have the following proposition.

Proposition 3.1. Let f € WJ;SQ(Ri) Then, Problem (21) has a unique solution u

in the space Wolfs (R3) and satisfying the estimate:
”u”WOli (R3) <2 ||fHW0—)i=:(R1) ‘ (22)

Proof. We observe by Proposition 2.6 that u € Wol”fs_ (R3) is a solution to (21) if and
only if u satisfies the formulation below:

Yo e Wy'2 (R3), ,
Vu - Vvdzr + iidz:(f, v) . (23)
Ri Ri— 61‘3 I3

Here the duality is taken in the sense of Wy ;' *(R%), Wy2 (R%). Next, let us focus
on the bilinear form

u,vGW&’fS(Ri), (u, v) — Vu~Vvdx+/ 18—udac.
’ R Ry 3 03

It is clearly continuous and coercive on Woli (R3.), since one has for any u € D(RY)
and then by density for u € W2 (R3):

O,:Eg

2

0 1
/ L = || . (24)
R2 T3 0xs 2 || x3 L2(R3)
Then Proposition 3.1 follows as a consequence of Lax-Milgram’s lemma. O

We can also prove the existence and uniqueness of a range of weak solutions, living

in the more general space W) 2 (R3 ). However, we need to consider particular values

of the parameter a. Note that the following result includes Proposition 3.1.

Theorem 3.2. Let —3/2 < o < 1/2 and g € W, }%, (R3). Then, there exists a

a+l,z3

unique u € Wé;is (R3.) solution to Problem (1). Besides, for some positive constant

Co (3) depending only on «, u satisfies the estimate below:

||u||W;;§3 (R3) < Collglly-1.2 LR (25)

a+l,x

More precisely, C,, is defined by:

(5 — 4a + 4a?)/1 + (1 + 2a)2

Cy =
Ha—3/2)(1/2—a)
Proof. To enlighten the proof, we set £ = W, 2 (R%) and F = Wi’(iﬂ),m (R%), and

we denote by F’ the dual space to F'. Then, let us consider the linear operator:

A:uEEH—div(%)EF'.
3

2 Until the end of the paper, C, denotes any positive constant depending only on o.



Notice that according to Proposition 2.6, A is clearly defined and continuous. Then,
let us also consider the continuous bilinear form:

(u, v) € EXF, a(u, v) = (Au, V) p p-

Firstly, it is clear that w € E is a solution to Problem (1) if and only if u satisfies the
following variational formulation:

Yv € F, a(u, v) = (g, V) pr p - (26)

Secondly, we prove the existence and uniqueness of u € E satisfying (26), by applying
Babitiska-Brezzki’s theorem (c¢f. Babuska [4], ¢f. Brezzi [10]). Therefore, we need to
establish the inf-sup condition below:

la(u, v)| 1

inf up 0 = — > 0. (27)
ueE—{0} yer—{o} [l g lvllp ~ Ca

Let w € E — {0}. Then, since F = T5,4+1F see (14), we deduce from (15) that:

a(u, z3* )

VI+ 0 +2a)2 |ul?

Then, observe the following computations, obtained first for u € D(Ri) and then by
density for u € E, see Theorem 2.3:

a(u, v)

sup >

ver—o} lullg vl

a(u, 3% u) = / x3Vu - xs_(O‘H)V (23%T ) dz
=
200+ 1 ou?
2 -
= [lz3Vull L2 sy + 5 /RS 23— dx
+

= 2§ VulZags, + B a5 ull2 e

where 3 = 1_;1‘12. Next, we have for any e €]0, 1]:

2a+1u

a 2 o 2 a— 2
a’(u7 T3 ) =€ HxS vu||L2(R1) + (1 - 8) ||.’L'3 quLZ(Ri) + ﬁ Hx?) 1u||L2(R1) 9

and Hardy’s inequality (13) yields that:

(2a — 1)?

alu, 2374 10) > € 0§ Vul ) + |(1- )22

+ 8] a5 ull s ) (28)

Then, for ¢ = w, belonging to |0, 1] as soon as « belongs to | —3/2, 1/2],

—4da+4a?
note that the constants in (28) are the same. Thus we get:

4(a—3/2)(1/2 — )
5 —4a + 4a?

2
a(u, 23 ) > el »

and
I 4(a—3/2)(1/2 — )

Co  (5—4a+402)/1+ (1+2a)2

As a conculsion, we have proved that for any —3/2 < a <
constant C,, depending only on «, such that:

1

5, there is a positive

L

2
alu, #3741) > o [l
(e

implying (27), and ending the proof. O

10



Remark 3.3. If a < —3/2ora>1/2and g € W;j’l?xs (R3)), existence and unique-
ness of solutions to (1) is still an open question.

In the second part of this section, we establish existence and uniqueness of weak
solutions to Problem (1) in the space W2-#(R%) see (4). For convenience, we shall
consider the equivalent problem (21).

Theorem 3.4. Let 7# <ac< % and let f € W, 12(RY). Then, there is
a unique u € W;{Q(Ri) solution to Problem (21), and there is a constant Co > 0
depending only on «, such that u satisfies:

H“||W;=2(R3_) < Ca Hf”Wa_l’g(Ri) : (29)

More precisely, C,, is given by (33) if 0 < a < 3_2\/6, and by (34) if—# <a<0.

Proof. The proof is similar to the one of Theorem 3.2. For convenience, we set
E=WL2([R3) and F = WEO?(Ri), and we denote by F’ the dual space to F. We
consider the linear operator:

1
BucE —Aut 2% cpr
3336.133

clearly defined and continuous, according to Lemma 2.8. Then, we also consider the
continuous bilinear form:

(u,v) € EXF, b(u, v) = (Bu, V) pr -

Firstly, it is clear that u € F is a solution to Problem (21) if and only if u satisfies
the following variational formulation:

Yv € F, b(u, v) ={f, V)ps p- (30)

Then, we prove existence and uniqueness of v € F satisfying (30), by using Babuska-
Brezzki’s theorem. Let w € E—{0}. Then, since F' =T, 9o E see (9), we deduce from
(10) that:

20
wp M) b )

ver—{oy lullg [vllz = VI+4a2 |ul%

For any u € D(R?) observe that:

0
b(u, p**u) = W-V(p%‘u)dw+/ (P ) (p o) .
Ri Ri T3 6:03

Next, thanks to the formulas below:

201 200—2 2 20-4 0 p* P> 200—2
A(p ) = 6ap +da(a—1)|z|"p Sl 2—?4-2@/) ,
3

one deduces that:

Vu - V(p**u)dx

L
(o3 1 (o3
0"Vl — 5 [ AP do
RY
2 |$‘2 2(a—1), 2
=[lp*Vullp2gs )3+/ —3a = 2a(a — 1)— | p™*" Vu dz, (31)
* R3 P

11



and also that:

3
3
1 2
:/ <p2—a) pz(‘)‘_l)u2dx
RY \273
1
2/ (= — a)p? @ Y2 dz. (32)
Ry 2

By density, it follows that for any v € E:
b(’LL, PQau) = ||paVu||iz(R§r)3 +/ ﬂ(m)pﬂa*l)uz dl’,
R

where 3 is defined by:

1
rEeR}, Bla) = —da+; +20(1-a) <

Several situation appear with respect to a.

First case 1. If a € [0, 1], then 3(z) > —4a + % and Hardy’s inequality (8) yields
for € €]0, 1]:

{(Qa-i— 1)2(1 —¢)

b(u, p**u) > ¢ ||paVu||iz(Ri)3 + /3 + B(m)} p?@ V2 dx
R

4
3
20 +1)%(1—¢) 1 B
Ze ||paVu||2LQ(R3 )3 +/ |:()() + = — 4a:| p2(a 1)u2 dr.
+ R% 4 2

Then, we chose ¢ such that:

2a+1)?%(1-¢) 1
= -— ,_4
€ 1 +2 a,

leading to:
_ 4(04 B 3+2\/6)(a — 3_2\/6)

7

54+ 4o + 402

and hence belonging to |0, 1] as soon as « € [0, 3’2—‘/6[ Therefore, one has:

Ao — 30 (a — 35)/0)
54+ 4o + 402

bu, p*u) > |

and Cy, is given by:
L _ Mo et (59
Co  (5+4a+402)V1 +4a?’

Second case. If o < 0 or o > 1, then:

142 1-+2
5+t —5—)

Blx) = —da+ % +2a(l —a) = -2(a+

and 1 > f(z) > 0 as soon as « € [*HT‘/E, 0[. As a consequence, one has:

N 1+V2 1-+2
b(u, p*u) > =2+ —5=) (o + —5—) |lul,

12



and:
1 200+ 3%2)(a+152) (34)
Ca V 1 + 40&2 '
As a conculsion, we have proved that for any —1+T‘/§ <a<
constant C,, depending only on «, such that:

3—V6
2

, there is a positive

1

2 2

b(u, p™*u) 2 TN lullz

implying an analogous inf-sup condition (27) for b instead of a, and ending the proof.
O

Remark 3.5. Firstly, observe that the case @ = 0 was already treated in Proposition
3.1, according to (20).

Secondly, for any a < —1+2‘/§ or o > 3_2‘/6 and f € W;12(R3), the existence of

weak solutions to (21) is an open problem.

4 Strong solutions

Let —3/2 < o < 1/2, g € W i%,,(R}) and consider the solution u € W2 (R}) to
Problem (1) given by Theorem 3.2. We readily see that u satisfies:

0
—xS T A+ x§“87u = 25 2g. (35)
3

Since we already have x§§7“3 € L*(R%), we deduce that:

m?”g € LQ(Ri) = x?"HAu IS LQ(Ri).

Thus, by taking such a distribution g, we expect more regularity on any second order
derivative D?u of u, and more precisely that z5 ' D?u € L*(R3).

Theorem 4.1. Let —3/2 < a < 1/2 and g € D'(R%) such that 2§ g € L?(R3).
Then g € Wa_ii,zm (R%) and the unique solution u € W} 2 (R3) given by Theorem
3.2 satisfies:

x5t D?u e L*(R3). (36)

Moreover, there is a constant Cy > 0, depending only on «, such that:

5 Dl < o 5 ey (37)

Proof. Let us assume that 2572g € L?(R3). By Proposition 2.6, observe that g €
1,2 o
W2, (RE), with:
+2
lgllyy-1.2 L&) S |25 QHLz(Ri)'

a+l,x

Thus, thanks to Theorem 3.2, there is a unique u € W2 (R3) solution to (1) and a
constant C,, > 0, depending on «, such that:

a+2
el 2, ) < Callglwzyz,, ) < Coll78 ™l ooy - (38)
Now, if we set v = 25" u , it follows from (35) that:
ou
Av =259 +ala+1)zy u+ (20 + 3)53?%7
3
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implying finally Av € L?(R3). Therefore, one deduces from Corollary 3.4 of [2], that
there is a unique w € Wy *(R%) (?) such that:

Aw:AvinRi, w=0onT,
and, according to (38), there is a constant C,, > 0 satisfying;:

||w||wg=2(ﬂq<1) < C, ||Av||L2(Ri) < Ca ||$§+29||L2(R§r) . (39)

Moreover, from (14) one has v € W1  (R%) and then v € W1(R}), see (17).
Thus, z = v — w belongs to W2 (R3)) and satisfies:

Az=0inR}, z=0onT,

which implies that z = 0 (see [2] Theorem 3.2). As a consequence, v = w belongs to
Wg’2(R§’_), and in particular one has for ¢, j = 1, 2, 3 and from (39):

82
(257" u) € L*(RY), (40)
0z;0z;
82 +1 +2
Y < Cq ||x§ 3y - 41
H@l‘zax] (ZB U) L2(R3) ||x gHL2(R3+) ( )
Then, since u € W2 (R3), one deduces from (40) that:
82
et 2 € [2(RY),
3 O0x;0x;
and the estimate (37) follows from (41) and (38). O

In Theorem 4.1, we have studied a first situation where the weak solution of
Theorem 3.2 is in fact a strong solution. We give in the sequel another case of figure,
leading to the same conclusion: instead of considering a datum ¢ such that xa+29 €
L?(R3%), we assume now that z3"'g € L?(R3) in addition to g € WaJrl 2 (RY).
Therefore we need to use another method, based on differential quotients techmque
(¢f. Nirenberg [14]), for which we recall now the basics.

Notation 4.2. For any n € R? x {0} with  # 0, and any measurable function u
defined on R3, we set:

z € RY, Dyu(zx) = W

Recall that for any u, v € Lz(Ri), one has the following relation:

/ uDpvdr = / vD_judx, (42)
RS RS
and that if u € H'(R3), the following estimate holds:

HDn“HB(Ri) < ||VIU||L2(R1)2~ (43)

We also recall the following essential result, whose proof is classical.

3 Here, WOQ’ (R3 1) denotes the set of functions u € wl 2(R3 ) with second order derivates D?u €
LZ(Ri)g. This space is endowed with the norm:

1/2
_ 2 2,112
Fllyz-2 gz = (“““Wl’f’(ﬂ«i) 1P “||L2<Ri>9)
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Proposition 4.3. Let u € L*(R}) such that

vn € R? x {0} withn #0, ||Dyul|2ps) < C,

(R%)
where C' > 0 is a constant not depending on n. Then
Viue L*(R%)?* and IVl 2 g o < CcV2.
We give a last preliminary result.
Proposition 4.4. Let o € R, and g € D'(R3) such that 259 € L*(R%). Then,

g € Ll (RY) and we have the following assertions.

i) For any n € R* x {0} with n # 0, the function Dyg belongs to W5 2(R3) and the
following estimate holds:

D8l 2e) < 25l (44)
it) For any v € Wij 25 (R3), one has Dyv € Wij w5 (R3), and if in addition g €
Wi L AR3), we have according to claim i):

Yoe Wh2, (RY),  (Dyg, v) = (g, D_yv). (45)
Proof.

i) Since z§g € L*(R%) and since z§D,g = D,(z$g) one has 2§D, g € L*(R}).
Then, one deduces for any ¢ € D(R3) that:

< ”zggHLQ(Ri) HD—lean(Ri)

/ pxgDygdx / x39D_ypdx
RS RS

< ||37519HL2(R1) H‘PHW[};jB(Rﬁr) :

As a consequence, z§D,g € Wy 1*(R%) and then D,g € W, %2(R%), see Remark
2.7.
ii) For any v e Wh? (R3)) one has D,v € wh? (R3), and observe that:

—Q, T3 —Q, T3
23 'Dyv =Dy, (25 ), 23V (Dyv) = Dy (25 Vo).

Then, let assume in addition that g € W7 % 2(R3). Let v € WEO? 25 (R3) and (vx)i C
D(R?Y) a sequence converging to v in W12 (R3). One obtains:

(Dpg, v) = kEI-iI-loo (Dng, vg) = kEIfoo w v Dygdx

= i D_, v d
kiToo R?I— g 0k AT
and relation (45) holds, since g € W, %2(R%) and D_,v, converges to D_yv in
wh2 . (RY). O

—Q, T3

We are now in position to prove the following theorem.

Theorem 4.5. Assume that —3/2 < o < 1/2 and let g € Wa__&’l?m (R3). If more-
over 25 g € L%(R3), the unique solution u € Wa 2 (R%) to Problem (1) satisfies
additionally:

1
z§ 'V € L*(R3)?, a:?“V(m—SVu) € L*(R%)°. (46)

Moreover, there is a constant C, > 0, depending only on «, such that:

1
$g+1V(;3VU)

257V U Lo g e + < Ca 25 gll ey ) - (47)

LZ(Ri)Q
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Proof. Since g € W;j’l?m (R%), let us consider the unique weak solution u € Wal 2, (R3)

to Problem (21), see Theorem 3.2. We recall that u satisfies (26), and in partlcular
one has:

voe W2, L (RS, /R Vu e Vude = (g,), (49

where the duality is taken in the sense Wajfwg (R3), Wl(iﬂ) s (R3). By (14) and

Proposition 4.4, we can consider as a test function in (48) v, = D_, D, (23" u), for
any 1 € R? x {0} with 5 # 0. On the one hand, one proves by relatlon (42) that:

/R3 x3Vu - x;(aﬂ)an dz = a(Dyu, 23> D,u),

with Dyu € W22 (R3). Then, the inf-sup condition (27) implies:

«Q, T3

a+1
/]R3 x3Vu - x3( )ando: > Cq || Dy, uHW1 2 (B2)

for some positive constant C,, depending only on «. On the other hand, observe by
Proposition 4.4, and by (15) that:

(g, D_yDya2* " )| = [( Dyg, Dyz2*'u)|

a+1 |$3a+1D UHW1 )

< [|=5 1 e (BD)

g||L2(R3_) |
+1
< C Hxa g”]ﬂ(Ri) ||D77u||Wé;§3(Ri) .
Collecting the previous estimates, we finally deduce that:
1
HD"uHWilig,(Ri) < Ca ||x§+ g||L2(R§r) ) (49)

Consequently, Proposition 4.3 ensures that for ¢ = 1, 2:

_1 0u ou
O0x; Ox;

with the expected estimates. Then, if we write equation (1) in the following way:

0] 1 Ou
a+l Y
3 8x3 (:173 8903) Z 1’33 2 213397

1=1,2

(RY),  25V(

g ) € L*(R3)%, (50)

we deduce from (50) that:

0 1 Ou
at+tl Y [ -~ ¥ 2 (3
3 6:53 (1’3 8%3) €L (R+)’

and (46) follows. O

To ﬁmsh this section, let us make the following observation. We consider |a| < 1/2,
€ W, /1%, (R) such that #3+'g € L2(R}), and the solution u € W22, (R?) to (1).
Slnce xo‘ﬂg 6 L?(RY), then g € W, % 2(R%) and we deduce firstly from Theorem 3.2
that uw € W, % . (R?), and secondly from Theorem 4.1 that § D?u € L?(R3). As a
consequence, we can state the following corollary.
Corollary 4.6. If |a| < 1/2, g € Wo?i’l?xg (R%) and x5"'g € L2(RY), the solution

ue Wh2 (R3) to Problem (1) also belongs to wh? (R 3 ) and satisfies additionally:

o, T3 —1,z3
zyD*u € L*(RY)°.
Besides, there is a constant Cy > 0 depending only on « such that:

[l yya.2

a—1,xz3

(R3) + [|§ D u||L2(R3 < Ca HzaHgHH(Ri)'
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Remark 4.7. According to Theorem 4.1 and the above corollary, an optimal space
of strong solutions to Problem (1) is in fact:

w22 ®%) = {ue D'[®RY) /oy ™MDy € 12RY) : 0 < k| < 2},

endowed with the norm:

1/2
lllzs @oy = | S [agt 2Dty
W e () 0< k| <2 ’
~ ~

L2(RY)

We leave the study of this space for further works.

Let us finish the comparaison, by saying that when —3/2 < o < —1/2, Theorem
4.5 may be seen as a generalization of Theorem 4.1.
Let us enforce this point with the following example. Let a distribution g such that
\V/T3g € L? (Ri), which implies to choose formally « = —3/2 in the assumptions of
Theorem 4.1. Unfortunately, such a distribution does not satisfy the statement of
Theorem 3.2, and since we are not able for the moment to establish existence and
uniqueness of a weak solution to (1), we add the extra assumption /Z3g € Wofi.’f (R3)
of Theorem 4.5.
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