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Abstract. We prove a shape theorem for the set of infected individuals in a spatial
epidemic model with 3 states (susceptible-infected-recovered) on Zd, d ≥ 3, when
there is no extinction of the infection. For this, we derive percolation estimates
(using dynamic renormalization techniques) for a locally dependent random graph
in correspondence with the epidemic model.

1. Introduction

Mollison (1977, 1978) has introduced a stochastic spatial epidemic model on Zd
called “general epidemic model”, describing the evolution of individuals submitted
to infection by contact contamination of infected neighbors. More precisely, on each
site of Zd there is an individual who can be healthy, infected, or immune. At time
0, there is an infected individual at the origin, and all other sites are occupied by
healthy individuals. Each infected individual emits germs according to a Poisson
process, it stays infected for a random time, then it recovers and becomes immune
to further infection. A germ emitted from x ∈ Zd goes to one of the neighbors
y ∈ Zd of x chosen at random. If the individual at y is healthy then it becomes
infected and begins to emit germs; if this individual is infected or immune, nothing
happens. The germ emission processes and the durations of infections of different
individuals are mutually independent.
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After Mollison’s papers, this epidemic model has given rise to many studies, and
other models that are variations of this “SIR” (Susceptible-Infected-Recovered)
structure have been introduced. A first direction to study such models is whether
the different states asymptotically survive or not, according to the values of the in-
volved parameters (e.g. the infection and recovery rates). A second direction is the
obtention of a shape theorem for the asymptotic behavior of infected individuals,
when there is no extinction of the infection (throughout this paper, “extinction” is
understood as “extinction of the infection”).

Kelly (1977) proved that for d = 1, extinction is almost sure for the general epi-
demic model. Kuulasmaa (1982) has studied the threshold behavior of this model
in dimension d ≥ 2. He proved that the process has a critical infection rate below
which extinction is almost certain, and above which there is survival, thus closing
this question. His work (as well as the following ones on this model) is based on
the analysis of an oriented percolation model, that he calls a “locally dependent
random graph”, in correspondence with the epidemic model. See also the related
paper Kuulasmaa and Zachary (1984).

In the general epidemic model on Z2, when there is no extinction, Cox and Durrett
(1988) have derived a shape theorem for the set of infected or immune individuals
when the contamination rule is nearest neighbor, and the durations of infection are
positive with a positive probability. A second moment is required for those du-
rations only to localize the infected but not immune individuals within the shape
obtained. This result was extended to a finite range contamination rule by Zhang
(1993). The proofs in Cox and Durrett (1988); Zhang (1993) are based on the
correspondence with the locally dependent random graph; they refer to Cox and
Durrett (1981), which deals with first passage percolation (see also Kesten, 1986),
including the possibility of infinite passage times. They rely on circuits to delimit
and control open paths. This technique cannot be used for dimension greater than 2.

There was no investigation of the shape theorem for the general epidemic model in
higher dimensions, until Chabot (1998, unpublished) proved it for a nearest neigh-
bor contamination rule in dimension d ≥ 3, with the restriction to deterministic
durations of infection: in that case the oriented percolation model is comparable to
a non-oriented Bernoulli percolation model (as noticed in Kuulasmaa, 1982, the case
with constant durations of infection in the epidemic model is the only one where the
edges are independent in the percolation model). Analyzing the epidemic model
for d ≥ 3 required heavier techniques than before: Chabot (1998) used results from
Antal and Pisztora (1996) and Grimmett and Marstrand (1990) for non-oriented
Bernoulli percolation to derive, for the percolation model, exponential estimates
in the subcritical case on the one hand, and estimates using percolation on slabs
on the other hand. To apply those results to the epidemic model required to find
an alternative, in the percolation model, to the neighborhoods (for points in Z2)
delimited by circuits of Cox and Durrett (1988). Chabot (1998) introduced new
types of random neighborhoods characterized by the properties of the percolation
model in dimension d ≥ 3.
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In the present work, we complete the derivation of the shape theorem for the set of
infected or immune individuals in the general epidemic model with a nearest neigh-
bor contamination rule in dimension d ≥ 3, by proving it for random durations of
infection, which are positive with a positive probability. There, the comparison with
non oriented percolation done in Chabot (1998) is no longer valid, and we have to
deal with an oriented dependent percolation model, with possibly infinite passage
times. Our approach consists in adapting the dynamic renormalization techniques
of Grimmett and Marstrand (1990) without calling on Antal and Pisztora (1996).
This simplifies the paper, but we obtain sub-exponential estimates (which suffice
for our purposes), instead of exponential estimates as in the paper Chabot (1998).
With this in hand, it is then possible to catch hold of the skeleton of the latter:
We take advantage of the random neighborhoods introduced there (they turn out
to be still valid in our setting) to derive the shape theorem. Similarly to Cox and
Durrett (1988), we require a moment of order d of the durations of infection only
to localize the infected but not immune individuals within the shape obtained.

Let us mention two recent works, Cerf and Théret (2014) and Mourrat (2012),
on shape theorems for (or related to) first passage (non dependent) percolation
on Zd with various assumptions on the passage times, for which the approach in
Kesten (1986) is extended.

Our paper is organized as follows. In Section 2 we define the general epidemic
model, the locally dependent random graph, we explicit their link, and we state
the shape theorem (Theorem 2.2). Section 3 is devoted to the necessary perco-
lation estimates on the locally dependent random graph needed for Theorem 2.2.
We prove the latter in Section 4, thanks to an analysis of the travel times for the
epidemic. In Appendix A, we prove all the results of Section 3 requiring dynamical
renormalisation techniques.

2. The set-up: definitions and results

Let d ≥ 3. The epidemic model on Zd is represented by a Markov process

(ηt)t≥0 of state space Ω = {0, i, 1}Zd

. The value ηt(x) ∈ {0, i, 1} is the state of the
individual located at site x at time t: state 1 if the individual is healthy (but not
immune), state i if it is infected, or state 0 if it is immune. We will shorten this
in “site x is healthy, infected or immune”. We assume that at time 0, the origin
o = (0, . . . , 0) is the only infected site while all other sites are healthy. That is, the
initial configuration η0 is given by

η0(o) = i, ∀ z 6= o, η0(z) = 1. (2.1)

We now describe how the epidemic propagates, then we introduce a related locally
dependent oriented bond percolation model on Zd, and finally we link the two
models. We assume that all the processes and random variables we deal with are
defined on a common probability space, whose probability is denoted by P , and the
corresponding expectation by E.

For x = (x1, . . . , xd) ∈ Zd, y = (y1, . . . , yd) ∈ Zd, ‖x − y‖1 =
∑d
i=1 |xi − yi|

denotes the l1 norm of x − y, and we write x ∼ y if x, y are neighbors, that is
‖x− y‖1 = 1. Let (Tx, e(x, y) : x, y ∈ Zd, x ∼ y) be independent random variables
such that
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1) the Tx’s are nonnegative with a common distribution satisfying P (Tx = 0) < 1;
2) the e(x, y)’s are exponentially distributed with a parameter λ > 0.
We stress that the only assumption on the Tx’s is that their distribution is not a
Dirac mass on 0. They could be infinite, or without any finite moment. We define

X(x, y) =

{
1 if e(x, y) < Tx;

0 otherwise.
(2.2)

In the epidemic model, for a given infected individual x, Tx denotes the amount of
time x stays infected; during this time of infection, x emits germs according to a
Poisson process of parameter 2dλ; when Tx is over, x recovers and its state becomes
0 forever. An emitted germ from x at some time t reaches y (say), one of the 2d
neighbors of x, uniformly. If this neighbor y is in state 1 at time t−, it immediately
changes to state i at time t, from t begins the duration of infection Ty, and y begins
to emit germs according to the same rule as x did; if this neighbor y is in state 0
or i at time t−, nothing happens.

In the percolation model, for x, y ∈ Zd, x ∼ y, the oriented bond (x, y) is said
to be open with passage time e(x, y) (abbreviated λ-open, or open when the param-
eter is fixed) if X(x, y) = 1 and closed (with infinite passage time) if X(x, y) = 0.
As in Kuulasmaa (1982), we call this oriented percolation model a locally depen-
dent random graph. Indeed the fact that any of the bonds exiting from site x is
open depends on the r.v. Tx.

For x, y ∈ Zd (not necessarily neighbors), “x → y” means that there exists (at
least) an open path from x to y, that is a path of open oriented bonds, Γx,y = (z0 =
x, z1, . . . , zn = y).

If x→ y, x 6= y, we define the passage time on Γx,y to be (see (2.2))

τ(Γx,y) =

n−1∑
j=0

e(zj , zj+1) (2.3)

and, if x = y, we put τ(Γx,x) = 0.
We then define the travel time from x to y to be

τ(x, y) =


inf
{Γx,y}

τ(Γx,y) if x 6= y, x→ y,

0 if x = y,

+∞ otherwise.

(2.4)

where the infimum is over all possible open paths from x to y.

Coming back to the epidemic model, note that when the initial configuration is
η0 defined in (2.1), for a given site z, τ(o, z) is the duration for the infection to
propagate from o to z, changing successively the values on all the sites of the in-
volved path Γo,z from 1 to i.

To link the two models, we define, for t ≥ 0,

Ξt = {x ∈ Zd : x is immune at time t} = {x ∈ Zd : ηt(x) = 0}; (2.5)

Υt = {x ∈ Zd : x is infected at time t} = {x ∈ Zd : ηt(x) = i}. (2.6)
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We have, for z ∈ Zd, t ≥ 0,

z ∈ Υt ∪ Ξt if and only if τ(o, z) ≤ t. (2.7)

Indeed, τ(o, z) ≤ t means that the infection has reached site z before time t, so
that site z is either still infected or already immune at time t, that is z ∈ Υt ∪ Ξt.
Conversely, if z is infected or immune at time t, it means that it has already been
infected.

In the epidemic model, we denote by Cout
o the set of sites that will ever become

infected, that is

Cout
o = {x ∈ Zd : ∃ t ≥ 0, ηt(x) = i|η0(o) = i,∀ z 6= o, η0(z) = 1}. (2.8)

Then, by (2.7), Cout
o is the set of sites that can be reached from the origin following

an open path in the percolation model. See also Cox and Durrett (1988, (1.2)),
Mollison (1977, p. 322) and Kuulasmaa (1982, Lemma 3.1).

More generally, in the percolation model, for each x ∈ Zd we define the ingoing
and outgoing clusters to and from x to be

C in
x = {y ∈ Zd : y → x}, Cout

x = {y ∈ Zd : x→ y}, (2.9)

and the corresponding critical values to be

λin
c = inf{λ : P (|C in

x | = +∞) > 0}, λout
c = inf{λ : P (|Cout

x | = +∞) > 0}, (2.10)

where |A| denotes the cardinality of a set A.
In Section 3, we will first prove the following proposition about these critical

values.

Proposition 2.1. We have λin
c = λout

c . This common value will be denoted by
λc = λc(Zd).

Assuming that λ > λc, the most important part of our work in Section 3 will then
be, thanks to dynamic renormalization techniques, to analyze for the percolation
model percolation on slabs in Theorem 3.5, and, through a succession of lemmas, to
establish in Proposition 3.11 subexponential estimates for the length of the shortest
path between two points x and y given that x → y. This will imply (see Remark
4.1) uniqueness of the infinite cluster of sites connected to +∞. Proposition 3.11
contains the crucial properties we will need on the percolation model to derive our
main result, the shape theorem, that we now state.

Theorem 2.2. Assume λ > λc, and the initial configuration of the epidemic model
(ηt)t≥0 to be given by (2.1). Then there exists a convex subset D ⊂ Rd such that,
for all ε > 0 we have, for t large enough(

(1− ε)tD ∩ Cout
o

)
⊂
(

Ξt ∪Υt

)
⊂
(

(1 + ε)tD ∩ Cout
o

)
a.s. (2.11)

and if E(T do ) <∞ we also have

Υt ⊂
(

(1 + ε)tD \ (1− ε)tD
)

a.s. for t large enough. (2.12)

In other words, the epidemic’s progression follows linearly the boundary of a
convex set. Note that a moment assumption on To is only required to localize the
infected individuals, and not for the first part of the theorem, for which there is no
assumption on the distribution of To. It is also remarkable that the fact that To
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could be either very small or very large with respect to the exponential variables
e(x, y) does not play any role.

We prove Theorem 2.2 in Section 4. For this, we follow some of the fundamental
steps of Cox and Durrett (1988), but since in dimensions three or higher, circuits
are not useful as in dimension 2, we had to find other methods of proofs.

By (2.7), we have to analyze travel times to prove Theorem 2.2. On the perco-
lation model, we first construct, in Section 4.1, for each site z ∈ Zd a random
neighborhood V(z) in such a way that two neighborhoods are always connected
by open paths (these neighborhoods have to be different from those delimited by
circuits of Cox and Durrett, 1988). For z, y ∈ Zd, we show that the travel time
τ(z, y) is ‘comparable’ (in a sense precised in Lemma 4.8) to the travel time τ̂(z, y)
to go from V(z) to V(y). Then we approximate the travel time between sites by a
subadditive process, and we derive (in Theorem 4.12 and Section 4.3) a radial limit
µ(x) (for all x), which is asymptotically the linear growth speed of the epidemic
in direction x. In Theorem 4.17 we control how τ̂(o, ·) grows. Finally we prove
in Theorem 4.18 an asymptotic shape theorem for τ̂(o, ·), from which we deduce
Theorem 2.2.

3. Percolation estimates

In this section we collect some results concerning the locally dependent random
graph, given by the random variables (X(x, y), x, y ∈ Zd) introduced in (2.2). Our
goal is to derive subexponential estimates in Proposition 3.11.

Remark 3.1. Although the r.v.’s (X(x, y), x, y ∈ Zd) are not independent, if we
denote by (e1, . . . , ed) the canonical basis of Zd, then the random vectors {X(x, x+
e1), . . . , X(x, x + ed), X(x, x − e1), . . . , X(x, x − ed) : x ∈ Zd} (in which each com-
ponent depends on Tx) are i.i.d., since two different vectors for z, y ∈ Zd depend
respectively on Tz and Ty which are independent. This small dependence forces us
to explain why and how some results known for independent percolation remain
valid in this context.

Remark 3.2. The function X(x, y) is increasing in the independent random vari-
ables Tx and −e(x, y). It then follows that the r.v.’s (X(x, y) : x, y ∈ Zd, y ∼ x)
satisfy the following property:

(FKG) Let U and V be bounded measurable increasing functions of the random
variables (X(xj , yj) : xj , yj ∈ Zd, yj ∼ xj , j ∈ N), then E(UV ) ≥ E(U)E(V ).

For the proof of this property, we refer to Cox and Durrett (1988, Lemma (2.1))
with the help of Harris (1960, Lemma 4.1 and its Corollary) if U and V depend on
a finite number of variables X(xj , yj), and to Grimmett (1999, Chapter 2) to take
the limit for an infinite number of variables.

We will use this property in the proofs of Theorem 3.5, Lemma 3.10 and Lemma
4.6 below for U, V indicator functions involving open paths without loops, thus we
will speak of increasing events rather than increasing functions.
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For n ∈ N\{0}, let B(n) = [−n, n]d, let ∂B(n) denote the inner vertex boundary
of B(n), that is

∂B(n) = {x ∈ Zd : x ∈ B(n), x ∼ y for some y /∈ B(n)}; (3.1)

and, for x ∈ Rd, Bx(n) = x + B(n). For A,R ⊂ Zd, “A → R” means that there
exists an open path Γx,y from some x ∈ A to some y ∈ R.

Theorem 3.3. (i) Suppose λ < λout
c , then there exists βout > 0 such that for all

n > 0, P (o→ ∂B(n)) ≤ exp(−βoutn).
(ii) Suppose λ < λin

c , then there exists βin > 0 such that for all n > 0, P (∂B(n)→
o) ≤ exp(−βinn).

Theorem 3.3(i) is a special case of Van den Berg et al. (1998, Theorem (3.1)),
whose proof can be adapted to obtain Theorem 3.3(ii). It is worth noting that
in the context of our paper, by Remark 3.2, Van den Berg et al. (1998, Theorem
(3.1)) can be proved using the BK inequality instead of the Reimer inequality (see
Grimmett, 1999, Theorems (2.12), (2.19)). Theorem 3.3 yields Proposition 2.1:

Proof of Proposition 2.1. Suppose λ < λin
c . Then by translation invariance and

Theorem 3.3(ii) we have that for any x ∈ ∂B(n), P (o→ x) ≤ exp(−βinn). Adding
over all points of ∂B(n) we get P (o → ∂B(n)) ≤ K ′nd−1 exp(−βinn) for some
constant K ′, which implies that limn→+∞ P (o → ∂B(n)) = 0. Therefore λ ≤ λout

c

and λin
c ≤ λout

c . The other inequality is obtained similarly. �

From now on, we assume λ > λc(Zd) and define the following events: For x, y ∈
Zd, A ⊂ Zd,
(i) The event {x→ y within A} consists of all points in our probability space for
which there exists an open path Γx,y = (x0 = x, x1, . . . , xn = y) from x to y such
that xj ∈ A for all j ∈ {0, . . . , n − 1}. Note that the end point y may not belong
to A.
(ii) The event {x→ y outside A} consists of all points in our probability space for
which there exists an open path Γx,y = (x0 = x, x1, . . . , xn = y) from x to y such
that none of the xj ’s (j ∈ {0, . . . , n}) belongs to A.

Definition 3.4. For x ∈ Zd, A ⊂ Zd let

C in
x (A) = {y ∈ A : y → x within A} and

Cout
x (A) = {y ∈ A : x→ y within A}.

Note that by this definition C in
x (A) ⊂ A and Cout

x (A) ⊂ A.

The rest of this section relies heavily on the techniques of Grimmett and Marstrand
(1990) or Grimmett (1999, Chapter 7). We assume the reader familiar with them.
We postpone to Appendix A the proofs of Theorem 3.5 and Lemma 3.7 below,
which require a thoughtful adaptation of Grimmett (1999, Chapter 7) for our con-
text of dependent percolation. Nonetheless, it is possible to go directly to Section
4, where these techniques are no longer used, assuming that Proposition 3.11 holds.

Next theorem is crucial, it states that there is percolation on slabs.

Theorem 3.5. Assume λ > λc. For any k ∈ N \ {0}, let Sk = {0, 1, . . . , k}×Zd−1

denote the slab of thickness k containing o. Then for k large enough we have

inf
x∈Sk

P (|C in
x (Sk)| = +∞) > 0, and inf

x∈Sk

P (|Cout
x (Sk)| = +∞) > 0.
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We introduce now some notation about the shortest path between two points x
and y such that x→ y.

Notation 3.6. (a) For A ⊂ Zd we define the exterior vertex boundary of A as:

∆vA = {x ∈ Zd : x /∈ A, x ∼ y for some y ∈ A}. (3.2)

(b) If x→ y let D(x, y) be the smallest number of bonds required to build an open
path from x to y (hence in this path there is no loop, and the D(x, y) bonds are
distinct). If x 6→ y, we put D(x, y) = +∞.
(c) For A ⊂ Zd, x ∈ A, y ∈ ∆vA, “D(x, y) < m within A” means that there is an
open path Γx,y using less than m bonds from x to y whose sites are all in A except
y.

The end of this section provides some upper bounds for the tail of the conditional
distribution of D(x, y) given the event {x → y}. We derive Proposition 3.11,
required in Section 4, thanks to Lemmas 3.7, 3.9, 3.10. These estimates are not
optimal and better results could be obtained by a thoughtful adaptation of the
methods of Antal and Pisztora (1996). Instead of getting exponential decays in

‖x − y‖1 (or in n) we get exponential decays in ‖x − y‖1/d1 (or in n1/d). We have
adopted this approach because those weaker results suffice for our purposes and
are simpler to obtain, thus making our proof much easier to follow: it is possible
to read our work knowing only Grimmett and Marstrand (1990) and not Antal
and Pisztora (1996). Next lemma is inspired by Grimmett and Marstrand (1990,
Section 5(f) p. 454).

Lemma 3.7. Assume λ > λc. There exist δ > 0, k ∈ N \ {0} and C1 = C1(k) > 0
such that
(i) ∀n > 0, x ∈ B(n+ k) \B(n), y ∈ (B(n+ k) \B(n)) ∪∆v(B(n+ k) \B(n)) we
have :

P (x→ y within B(n+ k) \B(n)) > δ.

(ii) Let for (n,m) ∈ Z2 with n < m, and for ` ≥ 0,

A(n,m, `) = {z : −k + n ≤ z1 < n,−∞ < z2 ≤ `+ k}∪
{z : −k + n ≤ z1 ≤ m+ k, ` < z2 ≤ `+ k}∪
{z : m < z1 ≤ m+ k,−∞ < z2 ≤ `+ k}. (3.3)

∀n < m, ∀x ∈ A(n,m, 0),∀y ∈ A(n,m, 0) ∪∆vA(n,m, 0), we have:

P (D(x, y) < C1(‖x− y‖1 + (−x2)+ + (−y2)+) within A(n,m, 0)) > δ.

We again introduce some notation, to decompose in Lemma 3.9 a path from the
center of a box to its boundary through hyperplanes.

Notation 3.8. Let k be given by Lemma 3.7 and let x and y be points in Zd. For
` ∈ Z let H` = {z ∈ Zd : z1 = `} and define the events, for n ∈ N,

Jn = {x→ Hx1−1−jk within Bx(nk), j = 0, . . . , bn/2c}∩
{Hy1+1+jk → y within By(nk), j = 0, . . . , bn/2c},

Gn = {x→ ∂Bx(nk), ∂By(nk)→ y},
where, for any a ∈ R, bac denotes the greatest integer not greater than a.

Lemma 3.9. Assume λ > λc. Let k be given by Lemma 3.7 and let x, y be points
in Zd. Then, for n ∈ N \ {0} there exists β > 0 such that

P (Jn|Gn) ≥ 1− exp(−βn).
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Proof of Lemma 3.9. By translation invariance we may assume that x is the origin.
We start showing that for some constant β′ > 0 and all n

P (o→ H−1−jk within B(nk), j = 0, . . . , bn/2c|o→ ∂B(nk))
≥ 1− exp(−β′n). (3.4)

For this we first observe that

{o→ H−1−jk within B(nk) for some bn/2c ≤ j ≤ n}
⊂ {o→ H−1−jk within B(nk), j = 0, . . . , bn/2c}.

Hence (3.4) follows from

P (o→ H−1−jk within B(nk) for some bn/2c ≤ j ≤ n|o→ ∂B(nk))
≥ 1− exp(−β′n),

which is a consequence of Lemma 3.7(i). Since P (∂By(kn)→ y) is bounded below
as n goes to infinity, (3.4) implies that

P (o→ H−1−jk within B(nk), j = 0, . . . , bn/2c|Gn)

converges to 1 exponentially fast. Similarly one proves that

P (Hy1+1+jk → y within By(nk), j = 0, . . . , bn/2c|Gn)

converges to 1 exponentially fast, and the lemma follows. �

In Lemma 3.10 below we prove a chemical distance bound that will be used later
on to derive in Remark 4.1, through Proposition 3.11, the uniqueness of the infinite
cluster of sites connected to +∞. The main technique is to construct an open path
in a ring after independent attempts thanks on the one hand to Lemma 3.9 whose
Jn’s enable to get disjoint slabs, and on the other hand to Lemma 3.7(ii) once we
find the appropriate ring.

Lemma 3.10. Assume λ > λc. Let k be given by Lemma 3.7, and let Gn be as
in Lemma 3.9. Then, there exist constants C2, C3 and α2 > 0 such that, for all
x, y ∈ Zd, n ∈ N \ {0}, we have

P (D(x, y) > C2‖x− y‖1 + C3(nk)d| Gn) ≤ exp(−α2n).

Proof of Lemma 3.10. Again, by translation invariance we may assume that x is
the origin and without loss of generality, we also assume that y1 > 0 and y2 ≥ 0.
By Lemma 3.9 it suffices to show that

P (D(o, y) > C2‖y‖1 + C3(nk)d| Jn)

decays exponentially in n.
For 0 ≤ j ≤ bn/2c, let (see (3.3)) Aj = A(−jk, y1 + jk, y2 + jk). Note that the

sets A0, . . . , Abn/2c are disjoint. Figure 1 should help the reader to visualize them.
Our aim is to find paths from o to y through independent attempts, which will
enable to use Lemma 3.7(ii) in each set Aj . This is why we have first replaced Gn
by Jn to condition with.

On the event Jn, we can reach from the origin each of the sets Ai by means of an
open path contained in B(nk) and from each of these sets we can reach y by means
of an open path contained in By(nk). Hence, on Jn for each j ∈ {0, . . . , bn/2c}
there exist a random point Uj ∈ B(nk) ∩ Aj and an open path from o to Uj such



10 E. D. Andjel, N. Chabot and E. Saada
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Figure 3.1. the event W3

that all its sites except Uj are in B(nk) ∩ (∩bn/2c`=j Ac`). If there are many possible
values of Uj we choose the first one in some arbitrary deterministic order. Similarly,
there is a random point Vj ∈ By(nk) ∩∆vAj and an open path from Vj to y with

all its sites in By(nk) ∩ (∩bn/2c`=j Ac`). Let uj and vj be possible values of Uj and Vj
respectively. Then let C1 be as in Lemma 3.7 and define

Fj(u
j , vj) = {Uj = uj , Vj = vj},

Ej(u
j , vj) = {D(uj , vj) < C1(‖uj − vj‖1 + |uj2|+ |v

j
2|) within Aj} and

Wj = ∪uj ,vj
(
Fj(u

j , vj) ∩ Ej(uj , vj)
)
,

where the union is over all possible values of Uj and Vj . Now we define a subset of
Zd

Rj =
(
B(nk) ∪By(nk) ∪ (A0 ∪ · · · ∪Aj−1)

)
∩
(
Acj ∩ · · · ∩Acn−1

)
, (3.5)

and we denote by σj the σ-algebra generated by {Tx, e(x, y) : x ∈ Rj , x ∼ y}.
Then, noting that 1Fj(uj ,vj)Π

j−1
`=01W c

`
is σj-measurable, write for j = 1, . . . , bn/2c:

P
(
Wj ∩ Jn ∩ (∩j−1

`=0W
c
` )
)

=
∑
uj ,vj

E
(
1Fj(uj ,vj)1Ej(uj ,vj)1Jn(Πj−1

`=01W c
`
)
)

=
∑
uj ,vj

E
(
1Fj(uj ,vj)(Π

j−1
`=01W c

`
)E(1Jn1Ej(uj ,vj)|σj)

)
≥

∑
uj ,vj

P (Ej(u
j , vj))E

(
1Fj(uj ,vj)(Π

j−1
`=01W c

`
)E(1Jn |σj)

)

=
∑
uj ,vj

P (Ej(u
j , vj))E

(
1Fj(uj ,vj)(Π

j−1
`=01W c

`
)1Jn

)
≥ δ

∑
uj ,vj

P
(
Fj(u

j , vj) ∩ Jn ∩ (∩j−1
`=0W

c
` )
)

= δP
(
Jn ∩ (∩j−1

`=0W
c
` )
)
, (3.6)
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where the sums are over all possible values of Uj and Vj , the first inequality follows
from Remark 3.2 since both Jn and Ej(u

j , vj) are increasing events, and from the
fact that Ej(u

j , vj) is independent of σj ; the second inequality follows from Lemma
3.7(ii) and the last equality from the fact that Jn is contained in the union of the
Fj(u

j , vj)’s which are disjoint. We rewrite (3.6) as

P
(
Jn ∩ (∩j`=0W

c
` )
)
≤ (1− δ)P

(
Wj ∩ Jn ∩ (∩j−1

`=0W
c
` )
)

≤ (1− δ)P
(
Jn ∩ (∩j−1

`=0W
c
` )
)

Now, proceeding by induction on j one gets:

P
(
Jn ∩ (∩bn/2c−1

`=0 W c
` )
)
≤ (1− δ)bn/2cP (Jn).

Since we can choose C2 and C3 in such a way that the event {D(o, y) > C2‖y‖1 +
C3(nk)d} does not occur if any of the Wi’s occurs, the lemma follows. �

Next proposition concludes this section.

Proposition 3.11. Assume λ > λc.
(i) Let C2 be as in Lemma 3.10. Then, there exists α3 > 0 such that for all

x, y ∈ Zd, n ∈ N, we have

P (D(x, y) ≥ C2‖x− y‖1 + nd|x→ y) ≤ exp(−α3n);

(ii) P (x→ y| |Cout
x | = +∞, |C in

y | = +∞) = 1.

Proof of Proposition 3.11. (i) Modifying the constant α2, the statement of Lemma
3.10 above holds for C3 = 1/kd.

(ii) We have that {x→∞ and ∞→ y} = ∩nGn. Hence for all k,

P (D(x, y) = +∞, x→∞ and ∞→ y) ≤ P (D(x, y) = +∞, Gk)

≤ P (D(x, y) = +∞|Gk),

which converges to 0 when k goes to infinity by Lemma 3.10. We thus have
P (D(x, y) = +∞|x→∞ and ∞→ y) = 0. �

4. The shape theorem

In the percolation model, let C∞ be the cluster of sites connected to ∞:

C∞ = {x ∈ Zd : x→∞ and ∞→ x}. (4.1)

Remark 4.1. As a consequence of Proposition 3.11(ii), C∞ is a connected set: if
two sites x, y of Zd belong to C∞, then x→ y and y → x.

4.1. Neighborhoods in C∞. In this subsection, we construct neighborhoods V(·) of
sites in Zd.

We first deal separately with finite clusters, which will have no influence on the
asymptotic shape of the epidemic. We will include them in the neighborhoods V(·)
of sites we construct.

Definition 4.2. For x ∈ Zd, let{
Rout
x = {y ∈ Zd : x→ y outside C∞} (outgoing root from x);

Rin
x = {y ∈ Zd : y → x outside C∞} (incoming root to x).
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In particular x belongs to Rout
x and Rin

x if and only if x /∈ C∞. Otherwise Rout
x

and Rin
x are empty. By next lemma, the distribution of the radius of Rout

o ∪ Rin
o

decreases exponentially.

Lemma 4.3. There exists σ1 = σ1(λ, d) > 0 such that, for all n ∈ N,

P
(
(Rout

o ∪Rin
o ) ∩ ∂B(n) 6= ∅

)
≤ exp(−σ1n).

Proof of Lemma 4.3. For n ∈ N \ {0}, Rout
o ∩ ∂B(2n) 6= ∅ means that there exists

an open path o → ∂B(2n) outside C∞. This implies that there exists x ∈ ∂B(n)
satisfying o → x → ∂B(2n) outside C∞. Similarly, Rin

o ∩ ∂B(2n) 6= ∅ implies
that there exists x ∈ ∂B(n) satisfying ∂B(2n) → x → o outside C∞. Then for
such a point, either the cluster Cout

x or the cluster C in
x is finite, and has a radius

larger than or equal to n. Relying on Proposition A.11,b) in Appendix A, we can
follow the proof of Grimmett (1999, Theorems (8.18), (8.21)) to get the existence
of σ0 = σ0(λ, d) > 0 such that:{

P (Cout
x ∩ ∂Bx(n) 6= ∅, |Cout

x | < +∞) ≤ exp(−σ0n);

P (C in
x ∩ ∂Bx(n) 6= ∅, |C in

x | < +∞) ≤ exp(−σ0n).
(4.2)

Hence

P
(
(Rout

o ∪Rin
o ) ∩ ∂B(2n) 6= ∅

)
≤ P

(
Rout
o ∩ ∂B(2n) 6= ∅

)
+P

(
Rin
o ∩ ∂B(2n) 6= ∅

)
≤ 2

∑
x∈∂B(n)

P (|Cout
x | < +∞, x→ ∂Bx(n))

+2
∑

x∈∂B(n)

P (|C in
x | < +∞, ∂Bx(n)→ x)

≤ 4|∂B(n)| exp(−σ0n)

which induces the result. �

To define the neighborhood V(x) on C∞ of a site x, we introduce the smallest
box whose interior contains Rout

x and Rin
x , which contains elements of C∞, and is

such that two elements of C∞ in this box are connected by an open path which
does not exit from a little larger box. For this last condition, which will enable to
bound the travel time through V(x), we use the parameter C2 obtained in Lemma
3.10.

Definition 4.4. Let C′ = C2d+ 2. Let κ(x) be the smallest l ∈ N \ {0} such that
(i) ∂Bx(l) ∩

(
Rout
x ∪Rin

x

)
= ∅;

(ii) Bx(l) ∩ C∞ 6= ∅;
(iii)∀ (y, z) ∈ (Bx(l) ∩ C∞)2, y → z within Bx(C′l).

Remark 4.5. By (i) above, Rout
x ∪Rin

x ⊂ Bx(κ(x)).

In the next lemma, we bound the probability a box of size n does not admit
properties (i)–(iii) above, that is, we prove that the random variable κ(x) has a
sub-exponential tail.

Lemma 4.6. There exists a constant σ = σ(λ, d) > 0 such that, for any n ∈ N,

P (κ(x) ≥ n) ≤ exp(−σn1/d).
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Proof of Lemma 4.6. We show that the probability that any of the 3 conditions in
Definition 4.4 is not achieved for n decreases exponentially in n1/d:
(i) By translation invariance, we have by Lemma 4.3,

P
(
∂Bx(n) ∩

(
Rout
x ∪Rin

x

)
6= ∅
)
≤ exp(−σ1n). (4.3)

(ii) There exist k ∈ N, σ2 = σ2(λ, d) > 0 such that for any n ∈ N,

P (Bx(n) ∩ C∞ = ∅) ≤ exp(−σ2bn/(k + 1)c). (4.4)

Indeed, let k = k(λ, d) be large enough for the conclusions of Theorem 3.5 to hold
on the slab Sk. Then we have

P (Bx(n) ∩ C∞ = ∅) ≤ P (∀ z ∈ {x+ je1, 0 ≤ j ≤ n}, z /∈ C∞)
= P (∀ z ∈ {x+ je1, 0 ≤ j ≤ n}, C in

z or Cout
z is finite)

We denote by Sk(l) = {l(k + 1), · · · , (l + 1)(k + 1) − 1} × Zd−1 for l ≥ 0 the
slab of thickness k to which z belongs. If C in

z (or Cout
z ) is finite, so is C in

z (Sk(l))
(or Cout

z (Sk(l))). Because {|C in
z (Sk(l))| = +∞} and {|Cout

z (Sk(l))| = +∞} are
increasing events it follows from Theorem 3.5 and the FKG inequality (see Remark
3.2) that

infu∈Sk(l) P (|C in
u (Sk(l))| = |Cout

u (Sk(l))| = +∞)

≥ infu∈Sk(l)

(
P (|C in

u (Sk(l))| = +∞)P (|Cout
u (Sk(l))| = +∞)

)
> 0. (4.5)

Since events occurring in two different slabs are independent, we have

P (∀ z ∈ {x+ je1, 0 ≤ j ≤ n}, z /∈ C∞)
≤ P (∀ l ≥ 0,∀ z ∈ {x+ je1, 0 ≤ j ≤ n} ∩ Sk(l),

C in
z (Sk(l)) or Cout

z (Sk(l)) is finite)
≤ (P (∀ z ∈ {je1, 0 ≤ j ≤ k},

C in
z (Sk(0)) or Cout

z (Sk(0)) is finite
)bn/(k+1)c

≤ exp(−σ2bn/(k + 1)c)
with σ2 = σ2(λ, d) > 0, independent of n, because, for z0 = bk/2ce1, using (4.5) we
have

P (∃ z ∈ {x+ je1, 0 ≤ j ≤ k}, |C in
z (Sk(0))| = |Cout

z (Sk(0))| = +∞)
≥ P (|C in

z0(Sk(0))| = |Cout
z0 (Sk(0))| = +∞) > 0.

(iii) There exists σ3 = σ3(λ, d) > 0 such that

P
(
∃ (y, z) ∈ (Bx(n) ∩ C∞)2, y 6→ z within (Bx(C′n)

)
≤ exp(−σ3n

1/d). (4.6)

Indeed, if no open path from y to z (both in Bx(n)∩C∞) is contained in Bx(C′n),
then D(y, z) ≥ 2(C′ − 1)n. Given our choice of C′ this implies that D(y, z) ≥
C2‖y − z‖1 + n. Therefore (4.6) follows from Proposition 3.11(i). �

We define the (site) neighborhood in C∞ of x by

V(x) = Bx(κ(x)) ∩ C∞. (4.7)

Remark 4.7. (a) By Definition 4.4(ii), V(x) 6= ∅.
(b) By Definition 4.4(iii), for all y, z in V(x), there exists at least one open path
from y to z, denoted by Γ∗y,z, contained in Bx(C′κ(x)). If there are several such
paths we choose the first one according to some deterministic order.
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We finally define an “edge” neighborhood Γ(x) of x:

Γ(x) = {(y′, z′) ⊂ Bx(κ(x)), (y′, z′) open}∪
{(y′, z′) ∈ Γ∗y,z, y, z ∈ V(x)}. (4.8)

Those neighborhoods satisfy

V(x) ⊂ Bx(κ(x)); Γ(x) ⊂ Bx(C′κ(x)). (4.9)

4.2. Travel times and radial limits. We now come back to the spatial epidemic
model. In this subsection, we estimate the time needed by the epidemic to cover
C∞, taking advantage of the analysis of paths in the percolation model done in
Section 3. We first define an approximation for the passage time of the epidemic,
then we prove the existence of radial limits for this approximation and for the epi-
demic. We will follow for this the spirit of the construction in Cox and Durrett
(1988).

By analogy with Cox and Durrett (1981, 1988) (although neighborhoods in our
context are defined differently), we define, for x, y ∈ Zd, the travel time from V(x)
to V(y) and the time spent around x to be (remember (2.4))

τ̂(x, y) = inf
x′∈V(x),y′∈V(y)

τ(x′, y′); (4.10)

u(x) =


∑

(y′,z′)∈Γ(x)

τ(y′, z′) if Γ(x) 6= ∅,

0 otherwise.

(4.11)

By Remarks 4.1, 4.7(a), τ̂(x, y) is finite. If V(x) ∩ V(y) 6= ∅, then τ̂(x, y) = 0.

We now show that if y ∈ Cout
x \Rout

x , τ̂(x, y) approximates τ(x, y).

Lemma 4.8. For x ∈ Zd, if y ∈ Cout
x \Rout

x , we have

τ̂(x, y) ≤ τ(x, y) ≤ u(x) + τ̂(x, y) + u(y). (4.12)

Proof of Lemma 4.8. Let Γx,y be an open path from x to y such that τ(x, y) =
τ(Γx,y). Since y /∈ Rout

x this path must intersect C∞. Let c1 and c2 be the first and
last points we encounter in C∞ when moving from x to y along Γx,y. By Definition
4.4(i), c1 ∈ V(x) and c2 ∈ V(y): indeed (for instance for c1), either x ∈ C∞ and
c1 = x, or the point a ∈ ∂Bx(κ(x)) ∩ Γx,y does not belong to Rout

x and c1 is the
first point on Γx,y between x and a; we might have c1 = c2, if V(x)∩V(y) 6= ∅. We
have, denoting by ∨ the concatenation of paths,

Γx,y = Γx,c1 ∨ Γc1,c2 ∨ Γc2,y

where Γx,c1 (resp. Γc2,y) is an open path from x to c1 contained in Bx(κ(x)) (resp.
from c2 to y contained in By(κ(y))) and Γc1,c2 is an open path from c1 to c2. We
then obtain the first inequality of (4.12) since:

τ̂(x, y) ≤ τ(Γc1,c2) ≤ τ(Γx,y) = τ(x, y).

To prove the second inequality of (4.12), let Γd1,d2 be an open path from d1 ∈ V(x)
to d2 ∈ V(y) such that τ(Γd1,d2) = τ̂(x, y). Since the open paths Γx,c1 from x to c1
and Γ∗c1,d1 (which exists by Remark 4.7(b)) from c1 to d1 have edges in Γ(x) (see

(4.8)), the open path Γx,d1 = Γx,c1 ∨ Γ∗c1,d1 from x to d1 satisfies τ(Γx,d1) ≤ u(x).
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Similarly, there is an open path Γd2,y from d2 to y such that τ(Γd2,y) ≤ u(y). We
conclude with

τ(x, y) ≤ τ(Γx,d1) + τ(Γd1,d2) + τ(Γd2,y) ≤ u(x) + τ̂(x, y) + u(y).

�

We now prove that τ̂(., .) is almost subadditive, which will enable us later on in
Theorem 4.12 to appeal to Kingman’s Theorem.

Lemma 4.9. For all x, y, z ∈ Zd, we have the subadditivity property

τ̂(x, z) ≤ τ̂(x, y) + u(y) + τ̂(y, z). (4.13)

Proof of Lemma 4.9. Let Γa,b be an open path from a ∈ V(x) to b ∈ V(y) such that
τ̂(x, y) = τ(Γa,b). Similarly, let Γc,d be an open path from c ∈ V(y) to d ∈ V(z)
such that τ̂(y, z) = τ(Γc,d) (we might have a = b, c = d or b = c). Since both b and
c are in V(y) there exists an open path Γ∗b,c from b to c such that τ(Γ∗b,c) ≤ u(y)

(see Remark 4.7(b) and (4.8)). The lemma then follows since the concatenation of
these three paths is an open path from a point of V(x) to a point of V(z) and

τ̂(x, z) ≤ τ(Γa,b) + τ(Γ∗b,c) + τ(Γc,d) ≤ τ̂(x, y) + u(y) + τ̂(y, z).

�

We introduce a new notation, for the length of the shortest path between two
neighborhoods. For x, y ∈ Zd, let

D(x, y) = inf
x′∈V(x),y′∈V(y)

D(x′, y′). (4.14)

Note that unlike D(x, y), D(x, y) is always finite. Next proposition corresponds to
Proposition 3.11(i) for D(x, y) instead of D(x, y). It will be used in Lemma 4.11
which follows.

Proposition 4.10. There exist constants C4 and α4 > 0 such that

P (D(x, y) ≥ C4‖x− y‖1 + n) ≤ exp(−α4n
1/d), ∀x, y ∈ Zd, n ∈ N.

Proof of Proposition 4.10. Let C2 be as in Lemma 3.10 and Proposition 3.11. Then

P (D(x, y) ≥ C2‖x− y‖1 + (2d+ 1)C2n)
≤ P (κ(x) > n) + P (κ(y) > n)

+ P (D(x, y) ≥ C2‖x− y‖1 + (2d+ 1)C2n, κ(x) ≤ n, κ(y) ≤ n)
≤ P (κ(x) > n) + P (κ(y) > n)

+
∑

x′∈Bx(n),y′∈By(n)

P (D(x′, y′) ≥ C2‖x− y‖1 + (2d+ 1)C2n, x
′ → y′)

≤ P (κ(x) > n) + P (κ(y) > n)

+
∑

x′∈Bx(n),y′∈By(n)

P (D(x′, y′) ≥ C2‖x′ − y′‖1 + C2n, x
′ → y′).

The result follows from Proposition 3.11 and Lemma 4.6. �

Of course, the random variables u(x) and τ̂(x, y) are almost surely finite. But
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we will need later on repeatedly a better control of their size, provided by our next
lemma.

Lemma 4.11. For all x, y ∈ Zd, r ∈ N \ {0}, u(x) and τ̂(x, y) have a finite r-th
moment.

Proof of Lemma 4.11. By Lemma 4.6, u(x) is bounded above by a sum of passage
times e(y, z) with y and z in the box Bx(Y ), where Y is a random variable whose
moments are all finite. By Lemmas 4.6 and 4.10 the same happens to τ̂(x, y) (if
x′ ∈ V(x), y′ ∈ V(y) are the sites that achieve D(x, y), then τ̂(x, y) ≤ τ(x′, y′)).
Therefore it suffices to show that if (Xi, i ∈ N) is a sequence of i.i.d. random
variables and N is a random variable taking values in N, then the moments of∑N
i=1Xi are all finite if it is the case for both the Xi’s and N . To prove this write:

E(|
N∑
i=1

Xi|r) =

∞∑
n=1

E(|X1 + · · ·+Xn|r1{N=n})

≤
∞∑
n=1

[E(|X1 + · · ·+Xn|2r)P (N = n)]1/2

≤
∞∑
n=1

[E(|X1|+ · · ·+ |Xn|)2rP (N = n)]1/2

≤
∞∑
n=1

[n2rC2rP (N = n)]1/2

where the second line comes from Cauchy-Schwartz’ inequality, the factor n2r counts
the number of terms in the development of (|X1|+· · ·+|Xn|)2r and the constant C2r

depends on the distribution of the Xi’s. As N has all its moments finite P (N = n)
decreases faster than n−2r−4 and the sum is finite. �

We now construct a process (ϑ·) which will be subadditive in every direction, and
will have a.s., by Kingman’s Theorem, a radial limit denoted by µ. We will then
check that τ̂(o, ·) also has, in every direction, the same radial limit, and we will ex-
tend this conclusion to τ(o, ·) on the set Cout

o of sites that have ever been infected.
Hence we first prove

Theorem 4.12. For all z ∈ Zd, there exists µ(z) ∈ R+ such that almost surely

lim
n→+∞

τ̂(o, nz)

n
= µ(z) and (4.15)

lim
n→+∞

[
τ(o, nz)

n
− µ(z)

]
1{nz∈Cout

o } = 0. (4.16)

Proof of Theorem 4.12. (i) For all z ∈ Zd, (m,n) ∈ N2, let

ϑz(m,n) = τ̂(mz, nz) + u(nz). (4.17)

The process (ϑz(m,n))(m,n)∈N2 satisfies the hypotheses of Kingman’ subadditive
ergodic theorem (see Liggett, 2005, Theorem VI.2.6) by (4.13). Hence (noticing
also that ϑz(0, n) = ϑnz(0, 1)) there exists µ(z) ∈ R+ such that

lim
n→+∞

1

n
ϑz(0, n) = lim

n→+∞
E

(
ϑz(0, n)

n

)
= lim
n→+∞

E

(
ϑnz(0, 1)

n

)
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= inf
n∈N

E

(
ϑz(0, n)

n

)
= inf
n∈N

E

(
ϑnz(0, 1)

n

)
= µ(z) (4.18)

a.s. and in L1. Since the random variables (u(z) : z ∈ Zd) are identically dis-
tributed, it follows from Lemma 4.11 and Chebychev’s inequality that∑∞
n=0 P (u(nz) > nε) < +∞ for all ε > 0, so that by Borel-Cantelli’s Lemma

lim
n→+∞

u(nz)

n
= 0, a.s. (4.19)

Thus by (4.17), (4.18), (4.19) we have (4.15) for all z ∈ Zd.

(ii) Since Rout
o is a.s. finite, if nz ∈ Cout

o , then nz ∈ Cout
o \ Rout

o for n large
enough. Hence, from Lemma 4.8, for n large enough we have∣∣∣∣τ(o, nz)

n
− µ(z)

∣∣∣∣1{nz∈Cout
o \Rout

o } ≤
u(o) + u(nz)

n
+

∣∣∣∣ τ̂(o, nz)

n
− µ(z)

∣∣∣∣
and we conclude that (4.16) is satisfied by (4.19) and (4.15). �

4.3. Extending µ. We have proved the existence of a linear propagation speed in
every direction of Zd. Now, to derive an asymptotic shape result, in particular for
the approximating travel times (τ̂(x, y), x, y ∈ Zd), we need to extend µ from Zd
to a Lipschitz, convex and homogeneous function on Rd. The asymptotic shape of
the epidemic will be given by the convex set D defined in (4.20) below. As a first
step, we prove properties of µ on Zd.

Lemma 4.13. The function µ satisfies the following properties for all x, y ∈ Zd,
k ∈ N:

(i) µ(x) = lim
n→+∞

E

(
τ̂(o, nx)

n

)
,

(ii) µ(x+ y) ≤ µ(x) + µ(y),
(iii) µ(x) = µ(−x),
(iv) µ(ei) = µ(e`), ∀i, ` ∈ {1, . . . , d},
(v) µ(kx) = kµ(x),
(vi) µ(x) ≤ µ(e1)‖x‖1.

Proof of Lemma 4.13. Since ϑx(0, n) = τ̂(o, nx)+u(nx), part (i) follows from (4.18)
and (4.19). To prove part (ii) write:

µ(x+ y) = lim
n→+∞

E

(
τ̂(o, n(x+ y))

n

)
≤ lim

n→+∞
E

(
τ̂(o, nx)

n

)
+ lim
n→+∞

E

(
τ̂(nx, n(x+ y))

n

)
+ lim
n→+∞

E

(
u(nx)

n

)
= lim

n→+∞
E

(
τ̂(o, nx)

n

)
+ lim
n→+∞

E

(
τ̂(nx, n(x+ y))

n

)
= µ(x) + µ(y),

where the first equality follows from part (i), the inequality from (4.13), the second
equality from (4.19) and the third one from part (i) and translation invariance of τ̂ .
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Parts (iii)–(iv) follow immediately from part (i) and the corresponding properties
of τ̂(o, x). To prove part (v) write:

µ(kx) = lim
n→+∞

E

(
ϑnkx(0, 1)

n

)
= k lim

n→+∞
E

(
ϑnkx(0, 1)

nk

)
= kµ(x),

where the first and third equalities follow from (4.18). Finally, part (vi) follows
from parts (ii)–(iv). �

Next corollary extends Lemma 4.13(iii)–(iv).

Corollary 4.14. For any permutation σ of {1, · · · , d}, any y = (y1, y2, · · · , yd) ∈
Zd and any choice of the signs ±,

µ(±yσ(1),±yσ(2), · · · ,±yσ(d)) = µ(y1, y2, · · · , yd).

Proof of Corollary 4.14. Clearly τ̂(o, (y1, y2, . . . , yd)) has the same distribution as
τ̂(o, (±yσ(1),±yσ(2), · · · ,±yσ(d))) for any choice of the signs and any permutation
σ, hence the corollary follows from Lemma 4.13(i). �

Lemma 4.15. Let γ∗ = µ(e1). Then γ∗ is a Lipschitz constant for µ. For all
u, v ∈ Zd we have

|µ(u)− µ(v)| ≤ γ∗‖u− v‖1.

Proof of Lemma 4.15. Let y = u− v, x = v. We have

µ(u)− µ(v) = µ(x+ y)− µ(x) ≤ µ(y) = µ(u− v) ≤ µ(e1)‖u− v‖1,
where the inequalities follow from Lemma 4.13(ii) and (vi). Similarly, taking x =
u, y = v − x gives

µ(v)− µ(u) ≤ µ(e1)‖v − u‖1,
and the lemma follows. �

In a second step, we extend µ to Rd and we introduce the set D.

Proposition 4.16. There exists an extension of µ to Rd, which is Lipschitz with
Lipschitz constant γ∗ given by Lemma 4.15, convex and homogeneous on Rd. More-
over, µ(x) = 0 if and only if x = o and the set

D = {x ∈ Rd : µ(x) ≤ 1} (4.20)

is convex, bounded and contains an open ball centered at o.

Proof of Proposition 4.16. We start by extending µ to Qd. For x ∈ Qd \ {o} let

Nx = min{k ≥ 1, k ∈ N : kx ∈ Zd} and (4.21)

µ(x) =
µ(Nxx)

Nx
. (4.22)

We now prove that this extension is homogeneous: let α ∈ Q be positive and let
x ∈ Qd, x 6= o. Then, there exist k1, k2 ∈ N multiples of Nx and Nαx respectively,
such that k1x, k2αx ∈ Zd and k1x = k2αx. Write

µ(αx) =
µ(Nαxαx)

Nαx
=
µ(k2αx)

k2
=
µ(k1x)

k2
=
k1

k2

µ(k1x)

k1
= α

µ(Nxx)

Nx
= αµ(x),
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using (4.22) for the first equality, Lemma 4.13(v) for the second and fifth ones.
To prove that µ is Lipschitz on Qd, let x, y ∈ Qd \ {o}. Then,

|µ(x)− µ(y)| =

∣∣∣∣µ(Nxx)

Nx
− µ(Nyy)

Ny

∣∣∣∣ =

∣∣∣∣µ(NyNxx)

NyNx
− µ(NxNyy)

NxNy

∣∣∣∣
=
|µ(NxNyx)− µ(NxNyy)|

NxNy

≤ γ∗‖NxNyx−NxNyy‖1
NxNy

= γ∗‖x− y‖1,

using Lemma 4.13(v) for the second equality and Lemma 4.15 for the inequality.

To prove that µ is convex on Qd, take x, y ∈ Qd and α ∈ Q ∩ (0, 1). Then let
k1, k2 be elements in N such that k1α ∈ N, k2x ∈ Zd, k2y ∈ Zd and write:

µ(αx+ (1− α)y) = lim
n→+∞

E
( τ̂(o, nαx+ n(1− α)y)

n

)
= lim

n→+∞
E
( τ̂(o, nk1αk2x+ nk1(1− α)k2y)

nk1k2

)
≤ lim

n→+∞
E
( τ̂(o, nk1αk2x) + τ̂(o, nk1(1− α)k2y) + u(nk1αk2x)

nk1k2

)
= lim

n→+∞
E
( τ̂(o, nk1αk2x) + τ̂(o, nk1(1− α)k2y)

nk1k2

)
=

µ(k1k2αx) + µ(k1k2(1− α)y)

k1k2
= αµ(x) + (1− α)µ(y),

where the first equality follows from Lemma 4.13(i), the inequality from Lemma
4.9, the third equality from (4.19), the fourth from Lemma 4.13(i) and the last one
from the homogeneity of µ on Qd.

Because µ is homogeneous, Lipschitz and convex on Qd, we can extend µ by conti-
nuity to Rd.

To prove that µ(x) > 0 if x 6= o we argue by contradiction: assume µ(x) = 0
and without loss of generality that x = (x1, . . . , xd) with x1 6= 0. First note that
since µ is Lipschitz and homogeneous, the conclusion of Corollary 4.14 also holds
for any (x1, . . . , xd) ∈ Rd, then write

µ(2x1, 0, · · · , 0) = µ(2x1, 0, · · · , 0)− µ(x1, x2, · · · , xd)
≤ µ(x1,−x2, · · · ,−xd) = 0,

using Lemma 4.13(ii) for the inequality, and Corollary 4.14 with the assumption
µ(x) = 0 for the last equality. Then since µ is homogeneous we get µ(e1) =
0. However, considering a standard first passage percolation model with passage
times e(z, y) and adding a ‘tilde’ to quantities associated to this model, we have
τ̃(o, z) ≤ τ(o, z) a.s. for all z ∈ Zd. Since by Kesten (1986, Theorem (2.18)),

lim
n→+∞

τ̃(o, ne1) = µ̃(e1),

it follows from (4.16) that µ̃(e1) ≤ µ(e1) = 0. But from Kesten (1986, Theorems
(1.7) and (1.15)) we get µ̃(e1) > 0, thus reaching a contradiction.
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The convexity of µ implies that D is convex. We prove by contradiction that
D contains an open ball centered at o: otherwise, there exists a sequence (xn)n∈N
such that xn /∈ D, limn→+∞ xn = 0; therefore on the one hand µ(xn) > 1, and on
the other hand limn→+∞ µ(xn) = 0 because µ(o) = 0 and µ is continuous, hence a
contradiction.

Finally we argue again by contradiction to prove that the set D is bounded: oth-
erwise there would exist a sequence (yn)n∈N with yn ∈ D and ‖yn‖1 > n. Then
xn = yn/‖yn‖1 satisfies ‖xn‖1 = 1, and, since µ is homogeneous, limn→+∞ µ(xn) =
0. By compactness (xn)n∈N has a converging subsequence to some x such that
µ(x) = 0 with ‖x‖1 = 1; since we have already proved there is no such x we get a
contradiction. �

4.4. Behavior of τ̂ . Our next result establishes how τ̂(o, z) grows for z ∈ Zd.

Theorem 4.17. There exist K = K(λ, d) > 0 and α > 0 such that

P (τ̂(o, z) > K‖z‖∞) ≤ exp(−α(‖z‖1/d∞ ), ∀ z ∈ Zd,
P (τ̂(o, z) > K(‖z‖∞ + n)) ≤ exp(−αn1/d), ∀ z ∈ Zd, n ∈ N,∑
z∈Zd

P (τ̂(o, z) > K‖z‖∞) < +∞.

Proof of Theorem 4.17. Let K ≥ 0, z ∈ Zd and let B = B(o, (‖z‖∞ + n)/4) ×
B(z, (‖z‖∞ + n)/4). Then write:

P (τ̂(o, z) > K(‖z‖∞ + n))
≤ P (4κ(z) > ‖z‖∞ + n) + P (4κ(o) > ‖z‖∞ + n) + P (A) (4.23)

where

A = {τ̂(o, z) > K(‖z‖∞ + n), 4κ(z) ≤ ‖z‖∞ + n, 4κ(o) ≤ ‖z‖∞ + n}
⊂ ∪(x,y)∈B{x→ y, τ(x, y) > K(‖z‖∞ + n)}. (4.24)

Note that if (x, y) ∈ B we have

‖z‖∞ − n ≤ 2‖x− y‖∞ ≤ 3‖z‖∞ + n and
3(‖z‖∞ + n) = 3‖z‖∞ + n+ 2n ≥ 2(‖x− y‖∞ + n). (4.25)

From (4.24), (4.25), for C2 given in Proposition 3.11, we get:

P (A) ≤
∑

x∈B(o,(‖z‖∞+n)/4)

∑
y∈B(z,(‖z‖∞+n)/4)(

P (3τ(x, y) > 2K(‖x− y‖∞ + n), D(x, y) < (C2 + 1)(‖x− y‖1 + n))

+P (x→ y,D(x, y) ≥ (C2 + 1)(‖x− y‖1 + n))
)
. (4.26)

It now follows from Proposition 3.11(i) that we have, for some α5 > 0,

P (x→ y,D(x, y) ≥ (C2 + 1)(‖x− y‖1 + n))

≤ exp(−α5(‖x− y‖1 + n)1/d)

≤ exp(−α5(‖x− y‖∞ + n)1/d). (4.27)

Then, taking K large enough, by large deviation results for exponential variables,
we also have, for some α6 > 0,

P (3τ(x, y) > 2K(‖x− y‖∞ + n), D(x, y) < (C2 + 1)(‖x− y‖1 + n))
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≤ P (3τ(x, y) > 2K(‖x− y‖∞ + n), D(x, y) < (C2 + 1)d(‖x− y‖∞ + n))
≤ exp(−α6(‖x− y‖∞ + n)). (4.28)

Hence, from (4.25)–(4.28), for some constants R and α7 > 0 we have:

P (A) ≤ R(‖z‖∞ + n)2d exp(−α7(‖z‖∞ + n)1/d),

which gives, by modifying the constants,

P (A) ≤ R′ exp(−α8(‖z‖∞ + n)1/d). (4.29)

The theorem’s statements now follow from (4.29), (4.23) and Lemma 4.6. �

4.5. Asymptotic shape for τ̂ . Next theorem is the last necessary step to prove the
shape theorem.

Theorem 4.18. Let ε > 0, and Ât = {z ∈ Zd : τ̂(o, z) ≤ t}. Then, a.s. for t large
enough, for D defined in (4.20),

(1− ε)tD ∩ Zd ⊂ Ât ⊂ (1 + ε)tD ∩ Zd. (4.30)

In the sequel K and α are fixed constants satisfying the conclusions of Theorem
4.17, γ∗ is the Lipschitz constant of µ (see Lemma 4.15) and Nx was defined in
(4.21) for any x ∈ Qd \ {o}. To prove Theorem 4.18 we need the two following
lemmas.

Lemma 4.19. Let ρ > 0 and let δ ≤ ρ/(2K). Then, for all x ∈ Qd \ {o},∑
k>0

P ( sup
z∈BkNxx(δkNx)∩Zd

τ̂(kNxx, z) ≥ kNxρ) < ∞, (4.31)∑
k>0

P ( sup
z∈BkNxx(δkNx)∩Zd

τ̂(z, kNxx) ≥ kNxρ) < ∞. (4.32)

Proof of Lemma 4.19. We derive only (4.31), since the proof of (4.32) is analogous.
By translation invariance

P ( sup
z∈BkNxx(δkNx)∩Zd

τ̂(kNxx, z) ≥ kNxρ) = P ( sup
z∈B(δkNx)∩Zd

τ̂(o, z) ≥ kNxρ).

Hence it suffices to show that∑
k>0

P ( sup
z∈B(δkNx)∩Zd

τ̂(o, z) ≥ kNxρ) <∞.

Let k > 0, z ∈ B(δkNx) ∩ Zd. By Theorem 4.17 we have:

P (τ̂(o, z) ≥ kNxρ) ≤ P (τ̂(o, z) ≥ K‖z‖∞ + kNxρ/2)

≤ exp
(
− α

⌊kNxρ
2K

⌋1/d)
.

Therefore, for some constant C,∑
k>0

P ( sup
z∈B(δkNx)∩Zd

τ̂(o, z) ≥ kNxρ) ≤
∑
k>0

C(δkNx)d exp
(
− α

⌊kNxρ
2K

⌋1/d)
< ∞.

�

For x ∈ Qd \ {o}, δ > 0, we define the cone associated to x of amplitude δ as

Cx(δ) = Zd ∩
(
∪t≥0 Btx(δt)

)
. (4.33)
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Lemma 4.20. Let x ∈ Qd \ {o}. Then for any 0 < δ′ < δ the set Cx(δ′) \
∪k≥0BkNxx(δkNx) is finite.

Proof of Lemma 4.20. Let

t0 =
Nx‖x‖1
δ − δ′

.

Since Zd ∩
(
∪t0t≥0 Btx(δ′t)

)
is finite, it suffices to show that

∪∞t≥t0Btx(δ′t) ⊂ ∪k≥0BkNxx(δkNx).

To prove this, pick z ∈ Bt1x(δ′t1) for some t1 ≥ t0. Let k0 = inf{i ∈ N : iNx ≥ t1}.
Hence 0 ≤ k0Nx − t1 < Nx, and

‖z − k0Nxx‖1 ≤ ‖z − t1x‖1 + |t1 − k0Nx|‖x‖1
< ‖z − t1x‖1 +Nx‖x‖1 ≤ δ′t1 +Nx‖x‖1
= δ′t1 + (δ − δ′)t0 ≤ δt1 ≤ δk0Nx.

Therefore z ∈ Bk0Nxx(δk0Nx) and the lemma is proved. �

In the next proof we use that since the Lipschitz constant of µ is γ∗ for the norm
‖.‖1 (by Proposition 4.16), it is γ = γ∗d for the norm ‖.‖∞.

Proof of Theorem 4.18. Fix ε ∈ (0, 1) and let ρ, δ and ι be three small positive
parameters such that δ ≤ ρ/(2K), whose values will be determined later. The set
Y = {x ∈ Qd : 1 − 2ι < µ(x) < 1 − ι} is a ring between two balls with the same
center but with a different radius, because by Proposition 4.16, µ is homogeneous
and positive except that µ(o) = 0. Hence the (compact) closure of Y, which is
recovered by balls of the same radius centered on the rational points of Y, is in
fact covered by a finite number of such balls. Thus there exists a finite subset Y of
Y such that Zd ⊂ ∪x∈Y Cx(δ/2) (if the balls recover the ring, the cones associated
to them recover the whole space). Hence, to prove the first inclusion of (4.30) it
suffices to show that for any x ∈ Y and any sequences (tn)n>0 and (zn)n>0 such
that tn ↑ ∞ in R+, zn ∈ Cx(δ/2) ∩ Zd with ‖zn‖∞ ≥ n and µ(zn) ≤ (1− ε)tn, we
have τ̂(o, zn) ≤ tn a.s. for n sufficiently large. So, let (tn)n>0 and (zn)n>0 be such
sequences. Using Lemma 4.20 (taking a subsequence if necessary) let kn ∈ N be
such that zn ∈ BknNxx(δknNx), hence kn ≥ Cn for some constant C. Since µ is
Lipschitz, write

knNx(1− 2ι) ≤ µ(knNxx) ≤ µ(zn) + γδknNx ≤ (1− ε)tn + γδknNx,

so that

knNx ≤
( 1− ε

1− 2ι− γδ

)
tn. (4.34)

It now follows from (4.34) and the subadditivity property (4.13) of τ̂ that:

τ̂(o, zn)

tn
≤
( 1− ε

1− 2ι− γδ

)( τ̂(o, knNxx)

knNx
+
u(knNxx)

knNx
+
τ̂(knNxx, zn)

knNx

)
.

Therefore, by Theorem 4.12, Lemma 4.11 (the variables u(.) are identically dis-
tributed, and kn ≥ Cn), Lemmas 4.16 and 4.19 we obtain:

lim sup
n→+∞

τ̂(o, zn)

tn
≤
( 1− ε

1− 2ι− γδ

)(
µ(x) + ρ

)
a.s.
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Since x ∈ Y this implies:

lim sup
n→+∞

τ̂(o, zn)

tn
≤
( 1− ε

1− 2ι− γδ

)(
1− ι+ ρ

)
a.s.

Taking ι, ρ and δ small enough, the right hand side is strictly less than 1 which
proves that τ̂(o, zn) ≤ tn a.s. for n sufficiently large.

Similarly, to prove the second inclusion of (4.30) it suffices to show that for
any x ∈ Y and any sequences tn ↑ ∞ in R+ and zn in Cx(δ/2) ∩ Zd such that
µ(zn) ≥ (1 + ε)tn we have τ̂(o, zn) > tn a.s. for n sufficiently large. As before,
taking subsequences if necessary, we let (tn)n>0 and (zn)n>0 be such sequences,
and kn ∈ N be such that zn ∈ BknNxx(δknNx). Proceeding then as for the first
inclusion, we get:

knNx(1− ι) ≥ µ(knNxx) ≥ µ(zn)− γδknNx ≥ (1 + ε)tn − γδknNx,

knNx ≥
( 1 + ε

1− ι+ γδ

)
tn,

τ̂(o, zn)

tn
≥
( 1 + ε

1− ι+ γδ

)( τ̂(o, knNxx)

knNx
− u(zn)

knNx
− τ̂(zn, knNxx)

knNx

)
,

and

lim inf
n→+∞

τ̂(o, zn)

tn
≥

( 1 + ε

1− ι+ γδ

)(
µ(x)− ρ

)
a.s.

≥
( 1 + ε

1− ι+ γδ

)(
1− 2ι− ρ

)
a.s.

Now, taking ι, ρ and δ small enough, the right hand side is strictly bigger than 1
and the second inclusion of (4.30) is proved. �

4.6. Asymptotic shape for the epidemic. We can now prove our main result, the
shape theorem.
Proof of Theorem 2.2. Let ε > 0 be given.
(i) We first show that the infection grows at least linearly as t goes to infinity, that
is,

P
((

Υt ∪ Ξt
)
⊃
(
(1− ε)tD ∩ Cout

o

)
for all t large enough

)
= 1. (4.35)

Since Rout
o is finite a.s. this will follow from:

P
((

Υt ∪ Ξt
)
⊃
(
(1− ε)tD ∩ (Cout

o \Rout
o )

)
for all t large enough

)
= 1. (4.36)

By Theorem 4.18, if 0 < a < b then atD ∩Zd ⊂ Âbt a.s. for t large enough. Hence,
for t large enough z ∈ (1− ε)tD ∩ (Cout

o \Rout
o ) implies

τ̂(o, z) ≤ (1− ε/2)t a.s. (4.37)

and by Lemma 4.8, τ(o, z) ≤ (1 − ε/2)t + u(o) + u(z). Since u(o) < +∞ a.s. we
have u(o) < (ε/4)t a.s. for t large enough. Hence, by (2.7), (4.36) will follow if
we show that supz∈tD u(z) ≤ (ε/4)t a.s. for t large enough, which is implied by
supz∈(n+1)D u(z) ≤ (ε/4)n a.s. for n = btc. By Proposition 4.16, D is bounded,

hence the number of points in (n+1)D with coordinates in Z is less than C5(n+1)d

for some constant C5. Then write

P

(
sup

z∈(n+1)D

u(z) ≥ εn

4

)
≤ C5(n+ 1)dP

(
u(o) ≥ εn

4

)
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≤ C5(n+ 1)d
4d+2

(εn)d+2
E(u(o)d+2).

Thus, by Lemma 4.11,
∑
n∈N P (supz∈(n+1)D u(z) ≥ εn/4) <∞, and (4.36) follows

from Borel-Cantelli’s Lemma.

(ii) Next we show that

P
((

Υt ∪ Ξt
)
⊂
(
(1 + ε)tD ∩ Cout

o

)
for all t large enough

)
= 1. (4.38)

If z belongs to Ξt or Υt, then by (2.7) and Lemma 4.8, τ̂(o, z) ≤ t for z ∈ Cout
o \Rout

o ,
which implies z ∈ (1+ε)tD for t large enough by Theorem 4.18. Since Rout

o is finite
(4.38) follows.

Putting together (4.35) and (4.38) yields (2.11).

(iii) Finally, assuming E(|Tz|d) <∞, we show that

P (Υt ∩ (1− ε)tD = ∅ for t large enough) = 1. (4.39)

Let z ∈ (1−ε)tD∩Cout
o , then, by (2.7), (4.35) and the same reasoning as for (4.37),

we have τ(o, z) ≤ (1 − ε/2)t if t is large enough. Hence, (4.39) will follow if we
show that Tz ≥ (ε/2)τ(o, z) occurs only for a finite number of z’s. Indeed otherwise
Tz ≤ (ε/2)(1− ε/2)t so that τ(o, z) + Tz < t if t is large enough: it means that the
infection has reached site z and the time of infection from z is over before time t,
hence z has recovered by time t, that is z ∈ Ξt, z /∈ Υt.

But for δ = (2(1 + ε) supx∈D ‖x‖∞)−1 (by Proposition 4.16, D is bounded),
we have τ(o, z) ≥ δ‖z‖∞ except for a finite number of z’s. Because if z satisfies
τ(o, z) < δ‖z‖∞, then by (2.7) and (4.38), for δ‖z‖∞ larger than some t0, we have
z ∈

(
Υδ‖z‖∞ ∪Ξδ‖z‖∞

)
⊂ (1+ε)δ‖z‖∞D, hence the contradiction ‖z‖∞ ≤ ‖z‖∞/2.

Therefore, it suffices to show that for any δ′ > 0 the event {Tz ≥ δ′‖z‖∞} can
only occur for a finite number of z’s. This will follow from Borel-Cantelli’s Lemma
once we prove that

∑
z∈Zd P (Tz ≥ δ′‖z‖∞) <∞. To do so we write, since the Tz’s

are identically distributed:∑
z∈Zd

P (Tz ≥ δ′‖z‖∞) =
∑
n∈N

∑
z:‖z‖∞=n

P (Tz ≥ δ′n) ≤ c
∑
n∈N

nd−1P (To ≥ δ′n)

for some constant c, and this last series converges because To has a finite moment
of order d. Putting together (2.11) and (4.39) yields (2.12). �

Appendix A.

In this appendix we prove Theorem 3.5, Lemma 3.7 and (4.2) in the proof of
Lemma 4.3. These proofs rely on dynamic renormalisation techniques introduced
in Barsky et al. (1991). In applying these techniques we follow Grimmett (1999,
Chapter 7) and Grimmett and Marstrand (1990), but we introduce some modifica-
tions. In particular by considering some larger boxes we avoid using the sprinkling
technique more than once on any given bond. Because of this we only need to
consider two different values of the infection parameter and we do not need to in-
troduce the updating functions of Grimmett (1999). To simplify the notation we
write the proofs for d = 3, but their generalizations to higher dimensions presents
no problems.
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We introduce parameters whose values will be settled in Lemma A.9 below. We fix
λ′ > λc and adopt the terminology of Grimmett (1999, Chapter 7). Nonetheless,
we might change names of constants if this creates confusions with the rest of our
paper. In the sequel n,m and N are positive integers such that

2m < n and N = n+m+ 1. (A.1)

We consider our percolation model on the slab Z2 × [−3N, 3N ]. Recall that we
denote by (e1, e2, e3) the canonical basis of Z3. For x = (x1, x2, x3) ∈ Z3 and
k ∈ N such that −3N + k ≤ x3 ≤ 3N − k we recall that B(k) = [−k, k]3 and
Bx(k) = x+ [−k, k]3. We divide the face F (n) = {x : x ∈ ∂B(n), x1 = n} of ∂B(n)
in 4 quadrants:

T+,+(n) = {x : x ∈ ∂B(n), x1 = n, x2 ≥ 0, x3 ≥ 0},
T+,−(n) = {x : x ∈ ∂B(n), x1 = n, x2 ≥ 0, x3 ≤ 0},
T−,+(n) = {x : x ∈ ∂B(n), x1 = n, x2 ≤ 0, x3 ≥ 0},
T−,−(n) = {x : x ∈ ∂B(n), x1 = n, x2 ≤ 0, x3 ≤ 0}.

and, for any choice of (i, j) ∈ {+,−}2, we define a box of thickness 2m+1 composed
of translates of the corresponding quadrant, by

T i,j(m,n) = ∪2m+1
`=1 {`e1 + T i,j(n)}. (A.2)

For any of the above sets a subindex as y means we translate it by y.

Definition A.1. A seed is a translate of B(m) such that all its edges are λ′-open.

We will be looking for oriented open paths starting in a seed inside B(2N),
and: either (a) contained in the union of boxes B(3N) ∪ B6Ne1(3N) and reach-
ing a seed inside B6Ne1(2N) ∩ B8Ne1(2N); or (b) contained in the union of boxes
B(3N) ∪ B6Ne2(3N) and reaching a seed inside B6Ne2(2N) ∩ B8Ne2(2N). We will
construct those paths in Lemma A.7 below.

An important tool in Grimmett (1999, Chapter 7) is the sprinkling technique,
which enables some bonds, that would be closed otherwise, to be independently
open with a probability larger than some ε′ > 0. We therefore need to find a
way to proceed similarly, in spite of the fact that we work with dependent perco-
lation. For this, it is convenient to define the processes for different values of the

rate of propagation λ̃ on our common probability space and compare them. Let
(e1(x, y), x, y ∈ Z3) be a collection of independent exponential r.v.’s with parameter

1. Then let eλ̃(x, y) = λ̃−1e1(x, y), and

Xλ̃(x, y) =

{
1 if eλ̃(x, y) < Tx;

0 otherwise.
(A.3)

We recall that the event {Tx > eλ̃(x, y)} occurs if and only if the oriented bond

(x, y) is λ̃-open.

The following lemma implies that given λ > δ1 > 0, there exists ι > 0 such

that for any λ̃ such that λ̃ + δ1 < λ the random field {Xλ̃+δ1
(u, v) : u, v ∈ Z3} is

stochastically above the random field {max{Xλ̃(u, v), Y (u, v)} : u, v ∈ Z3} where
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the random variables Y (u, v) are i.i.d. Bernoulli with parameter ι and are indepen-
dent of the random variables Xλ̃(u, v). This lemma justifies the use of the sprinkling
technique needed to prove Lemmas A.5 and A.7 below.

Lemma A.2. Assume λ > δ1 > 0. There exists ι > 0 such that for any λ̃ > 0 such

that λ̃+ δ1 < λ, and any x, y ∈ Z3, with y ∼ x,

P (Xλ̃+δ1
(x, y) = 1 | Xλ̃+δ1

(u, v), u, v ∈ Z3, u ∼ v, (u, v) 6= (x, y);

Xλ̃(u, v), u, v ∈ Z3, u ∼ v) > ι a.s.

Proof of Lemma A.2. Recall that Xλ̃+δ1
(x, y) is independent of the random vari-

ables Xλ̃+δ1
(u, v), Xλ̃(u, v), u 6= x, v ∼ u, hence it suffices to show that

P (Xλ̃+δ1
(x, y) = 1 | Xλ̃+δ1

(x, z), z ∼ x, z 6= y;

Xλ̃(x, z), z ∼ x) > ι a.s. (A.4)

Since we are now conditioning on a finite number of random variables taking only
values 0 and 1, (A.4) will follow from:

P (Xλ̃+δ1
(x, y) = 1 | Xλ̃+δ1

(x, z) = az, z ∼ x, z 6= y;

Xλ̃(x, z) = bz, z ∼ x) > ι (A.5)

for all choices az and bz in {0, 1} with bz ≤ az.

To prove (A.5), we denote by Nx the union of all partitions of the set {z ∈ Z3 :
z ∼ x} of neighbors of x into three disjoint sets called N 1

x ,N 0
x ,N 0,1

x such that
y ∈ N 1

x ∪N 0,1
x . Using the inequality P (A|B) ≥ P (A∩B) for two events A,B, and

taking an arbitrary partition in Nx gives

P (Xλ̃+δ1
(x, y) = 1 |Xλ̃+δ1

(x, u) = 0, ∀u ∈ N 0
x ,

Xλ̃(x, v) = 1, ∀v ∈ N 1
x ;Xλ̃(x,w) = 0, Xλ̃+δ1

(x,w) = 1, ∀w ∈ N 0,1
x )

≥ P (Xλ̃+δ1
(x, y) = 1, Xλ̃+δ1

(x, u) = 0, ∀u ∈ N 0
x ,

Xλ̃(x, v) = 1, ∀v ∈ N 1
x ;Xλ̃(x,w) = 0, Xλ̃+δ1

(x,w) = 1, ∀w ∈ N 0,1
x ).

Let a > 0 be such that P (Tx ∈ [a, a + γ]) > 0 for all γ > 0, and let δ2 ∈ (0, a) be
such that b defined by

b :=
(a+ δ2)λ̃

λ̃+ δ1
satisfies b < a. On the event

{Tx ∈ [a, a+ δ2/2), eλ̃(x,w) ∈ [a+ δ2/2, a+ δ2), ∀w ∈ N 0,1
x ,

eλ̃(x, v) ∈ [a− δ2/2, a), ∀v ∈ N 1
x ,

eλ̃+δ1
(x, u) ∈ [a+ δ2/2, a+ δ2), ∀u ∈ N 0

x}, (A.6)

for all sites v such that v ∈ N 1
x we have eλ̃(x, v) < Tx hence Xλ′(x, v) = 1; for all

sites u such that u ∈ N 0
x we have Tx < eλ′+δ1(x, u) hence Xλ̃+δ1

(x, u) = 0; and for

all sites w such that w ∈ N 0,1
x we have Tx < eλ̃(x,w) and

eλ̃+δ(x,w) =
λ̃

λ̃+ δ1
eλ̃(x,w) ≤ λ̃

λ̃+ δ1
(a+ δ2) = b < a ≤ Tx
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hence Xλ̃(u,w) = 0 and Xλ̃+δ1
(u,w) = 1.

Since the probability p(N 0
x ,N 1

x ,N 0,1
x ) of the event (A.6) is strictly positive, we

conclude the proof of (A.5) by taking

ι = inf
Nx

p(N 0
x ,N 1

x ,N 0,1
x ).

�

It is in view of this sprinkling procedure that we chose a propagation rate λ′ > λc.
As in Grimmett (1999, Section 7.2), we go on with two key geometrical lemmas.
The first one, Lemma A.3, corresponds to Grimmett (1999, Lemma 7.9), with a very
similar proof that we omit consequently. The second one, Lemma A.5, corresponds
to Grimmett (1999, Lemma 7.17), that it generalizes in view of its applications for
Theorem 3.5 and Lemma 3.7.

Lemma A.3. If λc < λ′ and η > 0, then there exist integers m = m(λ′, η) and
n = n(λ′, η) satisfying (A.1) and such that

P
(
there exists a λ′-open path in B(n) ∪ T i,j(m,n) from B(m)

to a seed contained in T i,j(m,n)
)
> 1− η,

for any choice of (i, j) ∈ {+,−}2.

Notation A.4. Given a subset V of Z3, δ > 0 and x ∈ V , we let σ(x, V, λ′, δ) be the
σ-algebra generated by the indicator functions of the following collection of events:

{Ty > eλ′(y, z) : y ∈ V, z ∼ y} ∪ {Ty > eλ′+δ(y, z) : y ∈ V ∩Bx(n)c, z ∼ y}. (A.7)

Note that when V ∩Bx(n)c = ∅, σ(x, V, λ′, δ) is simply the σ-algebra generated by
the indicator functions of {Ty > eλ′(y, z) : y ∈ V, z ∼ y}, which we will denote by
σ(V, λ′).

For A a subset of Z3, recall from (3.2) that ∆vA denotes the exterior vertex
boundary of A.

Lemma A.5. If λc < λ′ and ε, δ > 0, there exists m = m(λ′, ε, δ) and n = n(λ′, ε, δ)
satisfying (A.1) and with the following property:
For any choice of (i, j) ∈ {+,−}2, any x ∈ Z3, any set L ⊂ Z3 such that

Bx(m) ⊂ L ⊂ Z3 \ T i,jx (m,n) (A.8)

and for any σ(x, L, λ′, δ)-measurable event H of strictly positive probability we have:

P (Gi,j |H) ≥ 1− ε, (A.9)

where

Gi,j =
{

there exists a path contained in Bx(n) ∪ T i,jx (m,n) going from L

to a seed contained in T i,jx (m,n) and such that

its first edge (u, v) with u ∈ L, v ∈ ∆vL is (λ′ + δ)-open

and all its other edges are λ′-open
}
.

Note that since a λ′-open edge is also (λ′+ δ)-open, all the involved edges in the
path in Gi,j are (λ′ + δ)-open, but we do not know if the first edge of this path is
λ′-open.
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��

seed

Bx(n)

L x

Bx(m)

T+,+
x

open path

Figure A.2. In the open path, the first edge going out of L is
(λ′ + δ)-open, and all other edges are λ′-open.

Proof of Lemma A.5. Given A a subset of Z3 and a subset C of ∆vA, let

{A λ′+δ⇒ C} (A.10)

be the event that at least one of the bonds going from A to C is (λ′+δ)-open. Note
that this is a stronger condition than to have a (λ′ + δ)-open path from A to C.

Let α be the probability that any given bond is λ′-open.
Since the model is invariant under translations and 90 degree rotations, it suffices

to show the lemma when x is the origin and (i, j) = (+,+). We will hence drop
x, i and j from the notation. Let

V (L) =
{
z ∈ ∆v(L ∩B(n)) : there exists a λ′-open path contained in

B(n) ∪ T (m,n) \ L going from z to a seed contained in T (m,n)
}
. (A.11)

Here it is understood that there always is a λ′-open path from a point to itself.
Therefore any z ∈ ∆v(L ∩ B(n)) contained in a seed in T (m,n) is in V (L). Note
also that since the path is contained in B(n)∪ T (m,n), V (L) is a subset of B(n)∪
T (m,n). Now write

G = ∪K
(
{L λ′+δ⇒ K} ∩ {V (L) = K}

)
(A.12)

where the union is over all possible values of V (L).
Our next step is to show that if m and n are properly chosen, the set V (L) is

large with probability close to 1. Let k be a positive integer. Note that if V (L) has
at most k elements, by the FKG inequality (see Remark 3.2), the probability that
all the bonds entering V (L) are λ′-closed is at least (1− α)6k (recall that α is the
probability that any given bond is λ′-open, and that we are working in Z3). All the
λ′-open paths going from L to a seed contained in T (m,n) have to pass through a
point in V (L). Hence if all the bonds entering V (L) are λ′-closed, such a path does
not exist. Thus we have

P
(
there exists a λ′-open path contained in B(n) ∪ T (m,n) \ L
going from L to a seed contained in T (m,n) | |V (L)| ≤ k

)
≤ 1− (1− α)6k. (A.13)
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But according to Lemma A.3 there exist m and n such that 2m < n and

P
(
there exists a λ′-open path contained in B(n) ∪ T (m,n)

going from B(m) to a seed contained in T (m,n)
)

is as close to 1 as we wish. This implies that

P
(
there exists a λ′-open path contained (except its initial point) in
B(n) ∪ T (m,n) \ L going from L
to a seed contained in T (m,n)

)
(A.14)

is as close to 1 as we wish uniformly in L’s such that

B(m) ⊂ L ⊂ Z3 \ T (m,n). (A.15)

The probability (A.14) is equal to

P
(
there exists a λ′-open path contained (except its initial point) in

B(n) ∪ T (m,n) \ L going from L to a seed contained in

T (m,n) | |V (L)| ≤ k)P (|V (L)| ≤ k
)

+P
(
there exists a λ′-open path contained (except its initial point) in

B(n) ∪ T (m,n) \ L going from L to a seed contained in

T (m,n) | |V (L)| > k
)
P (|V (L)| > k)

≤
(
1− (1− α)6k

)
P (|V (L)| ≤ k) + P (|V (L)| > k)

= 1− (1− α)6kP (|V (L)| ≤ k), (A.16)

where the inequality comes from (A.13). For this upper bound to be close to 1,
P (|V (L)| ≤ k) has to be small. Hence, it follows from (A.13)–(A.16) that for any
ε0 > 0 and any k ∈ N, we can choose m and n with 2m < n in such a way that

P (|V (L)| ≤ k) ≤ ε0 (A.17)

for all sets L satisfying (A.15).
Let K be a subset of ∆v(L ∩ B(n)). We will now provide a lower bound to

P (L
λ′+δ⇒ K |H) which depends on the cardinality of K but is independent of H.

Suppose K has at least 6r elements. Each point u ∈ K has a neighbor v ∈ L∩B(n),
that we associate to u. But since each point of Z3 has 6 nearest neighbors, v could
be a neighbor of up to 6 points of K, to which it could have been associated. Then,
there exist distinct x1, . . . , xr ∈ L ∩ B(n) and distinct y1, . . . , yr ∈ K such that
xi ∼ yi for i = 1, . . . , r.

Since xi ∈ L∩B(n) and H is σ(o, L, λ′, δ)-measurable, by Lemma A.2, for some
ι > 0 we have

P (Xλ′+δ(xi, yi) = 0 |Xλ′+δ(xj , yj) = 0, j = 1, . . . i− 1;H) < 1− ι (A.18)

for i = 1, . . . , r. It now follows from (A.18) and an inductive argument that

P (Xλ′+δ(xi, yi) = 0, i = 1, . . . , r |H) < (1− ι)r.

Hence for all K ⊂ ∆v(L ∩B(n)) such that |K| ≥ 6r we have:

P (L
λ′+δ⇒ K |H) ≥ 1− (1− ι)r. (A.19)
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Now write:

P (G,V (L) = K |H) = P (L
λ′+δ⇒ K,V (L) = K |H)

= P (L
λ′+δ⇒ K |V (L) = K,H)P (V (L) = K |H).

But the event {V (L) = K} is measurable with respect to the σ-algebra generated

by the random variables (Tx, eλ′(x, y) : x /∈ L) while both {L λ′+δ⇒ K} and H
are measurable with respect to the σ-algebra generated by the random variables
(Tx, eλ′(x, y), eλ′+δ(x, y) : x ∈ L). Therefore {V (L) = K} is independent of the

pair of events H, {L λ′+δ⇒ K}, so that

P (G,V (L) = K |H) = P (L
λ′+δ⇒ K |H)P (V (L) = K)

Then summing up over all sets K such that |K| ≥ 6r, it follows from (A.12) and
(A.19) that

P (G|H) ≥ (1− (1− ι)r)P (|V (L)| ≥ 6r).

To complete the proof of Lemma A.5 first pick r such that (1− ι)r < ε/2 and then
use (A.17) to pick m and n such that P (|V (L)| ≥ 6r) ≥ 1− ε/2. �

Notation A.6. For a given x ∈ Z3 and i = 1, 2, 3, Hi
x will denote the hyperplane

perpendicular to ei passing through x. Before stating the next lemma where x ∈
B(2N −m), we define T x(m,n) to be the thickened box built from the quadrant
opposite to the one x belongs to in the face H1

x ∩B(2N −m), that is

T+,+
x (m,n) if x2 ≤ 0 and x3 ≤ 0,

T+,−
x (m,n) if x2 ≤ 0 and x3 > 0,

T−,+x (m,n) if x2 > 0 and x3 ≤ 0,

T−,−x (m,n) if x2 > 0 and x3 > 0.

Thanks to Lemma A.5, in the following lemma we construct open paths starting
in a seed inside B(2N), and reaching either a seed inside B6Ne1(2N)∩B8Ne1(2N) or
inside B6Ne2(2N) ∩ B8Ne2(2N). For i ∈ {1, 2}, the successive seeds in these open
paths will have centers belonging to the hyperplanes Hi

x+Nei
, Hi

x+2Nei
, Hi

x+3Nei
,

Hi
x+4Nei

, . . .; these successive seeds will be respectively contained in BNei(2N),
B2Nei(2N), B3Nei(2N), B4Nei(2N), . . ., and we will stop as soon as we will get a
seed in B8Nei(2N). This construction will use a steering procedure in which, at
each stage, the choice of a seed in T .(m,n) compensates from an earlier deviation.

Lemma A.7. Given λ′ > λc, for any ε, δ > 0 there exist n = n(λ′, ε, δ),m =
m(λ′, ε, δ) and N satisfying (A.1), such that for any x ∈ B(2N −m),

P (Cix) ≥ 1− 8ε, for i ∈ {1, 2}
where

Cix =
{

there exists a seed By(m) contained in B8Nei(2N), with yi ≤ 8N

and a path contained in B(3N) ∪B6Nei(3N)

from Bx(m) to By(m) whose edges are all (λ′ + δ)-open and

those which are to the right of (resp. above) the hyperplane

Hi
y−Nei when i = 1 (resp. i = 2) are λ′-open

}
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Figure A.3. Event C1
x

Proof of Lemma A.7. We consider C1
x. Since the model is invariant under 90 degree

rotations, the proof will also be valid for C2
x. Let V1 be the set of vertices of all

paths starting at Bx(m) and contained in Bx(n) ∪ T x(m,n) whose first edge is
(λ′ + δ)-open and all the other edges are λ′-open. Let

A1
x = {V1 contains a seed in T x(m,n)}.

Note that since x ∈ B(2N − m) a path contained in Bx(n) ∪ T x(m,n) is also
contained in B(3N). Note also that the center of a seed in T x(m,n) belongs to
H1
x+Ne1

, and that by our definition of T x(m,n) (in Notation A.6) this seed is
contained in BNe1(2N). Thanks to Lemma A.5 with L = Bx(m) and H the whole
probability space (that is without conditioning), there exist n,m such that

P (A1
x) > 1− ε. (A.20)

If A1
x occurs, of all the seeds in T x(m,n) ∩ V1 we choose one according to some

arbitrary deterministic order. We now define a random variable Z1 as follows: on
A1
x, Z1 is the center of the chosen seed and on (A1

x)c, Z1 = ∆ where ∆ is an extra
point we add to Z3. Note that on A1

x, Z1 takes values in the hyperplane H1
x+Ne1

.
The random variable Z1 is a function of V1 which we denote by F1. We now wish
to give a lower bound to the conditional probability given {Z1 = z1} with z1 6= ∆
that there is a path contained in Bz1(n)∪T z1(m,n) from V1 to a seed in T z1(m,n)
and having the following properties:

(i) all its bonds are (λ′ + δ)-open;
(ii) all its bonds which are to the right of H1

x+(N+m)e1
are λ′-open.

Therefore to obtain the lower bound we let L1 be a value of V1 containing a seed
in T x(m,n) and consider the event:

A1(x, L1) =
{

there exist v1 ∈ L1 ∩BF1(L1)(n) and a path

from v1 to a seed in TF1(L1)(m,n), contained in

BF1(L1)(n) ∪ TF1(L1)(m,n) whose edges are all (λ′ + δ)-open

and those to the right of H1
x+(N+m)e1

are λ′-open
}
.

The event {V1 = L1} is σ(L1, λ
′)-measurable (recall Notation A.4), hence it follows

from Lemma A.5 that

P (A1(x, L1)|V1 = L1) ≥ 1− ε. (A.21)

Let V2 be the set of vertices of all the paths with the following properties:
(i) they start from Bx(m);
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(ii) they are contained in B(3N) ∪ BNe1(3N) and lie entirely to the left of
H1
x+(2N+m)e1

;

(iii) all their edges are (λ′ + δ)-open and those to the right of H1
x+(N+m)e1

are

λ′-open.
We also define the event

A2
x = {V2 contains a seed centered in H1

x+2Ne1 ∩B2Ne1(2N −m)}.

Noting that A2
x contains A1(x, L1) ∩ {V1 = L1} for any L1 containing a seed in

T x(m,n), summing over all such L1’s we get by (A.20) and (A.21)

P (A2
x) ≥

∑
L1

P (A1(x, L1)|V1 = L1)P (V1 = L1)

≥
∑
L1

(1− ε)P (V1 = L1) = (1− ε)P (A1
x)

≥ (1− ε)2 ≥ 1− 2ε. (A.22)

Now we define a random variable Z2 as follows: on the event A2
x among the seeds

contained in V2 and centered in H1
x+2Ne1

∩B2Ne1(2N−m) we choose one according

to some arbitrary deterministic order and we let Z2 be its center. On (A2
x)c we let

Z2 = ∆. Thus, Z2 is a function F2 of V2. As before we let L2 be a possible value of
V2 containing a seed centered in H1

x+2Ne1
∩B2Ne1(2N −m) and consider the event:

A2(x, L2) =
{

there exist v2 ∈ L2 ∩BF2(L2)(n) and a path from v2 to a

seed in TF2(L2)(m,n), contained in BF2(L2)(n) ∪ TF2(L2)(m,n)

whose edges are all (λ′ + δ)-open and those to the right of

H1
x+(2N+m)e1

are λ′-open
}
.

The event {V2 = L2} is σ(F2(L2), L2, λ
′, δ)-measurable, hence it follows from

Lemma A.5 that

P (A2(x, L2)|V2 = L2) ≥ 1− ε.
We now let V3 be the set of vertices belonging to all the paths with the following
properties:

(i) they start from Bx(m);
(ii) they are contained in B(3N) ∪ BNe1(3N) and lie entirely to the left of

H1
x+(3N+m)e1

;

(iii) all their edges are (λ′ + δ)-open and those to the right of H1
x+(2N+m)e1

are

λ′-open.
We also define the event:

A3
x = {V3 contains a seed centered in H1

x+3Ne1 ∩B3Ne1(2N −m)}.

Since A3
x contains A2(x, L2) ∩ {V2 = L2} we can argue as before and get:

P (A3
x) ≥ 1− 3ε.

The argument is then repeated until we reach a seed in B8Ne1(2N). The total
number of steps needed is at most 8. Since at each step the probability is reduced
by ε, the lemma is proved. �

Then define

Cx = C1
x ∩ C2

x. (A.23)
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From Lemma A.7 we get:

Corollary A.8. Given λ′ > λc, for any ε, δ > 0 there exist n,m,N satisfying
(A.1) and such that for any x ∈ B(2N −m) we have

P (Cx) ≥ 1− 16ε.

Next lemma fixes the values of all the parameters introduced up to now.

Lemma A.9. Assume λ > λc. Then, there exist constants m,N,K and ι > 0 such
that for all k,

P (there exists a λ-open path contained in

[−3N, (3 + 8k)N ]× [−3N, (3 + 8k)N ]× [−3N, 3N ]

from B(m) to a seed in B8Nke1+8Nke2(2N)

whose number of edges is at most 2Kk) ≥ ι.

Proof of Lemma A.9. We first fix ε > 0 small enough for the two dimensional ori-
ented site percolation of parameter 1−16ε to be supercritical. Then we take λ′ > λc
and δ > 0 such that λ′+δ < λ. Finally for those values of ε, δ and λ′ we fix n, m and
N = n+m+1 satisfying (A.1) and such that the conclusion of Corollary A.8 is valid.

We create a two dimensional oriented site percolation on (Z+)2 associated to the
percolation model we already have. We will refer to this model as the “renormalized
model”, while the percolation model we already had on Z3 will be referred to as the
“original model”. On the renormalized model all the paths are oriented upwards
and towards the right; moreover, two subsequent sites of a path are at euclidean
distance 1. We now explain the way in which these models are associated. In the
renormalized model site (0, 0) is always considered open, site (0, 1) is open (closed)
if C1

0 occurs (does not occur) in the original model. Similarly, (1, 0) is open (closed)
if C2

0 occurs (does not occur) in the original model. Note that although the states
of these last two sites (0, 1) and (1, 0) are dependent, by Corollary A.8 they are
both open with probability at least 1−16ε. We then proceed recursively as follows.

At the n-th step we will look at the points in {(x, y) ∈ Z2
+ : x+ y = n− 1} which

have been reached in the renormalized model from (0, 0) following open paths and
order them according to their second coordinates. We start from the point hav-
ing the lowest second coordinate. Assume it is (x1, n − 1 − x1). This point was
reached from either (x1 − 1, n− 1− x1) or (x1, n− 2− x1). In the first case, in the
original model a seed is reached in the left portion of B8Nx1e1+8N(n−1−x1)e2(2N)
(remember the description given before the statement of Lemma A.7). Let z1 be
the center of this seed. If C1

z1 occurs (does not occur) in the original model we say

that site (x1 + 1, n−1−x1) in the renormalized model is open (closed). And if C2
z1

occurs (does not occur) in the original model we say that site (x1, n− x1) is open
(closed). Note that since z1 is in the left portion of B8Nx1e1+8N(n−1−x1)e2(2N),
when we attempt to move upwards, the first seed we are seeking is centered to
the right of z1 due to our steering procedure, thus avoiding regions where we
have already used (λ′ + δ)-open edges. In the second case, the seed reached in
the original model (we again denote its center by z1) is in the lowest portion of
B8Nx1e1+8N(n−1−x1)e2(2N) and when we want to establish if C1

z1 occurs we will
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be looking for paths reaching a seed whose center is above z1. We then move to
the second point in {(x, y) ∈ Z2

+ : x + y = n − 1} which has been reached in the
renormalized model from (0, 0) following open paths. Let (x2, n − 1 − x2) be that
point and let z2 be the center of the seed located inside B8Nx2e1+8N(n−1−x2)e2(2N)
which was reached in the original model following open paths starting at B(m).
Two different cases arise: either x2 = x1 − 1 or x2 < x1 − 1. In the first case the
point (x2 + 1, n− 1− x2) = (x1, n− x1) has already been declared open or closed
and remains in that state. Then, we declare (x2, n−x2) open (closed) if C2

z2 occurs
(does not occur) in the original model. In the second case (when x2 < x1 − 1)
we declare (x2 + 1, n− 1− x2) open (closed) if C1

z2 occurs (does not occur) in the

original model and we declare (x2, n − x2) open (closed) if C2
z2 occurs (does not

occur) in the original model. Then we go on.

We now note that for all n each site examined in the set {(x, y) : x + y = n}
has probability bigger than 1− 8ε of being open and that such sites are dependent
at most by pairs. This implies, as explained in the following lines, that the open
cluster of the origin is stochastically above the open cluster of an independent ori-
ented site percolation model of parameter 1− 16ε.

For this, we again proceed by induction on n. We denote by a1, a2, . . . , ak the
points in the open cluster of the origin that belong to {(x, y) ∈ Z2

+ : x + y = n}.
We assume that they are ordered according to their second coordinates. Point a1

has two neighbors b1, b2 on {(x, y) ∈ Z2
+ : x+ y = n+ 1}. They are both open with

probability at least 1−16ε, which is stochastically larger than if they were both inde-
pendently open with probability 1−16ε. In other words, if a random vector (Y1, Y2)
with coordinates taking values in {0, 1} is such that P (Y1 = Y2 = 1) ≥ 1−16ε, then
the vector (Y1, Y2) is stochastically larger than the vector (X1, X2) where X1 and X2

are independent Bernoulli r.v.’s of parameter 1−16ε. Going on, if a2 = a1 +(−1, 1),
then we just have to consider the point b3 = a2 + (0, 1), because a2 + (1, 0) has
already been examined. This point b3 will be open with probability at least 1− 8ε
independently of what happened with b1 and b2. Otherwise if a2 is more distant
from a1 we have to examine b3 = a2 + (1, 0) and b4 = a2 + (1, 0): they will both be
open with probability at least 1− 16ε independently of what happened with b1 and
b2, and so on. In the end, to each examined point on {(x, y) ∈ Z2

+ : x+ y = n+ 1}
is attached a r.v. with value 1 if it is open and 0 if it is closed. The r.v.’s thus
obtained are stochastically larger than a sequence of independent Bernoulli r.v.’s
of parameter 1− 16ε.

Thus, for our choice of ε the renormalized model is supercritical and there ex-
ists a constant ι > 0 such that P ((0, 0)→ (k, k)) ≥ ι for all k ∈ N. Note also that
the existence of an open oriented path from (0, 0) to (k, k) (which has length 2k) in
the renormalized model implies the existence of a (λ′+ δ)-open path in the original
model from B(m) to some seed in B8Nke1+8Nke2(2N) whose number of edges is
bounded above by 2Kk where K is some constant that depends on N but not on
k. Indeed suppose that the point following (0, 0) in the path of the renormalized
model is (1, 0). This means that there exists an open path in the original model
from a seed in B(2N) to a seed in B8Ne1(2N). This last path is not oriented, but
being contained in B(3N) ∪ B6Ne1(3N), it uses only edges in this set. The total
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number of edges in the latter is a function of N which does not depend on k, that
we denote by K(N). Hence the derived open path in the original model from a
seed in B(2N) to a seed in B8Nke1+8Nke2(2N) has a number of edges bounded by
2K(N)k. �

For our next result we define the boxes:

Bi,j = B(3+8i)Ne1+(3+8j)Ne2(2N)

where i and j are non-negative integers.

Corollary A.10. Assume λ > λc. Let N be as in the conclusion of Lemma
A.9. Then, there exist ι′ > 0 and K ′ ∈ N such that: For any k ∈ N and any
0 ≤ i1, i2, j1, j2 ≤ k we have

P (there exists a λ-open path contained in

[0, (6 + 8k)N ]× [0, (6 + 8k)N ]× [−3N, 3N ] from Bi1,i2 to

Bj1,j2 whose number of edges is at most 2K ′(|i1 − j1|+ |i2 − j2|)) ≥ ι′.

Proof of Corollary A.10. We wish to join Bi1,i2 to Bj1,j2 . Lemma A.9 enables to go
from a box to another one along a diagonal direction issued from that box. Hence
applying Lemma A.9 we get

P (there exists a λ-open path contained in

[0, (6 + 8k)N ]× [0, (6 + 8k)N ]× [−3N, 3N ] from Bi1,i2 to

Bi1+r,i2+r whose number of edges is at most 2Kr) ≥ ι

for all r ∈ N such that i1 + r, i2 + r ≤ k. Since the percolation model is invariant
under 90 degree rotations, the same inequality holds if instead of adding (r, r) to
(i1, i2) we add (r,−r),(−r, r) or (−r,−r). That is, instead of going in one direction
of one diagonal issued from (i1, i2), we may take this diagonal in the other direction,
or one direction of the other diagonal issued from (i1, i2). This depends on the
relative positions of (i1, i2) and (j1, j2) within the square [0, k]× [0, k] to which they
both belong. More precisely, from (i1, i2) and from (j1, j2) is issued a diagonal, and
those two diagonals intersect within [0, k] × [0, k]. If this intersection point has
integer coordinates, it can be written (i1 + r1, i2 + r2) as well as (j1 + `1, j2 + `2),
with r1 = r2 or r1 = −r2 (depending on which diagonal issued from (i1, i2) was
used), and with `1 = `2 or `1 = −`2 similarly. If this intersection point does not
have integer coordinates, on each of the involved diagonals there is one point with
integer coordinates, with those two points at distance 1, of the form (i1 +r1, i2 +r2)
and (j1 + `1, j2 + `2), always with r1 = r2 or r1 = −r2, and `1 = `2 or `1 = −`2.
To summarize, there exist integers r1, r2, `1, `2 with the following properties

(1) r2 = r1 or r2 = −r1 and `2 = `1 or `2 = −`1;
(2) 0 ≤ i1 + r1, i2 + r2, j1 + `1, j2 + `2 ≤ k;
(3) either |i1 + r1 − (j1 + `1)|+ |i2 + r2 − (j2 + `2)| = 0

or |i1 + r1 − (j1 + `1)|+ |i2 + r2 − (j2 + `2)| = 1;
(4) |r1|+ |`1| ≤ |i1 − j1|+ |i2 − j2|.

The corollary now follows from Lemma A.9, the FKG inequality (see Remark 3.2)
and the fact that the distance from a point in Bi1+r1,i2+r2 to a point in Bj1+`1,j2+`2

is bounded above by 20N . �
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(i1 − j1) + (i2 − j2) is even

(i1 + r1, i2 + r2)
= (j1 + `1, j2 + `2)

(i1 − j1) + (i2 − j2) is odd

(i1, i2)

(j1, j2)

(i1 + r1, i2 + r2)

(j1 + `1, j2 + `2)

(i1, i2)

(j1, j2)

Figure A.4. Two possible cases

Proposition A.11. Suppose λ > λc. Then there exist constants C,N and δ1 > 0
such that

a) for all M ≥ 6N , x, y ∈ [0,M ]× [0,M ]× [−3N, 3N ],

P
(
there exists an open path from x to y contained in

[0,M ]× [0,M ]× [−3N, 3N ] with at most C‖x− y‖1 edges
)
≥ δ1

b) The original model is supercritical in a slab on thickness k = 6N .

Proof of Proposition A.11. It follows from Lemma A.9 that the probability of
having an open path of length n starting in B(m) and contained in the slab
Z × Z × [−3N, 3N ] does not converge to 0 as n goes to infinity. This proves part
b). To prove part a) consider the boxes B(3N+8Ni)e1+(3N+8Nj)e2 with 0 ≤ i, j ≤
(MN − 6) 1

8 . Then, note that for any point in [0,M ] × [0,M ] × [−3N, 3N ] there is
such a box at distance at most 12N . The result now follows from this, the FKG
inequality (see Remark 3.2) and Corollary A.10. �

We have now all the ingredients for the proofs of Theorem 3.5, Lemma 3.7, and
(4.2) of Lemma 4.3.

Proof of Theorem 3.5. Let x and y be two points in a slab of thickness 6N . By
Proposition A.11, the probability to have an open path from x to y in the slab is
larger than δ1. Therefore the probability for the outgoing cluster from x in the slab
to be infinite, as well as the probability for the incoming cluster to y in the slab to
be infinite, is at least δ1.

Note that Proposition A.11 gives more precise information, since it restricts the
involved open paths to a part of the slab, and gives an upper bound on the lengths
of the paths. �

Proof of Lemma 3.7. For two points x and y, the idea to build an open path
from x to y is to combine paths in different slabs using in each one Proposition
A.11,a).

(i) Let δ1,M and C be given by Proposition A.11, and let k ≥ M . For n > 0,
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let x = (x1, x2, x3) ∈ Bn+k \ Bn, y = (y1, y2, y3) ∈ (Bn+k \ Bn) ∪∆v(Bn+k \ Bn).
Assume for instance that x1 < −n, n < y1, −n < x2 < n and −n < y2 < n. Let
u, v ∈ Bn+k \ Bn with −n < u1, n < u2 and n < v1, v2. By Proposition A.11,a)
there exist with a probability larger than δ1 an open path from x to u, as well as
from u to v and from v to y. By FKG inequality (see Remark 3.2) there exists
therefore with a probability larger than δ3

1 an open path from x to y. Since this
particular case gives the maximal distance between x and y, δ = δ3

1 enables us to
conclude.

(ii) Let n < m, x ∈ A(n,m, 0), y ∈ A(n,m, 0) ∪ ∆vA(n,m, 0). We proceed simi-
larly to (i). Assume for instance that x1 < n, x2 < 0 and m < y1, y2 < 0. Let
u, v ∈ A(n,m, 0) be such that u1 < n, 0 < u2 and m < v1, 0 < v2. By Proposition
A.11,a) there exist with a probability larger than δ1 an open path from x to u, as
well as from u to v and from v to y. We conclude with δ = δ3

1 and C1 = C.

Note that we have to add (−x2)+ + (−y2)+ in part (ii) of the lemma because
if x ∈ {z : −k + n ≤ z1 < n,−∞ < z2 ≤ 0} and y ∈ {z : m < z1 ≤ m + k,−∞ <
z2 ≤ 0}, to move from x to y staying in A(n,m, 0) we need to reach first the set
{z : −k+ n ≤ z1 ≤ m+ k, 0 < z2 ≤ k} (i.e. to increase the second coordinate until
it is positive). �

Proof of (4.2) of Lemma 4.3. Relying on Proposition A.11,b), we can follow the
proof of Grimmett (1999, Theorems (8.18), (8.21)) to derive (4.2). �
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R. Cerf and M. Théret. Weak shape theorem in first passage percolation with
infinite passage times. preprint (2014). arxiv.org/abs/1404.4539.

N. Chabot. Forme asymptotique pour un modèle épidémique en dimension
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