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Abstract

We prove a shape theorem for the set of infected individuals in a
spatial epidemic model with 3 states (susceptible-infected-recovered)
on Zd, d ≥ 3, when there is no extinction of the infection. For this,
we derive percolation estimates (using dynamic renormalization tech-
niques) for a locally dependent random graph in correspondence with
the epidemic model.

Keywords: Shape theorem, epidemic model, first passage locally dependent
percolation, dynamic renormalization.
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1 Introduction

Mollison has introduced in [16, 17] a stochastic spatial epidemic model on
Zd called “general epidemic model”, describing the evolution of individuals
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submitted to infection by contact contamination of infected neighbors. More
precisely, on each site of Zd there is an individual who can be healthy, in-
fected, or immune. At time 0, there is an infected individual at the origin,
and all other sites are occupied by healthy individuals. Each infected in-
dividual emits germs according to a Poisson process, it stays infected for a
random time, then it recovers and becomes immune to further infection. A
germ emitted from x ∈ Zd goes to one of the neighbors y ∈ Zd of x chosen at
random. If the individual at y is healthy then it becomes infected and begins
to emit germs; if this individual is infected or immune, nothing happens. The
germ emission processes and the durations of infections of different individ-
uals are mutually independent.

Since the papers [16, 17], this epidemic model has given rise to many stud-
ies, and many other models that are variations of this “SIR” (Susceptible-
Infected-Recovered) structure have been introduced. A first direction to
study such models is whether the different states asymptotically survive or
not, according to the values of the involved parameters (e.g. the infection
and recovery rates). A second direction is the obtention of a shape theorem
for the asymptotic behavior of infected individuals, when there is no extinc-
tion of the infection (throughout this paper, “extinction” is understood as
“extinction of the infection”).

Kelly in [11] proved that for d = 1, extinction is almost sure for the gen-
eral epidemic model. Kuulasmaa in [13] has studied the threshold behavior
of this model in dimension d ≥ 2. He proved that the process has a criti-
cal infection rate below which extinction is almost certain, and above which
there is survival, thus closing this question. His work (as well as the following
ones on this model) is based on the analysis of a directed oriented percolation
model, that he calls a “locally dependent random graph”, in correspondence
with the epidemic model. See also the related paper [14].

In the general epidemic model on Z2, when there is no extinction, Cox &
Durrett have derived in [7] a shape theorem for the set of infected or immune
individuals when the contamination rule is nearest neighbor, and the dura-
tions of infection are positive with a positive probability. A second moment
is required for those durations only to localize the infected but not immune
individuals within the shape obtained. This result was extended to a finite
range contamination rule by Zhang in [19]. The proofs in [7, 19] are based
on the correspondence with the locally dependent random graph; they refer
to [6], which deals with first passage percolation (see also [12]), including the
possibility of infinite passage times. They rely on circuits to delimit and con-
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trol open paths. This technique cannot be used for dimension greater than 2.

There was no investigation of the shape theorem for the general epidemic
model in higher dimensions, until Chabot proved it (in [5], unpublished) for a
nearest neighbor contamination rule in dimension d ≥ 3, with the restriction
to deterministic durations of infection: in that case the oriented percolation
model is comparable to a non-oriented Bernoulli percolation model (as no-
ticed in [13], the case with constant durations of infection in the epidemic
model is the only one where the edges are independent in the percolation
model). Analyzing the epidemic model for d ≥ 3 required heavier techniques
than before: Chabot used results of the papers [1] by Antal & Pisztora, and
[9] by Grimmett & Marstrand on dynamic renormalization for non-oriented
Bernoulli percolation to derive, for the percolation model, exponential esti-
mates in the subcritical case on the one hand, and estimates using percolation
on slabs on the other hand. To apply those results to the epidemic model,
Chabot had to find an alternative, in the percolation model, to the neighbor-
hoods (for points in Z2) delimited by circuits of [7]. He introduced new types
of random neighborhoods characterized by the properties of the percolation
model in dimension d ≥ 3.

In the present work, we complete the derivation of the shape theorem for
the set of infected or immune individuals in the general epidemic model with
a nearest neighbor contamination rule in dimension d ≥ 3, by proving it for
random durations of infection, which are positive with a positive probabil-
ity. There, the comparison with non oriented percolation done in [5] is no
longer valid, and we have to deal with an oriented dependent percolation
model, with possibly infinite passage times: Our approach consists in adapt-
ing the techniques of [9] without requiring [1], which yields a derivation of
sub-exponential estimates to play the role of the exponential estimates of [5].
With this in hand, it is then possible to catch hold of the skeleton of [5]: We
take advantage of the random neighborhoods introduced there (they turn out
to be still valid in our setting) to derive the shape theorem. Similarly to [7],
we require a moment of order d of the durations of infection only to localize
the infected but not immune individuals within the shape obtained.

Let us mention two recent works [4, 18] on shape theorems for (or related to)
first passage (non dependent) percolation on Zd with various assumptions on
the passage times, for which the approach in [12] is extended.

In Section 2 we define the general epidemic model, the locally dependent
random graph, we explicit their link, and we state the shape theorem (The-
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orem 2.2). In Section 3 we derive the necessary percolation estimates on the
locally dependent random graph for Theorem 2.2. We prove the latter in
Section 4, thanks to an analysis of the travel times for the epidemic. The
Appendix contains the proofs of some of the results of Section 3.

2 The set-up: definitions and results

Let d ≥ 3. The epidemic model on Zd is represented by a Markov process
(ηt)t≥0 of state space Ω = {0, i, 1}Z

d

. The value ηt(x) ∈ {0, i, 1} is the state of
the individual located at site x at time t: state 1 if the individual is healthy
(but not immune), state i if it is infected, or state 0 if it is immune. We will
shorten this in “site x is healthy, infected or immune”. We assume that at
time 0, the origin o = (0, . . . , 0) is the only infected site while all other sites
are healthy. That is, the initial configuration η0 is given by

η0(o) = i, ∀ z 6= o, η0(z) = 1. (1)

We now describe how the epidemic propagates, then we introduce a related
locally dependent oriented bond percolation model on Zd, and finally we link
the two models. We assume that all the processes and random variables we
deal with are defined on a common probability space, whose probability is
denoted by P , and the corresponding expectation by E.

For x = (x1, . . . , xd) ∈ Zd, y = (y1, . . . , yd) ∈ Zd, ‖x−y‖1 =
∑d

i=1 |xi−yi|
denotes the l1 norm of x− y, and we write x ∼ y if x, y are neighbors, that
is ‖x − y‖1 = 1. Let (Tx, e(x, y) : x, y ∈ Zd, x ∼ y) be independent random
variables such that
1) the Tx’s are nonnegative with a common distribution satisfying P (Tx =
0) < 1;
2) the e(x, y)’s are exponentially distributed with a parameter λ > 0.
We stress that the only assumption on the Tx’s is that their distribution is
not a Dirac mass on 0. They could be infinite, or without any finite moment.
We define

X(x, y) =
{
1 if e(x, y) < Tx;
0 otherwise.

(2)

In the epidemic model, for a given infected individual x, Tx denotes the
amount of time x stays infected; during this time of infection, x emits germs
according to a Poisson process of parameter 2dλ; when Tx is over, x recovers
and its state becomes 0 forever. An emitted germ from x at some time t
reaches y (say), one of the 2d neighbors of x, uniformly. If this neighbor y
is in state 1 at time t−, it immediately changes to state i at time t, from t
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begins the duration of infection Ty, and y begins to emit germs according to
the same rule as x did; if this neighbor y is in state 0 or i at time t−, nothing
happens.

In the percolation model, for x, y ∈ Zd, x ∼ y, the oriented bond (x, y)
is said to be open with passage time e(x, y) (abbreviated λ-open, or open
when the parameter is fixed) if X(x, y) = 1 and closed (with infinite passage
time) if X(x, y) = 0. As in [13], we call this oriented percolation model
a locally dependent random graph. Indeed the fact that any of the bonds
exiting from site x is open depends on the r.v. Tx.

For x, y ∈ Zd (not necessarily neighbors), “x → y” means that there
exists (at least) an open path from x to y, that is a path of open oriented
bonds, Γx,y = (z0 = x, z1, . . . , zn = y).

If x → y, x 6= y, we define the passage time on Γx,y to be (see (2))

τ(Γx,y) =
n−1∑

j=0

e(zj, zj+1) (3)

and, if x = y, we put τ(Γx,x) = 0.
We then define the travel time from x to y to be

τ(x, y) =





inf
{Γx,y}

τ(Γx,y) if x 6= y, x → y,

0 if x = y,
+∞ otherwise.

(4)

where the infimum is over all possible open paths from x to y.
Note that if two neighboring sites x and y are such that X(x, y) = 0, then

τ(x, y) = +∞.

Coming back to the epidemic model, note that when the initial configu-
ration is η0 defined in (1), for a given site z, τ(o, z) is the duration for the
infection to propagate from o to z, changing successively the values on all
the sites of the involved path Γo,z from 1 to i.

To link the two models, we define, for t ≥ 0,

Ξt = {x ∈ Zd : x is immune at time t} = {x ∈ Zd : ηt(x) = 0}; (5)

Υt = {x ∈ Zd : x is infected at time t} = {x ∈ Zd : ηt(x) = i}. (6)

We have, for z ∈ Zd, t ≥ 0,

z ∈ Υt ∪ Ξt if and only if τ(o, z) ≤ t. (7)
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Indeed, τ(o, z) ≤ t means that the infection has reached site z before time
t, so that site z is either still infected or already immune at time t, that is
z ∈ Υt ∪ Ξt. Conversely, if z is infected or immune at time t, it means that
it has already been infected.

In the epidemic model, we denote by Cout
o the set of sites that will ever

become infected, that is

Cout
o = {x ∈ Zd : ∃ t ≥ 0, ηt(x) = i|η0(o) = i, ∀ z 6= o, η0(z) = 1}. (8)

Then, by (7), Cout
o is the set of sites that can be reached from the origin

following an open path in the percolation model (see also [7, (1.2)], [16, p.
322], [13, Lemma 3.1]).

More generally, in the percolation model, for each x ∈ Zd we define the
ingoing and outgoing clusters to and from x to be

C in
x = {y ∈ Zd : y → x}, Cout

x = {y ∈ Zd : x → y}, (9)

and the corresponding critical values to be

λin
c = inf{λ : P (|C in

x | = +∞) > 0}, λout
c = inf{λ : P (|Cout

x | = +∞) > 0},
(10)

where |A| denotes the cardinality of a set A.
In Section 3, we will first prove the following proposition about these

critical values.

Proposition 2.1 We have λin
c = λout

c . This common value will be denoted
by λc = λc(Z

d).

Assuming that λ > λc, the most important part of our work in Section 3 will
then be, thanks to dynamic renormalization techniques, to analyze for the
percolation model percolation on slabs in Theorem 3.5, and, through a suc-
cession of lemmas, to establish in Proposition 3.11 subexponential estimates
for the length of the shortest path between two points x and y given that
x → y. This will imply (see Remark 4.1) uniqueness of the infinite cluster
of sites connected to +∞. Proposition 3.11 contains the crucial properties
we will need on the percolation model to derive our main result, the shape
theorem, that we now state.

Theorem 2.2 Assume λ > λc, and the initial configuration of the epidemic
model (ηt)t≥0 to be given by (1). Then there exists a convex subset D ⊂ Rd

such that, for all ε > 0 we have, for t large enough
(
(1− ε)tD ∩ Cout

o

)
⊂
(
Ξt ∪Υt

)
⊂
(
(1 + ε)tD ∩ Cout

o

)
a.s. (11)
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and if E(T d
o ) < ∞ we also have

Υt ⊂
(
(1 + ε)tD \ (1− ε)tD

)
a.s. for t large enough. (12)

In other words, the epidemic’s progression follows linearly the boundary of a
convex set. Note that a moment assumption on T0 is only required to localize
the infected individuals, and not for the first part of the theorem, for which
there is no assumption on the distribution of T0. It is also remarkable that
the fact that T0 could be either very small or very large with respect to the
exponential variables e(x, y) does not play any role.

We prove Theorem 2.2 in Section 4. For this, we follow some of the fun-
damental steps of [7], but since in dimensions three or higher, circuits are
not useful as in dimension 2, we had to find other methods of proofs.

By (7), we have to analyze travel times to prove Theorem 2.2. On the
percolation model, we first construct, in Section 4.1, for each site z ∈ Zd

a random neighborhood V(z) in such a way that two neighborhoods are al-
ways connected by open paths (these neighborhoods have to be different from
those delimited by circuits of [7]). For z, y ∈ Zd, we show that the travel
time τ(z, y) is ‘comparable’ (in a sense precised in Lemma 4.8) to the travel
time τ̂(z, y) to go from V(z) to V(y). Then we approximate the travel time
between sites by a subadditive process, and we derive (in Theorem 4.12 and
Section 4.3) a radial limit µ(x) (for all x), which is asymptotically the linear
growth speed of the epidemic in direction x. In Theorem 4.17 we control
how τ̂(o, ·) grows. Finally we prove in Theorem 4.18 an asymptotic shape
theorem for τ̂(o, ·), from which we deduce Theorem 2.2.

3 Percolation estimates

In this section we collect some results concerning the locally dependent ran-
dom graph, given by the random variables (X(x, y), x, y ∈ Zd), and intro-
duced in (2). Our goal is to derive subexponential estimates in Proposition
3.11.

Remark 3.1 Although the r.v.’s (X(x, y), x, y ∈ Zd) are not independent, if
we denote by (e1, . . . , ed) the canonical basis of Zd, then the random vectors
{X(x, x + e1), . . . , X(x, x + ed), X(x, x − e1), . . . , X(x, x − ed) : x ∈ Zd} (in
which each component depends on Tx) are i.i.d., since two different vectors
for z, y ∈ Zd depend respectively on Tz and Ty which are independent. This
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small dependence forces us to explain why and how some results known for
independent percolation remain valid in this context.

Remark 3.2 The function X(x, y) is increasing in the independent random
variables Tx and −e(x, y). It then follows as in [7, Lemma (2.1)] (with the
help of [10, Lemma 4.1 and its Corollary]) that the r.v.’s (X(x, y) : x, y ∈
Zd, y ∼ x) satisfy the following property:

(FKG) If U and V are bounded increasing functions of the random vari-
ables (X(xj, yj) : xj, yj ∈ Zd, yj ∼ xj, 1 ≤ j ≤ ℓ) for some ℓ > 0, and are
such that U and V might both depend on common X(xj, yj)’s or respectively
on X(xj, yj1) and X(xj, yj2), but each one depends on X(xj, yj)’s for distinct
xj’s (which are therefore mutually independent). Then E(UV ) ≥ E(U)E(V ).

We will use this property in the proofs of Theorem 3.5, Lemma 3.10 and
Lemma 4.6 below for U, V indicator functions involving open paths without
loops, thus we will speak of increasing events rather than increasing functions.

For n ∈ N \ {0}, let B(n) = [−n, n]d, let ∂B(n) denote the inner vertex
boundary of B(n), that is

∂B(n) = {x ∈ Zd : x ∈ B(n), x ∼ y for some y /∈ B(n)}; (13)

and, for x ∈ Rd, Bx(n) = x + B(n). For A,R ⊂ Zd, “A → R” means that
there exists an open path Γx,y from some x ∈ A to some y ∈ R.

Theorem 3.3 (i) Suppose λ < λout
c , then there exists βout > 0 such that for

all n > 0, P (o → ∂B(n)) ≤ exp(−βoutn).
(ii) Suppose λ < λin

c , then there exists βin > 0 such that for all n > 0,
P (∂B(n) → o) ≤ exp(−βinn).

Theorem 3.3(i) is a special case of [3, Theorem (3.1)], whose proof can be
adapted to obtain Theorem 3.3(ii). It is worth noting that in the context of
our paper, by Remark 3.2, [3, Theorem (3.1)] can be proved using the BK
inequality instead of the Reimer inequality (see [8, Theorems (2.12), (2.19)]).
Theorem 3.3 yields Proposition 2.1:

Proof of Proposition 2.1. Suppose λ < λin
c . Then by translation invari-

ance and Theorem 3.3(ii) we have that for any x ∈ ∂B(n), P (o → x) ≤
exp(−βinn). Adding over all points of ∂B(n) we get P (o → ∂B(n)) ≤
K ′nd−1 exp(−βinn) for some constant K ′, which implies that limn→+∞ P (o →
∂B(n)) = 0. Therefore λ ≤ λout

c and λin
c ≤ λout

c . The other inequality is ob-
tained similarly. �
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From now on, we assume λ > λc(Z
d) and define the following events: For

x, y ∈ Zd, A ⊂ Zd,
(i) The event {x → y within A} consists of all points in our probability
space for which there exists an open path Γx,y = (x0 = x, x1, . . . , xn = y)
from x to y such that xj ∈ A for all j ∈ {0, . . . , n − 1}. Note that the end
point y may not belong to A.
(ii) The event {x → y outside A} consists of all points in our probability
space for which there exists an open path Γx,y = (x0 = x, x1, . . . , xn = y)
from x to y such that none of the xj’s (j ∈ {0, . . . , n}) belongs to A.

Definition 3.4 For x ∈ Zd, A ⊂ Zd let

C in
x (A) = {y ∈ A : y → x within A} and

Cout
x (A) = {y ∈ A : x → y within A}.

Note that by this definition C in
x (A) ⊂ A and Cout

x (A) ⊂ A.

The rest of this section relies heavily on the techniques of [9] or [8, Chapter
7]. We assume the reader familiar with them. We postpone to Appendix A
the proofs of Theorem 3.5 and Lemma 3.7 below, which require a thought-
ful adaptation of [8, Chapter 7] for our context of dependent percolation.
Nonetheless, it is possible to go directly to Section 4, where these techniques
are no longer used, assuming that Proposition 3.11 holds.

Next theorem is crucial, it states that there is percolation on slabs.

Theorem 3.5 Assume λ > λc. For any k ∈ N\{0}, let Sk = {0, 1, . . . , k}×
Zd−1 denote the slab of thickness k containing o. Then for k large enough we
have

inf
x∈Sk

P (|C in
x (Sk)| = +∞) > 0, and inf

x∈Sk

P (|Cout
x (Sk)| = +∞) > 0.

We introduce now some notation about the shortest path between two points
x and y such that x → y.

Notation 3.6 (a) For A ⊂ Zd we define the exterior vertex boundary of A
as:

∆vA = {x ∈ Zd : x /∈ A, x ∼ y for some y ∈ A}. (14)

(b) If x → y let D(x, y) be the smallest number of bonds required to build an
open path from x to y (hence in this path there is no loop, and the D(x, y)
bonds are distinct). If x 6→ y, we put D(x, y) = +∞.
(c) For A ⊂ Zd, x ∈ A, y ∈ ∆vA, “D(x, y) < m within A” means that there
is an open path Γx,y using less than m bonds from x to y whose sites are all
in A except y.
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The end of this section provides some upper bounds for the tail of the condi-
tional distribution ofD(x, y) given the event {x → y}. We derive Proposition
3.11, required in Section 4, thanks to Lemmas 3.7, 3.9, 3.10. These estimates
are not optimal and better results could be obtained by a thoughtful adapta-
tion of the methods of [1]. Instead of getting exponential decays in ‖x− y‖1
(or in n) we get exponential decays in ‖x − y‖1/d1 (or in n1/d). We have
adopted this approach because those weaker results suffice for our purposes
and are simpler to obtain, thus making our proof much easier to follow: it
is possible to read our work knowing only [9] and not [1]. Next lemma is
inspired by [9, Section 5(f) p. 454].

Lemma 3.7 Assume λ > λc. There exist δ > 0, k ∈ N \ {0} and C1 =
C1(k) > 0 such that
(i) ∀n > 0, x ∈ B(n+k)\B(n), y ∈ (B(n+k)\B(n))∪∆v(B(n+k)\B(n))
we have :

P (x → y within B(n+ k) \B(n)) > δ.

(ii) Let for (n,m) ∈ Z2 with n < m, and for ℓ ≥ 0,

A(n,m, ℓ) = {z : −k + n ≤ z1 < n,−∞ < z2 ≤ ℓ+ k}∪
{z : −k + n ≤ z1 ≤ m+ k, ℓ < z2 ≤ ℓ+ k}∪
{z : m < z1 ≤ m+ k,−∞ < z2 ≤ ℓ+ k}. (15)

∀n < m, ∀x ∈ A(n,m, 0), ∀y ∈ A(n,m, 0) ∪∆vA(n,m, 0), we have:

P (D(x, y) < C1(‖x− y‖1 + (−x2)
+ + (−y2)

+) within A(n,m, 0)) > δ.

We again introduce some notation, to decompose in Lemma 3.9 a path from
the center of a box to its boundary through hyperplanes.

Notation 3.8 Let k be given by Lemma 3.7 and let x and y be points in Zd.
For ℓ ∈ Z let Hℓ = {z ∈ Zd : z1 = ℓ} and define the events, for n ∈ N,

Jn = {x → Hx1−1−jk within Bx(nk), j = 0, . . . , ⌊n/2⌋}∩
{Hy1+1+jk → y within By(nk), j = 0, . . . , ⌊n/2⌋},

Gn = {x → ∂Bx(nk), ∂By(nk) → y},

where, for any a ∈ R, ⌊a⌋ denotes the greatest integer not greater than a.

Lemma 3.9 Assume λ > λc. Let k be given by Lemma 3.7 and let x, y be
points in Zd. Then, for n ∈ N \ {0} there exists β > 0 such that

P (Jn|Gn) ≥ 1− exp(−βn).
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Proof of Lemma 3.9. By translation invariance we may assume that x is the
origin. We start showing that for some constant β′ > 0 and all n

P (o → H−1−jk within B(nk), j = 0, . . . , ⌊n/2⌋|o → ∂B(nk))
≥ 1− exp(−β′n). (16)

For this we first observe that

{o → H−1−jk within B(nk) for some ⌊n/2⌋ ≤ j ≤ n}

⊂ {o → H−1−jk within B(nk), j = 0, . . . , ⌊n/2⌋}.

Hence (16) follows from

P (o → H−1−jk within B(nk) for some ⌊n/2⌋ ≤ j ≤ n|o → ∂B(nk))
≥ 1− exp(−β′n),

which is a consequence of Lemma 3.7(i). Since P (∂By(kn) → y) is bounded
below as n goes to infinity, (16) implies that

P (o → H−1−jk within B(nk), j = 0, . . . , ⌊n/2⌋|Gn)

converges to 1 exponentially fast. Similarly one proves that

P (Hy1+1+jk → y within By(nk), j = 0, . . . , ⌊n/2⌋|Gn)

converges to 1 exponentially fast, and the lemma follows. �

In Lemma 3.10 below we prove a chemical distance bound that will be used
later on to derive in Remark 4.1, through Proposition 3.11, the uniqueness
of the infinite cluster of sites connected to +∞. The main technique is to
construct an open path in a ring after independent attempts thanks on the
one hand to Lemma 3.9 whose Jn’s enable to get disjoint slabs, and on the
other hand to Lemma 3.7(ii) once we find the appropriate ring.

Lemma 3.10 Assume λ > λc. Let k be given by Lemma 3.7, and let Gn be
as in Lemma 3.9. Then, there exist constants C2, C3 and α2 > 0 such that,
for all x, y ∈ Zd, n ∈ N \ {0}, we have

P (D(x, y) > C2‖x− y‖1 + C3(nk)
d| Gn) ≤ exp(−α2n).

Proof of Lemma 3.10. Again, by translation invariance we may assume that
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Figure 1: the event W3

x is the origin and without loss of generality, we also assume that y1 > 0 and
y2 ≥ 0. By Lemma 3.9 it suffices to show that

P (D(o, y) > C2‖y‖1 + C3(nk)
d| Jn)

decays exponentially in n.
For 0 ≤ j ≤ ⌊n/2⌋, let (see (15)) Aj = A(−jk, y1 + jk, y2 + jk). Note

that the sets A0, . . . , A⌊n/2⌋ are disjoint. Figure 1 should help the reader to
visualize them. Our aim is to find paths from o to y through independent
attempts, which will enable to use Lemma 3.7(ii) in each set Aj. This is why
we have first replaced Gn by Jn to condition with.

On the event Jn, we can reach from the origin each of the sets Ai by means
of an open path contained in B(nk) and from each of these sets we can reach
y by means of an open path contained in By(nk). Hence, on Jn for each
j ∈ {0, . . . , ⌊n/2⌋} there exist a random point Uj ∈ B(nk)∩Aj and an open

path from o to Uj such that all its sites except Uj are in B(nk)∩(∩⌊n/2⌋
ℓ=j Ac

ℓ). If
there are many possible values of Uj we choose the first one in some arbitrary
deterministic order. Similarly, there is a random point Vj ∈ By(nk) ∩∆vAj

and an open path from Vj to y with all its sites in By(nk) ∩ (∩⌊n/2⌋
ℓ=j Ac

ℓ). Let

uj and vj be possible values of Uj and Vj respectively. Then let C1 be as in
Lemma 3.7 and define

Fj(u
j, vj) = {Uj = uj, Vj = vj},

Ej(u
j, vj) = {D(uj, vj) < C1(‖u

j − vj‖1 + |uj
2|+ |vj2|) within Aj} and

Wj = ∪uj ,vj
(
Fj(u

j, vj) ∩ Ej(u
j, vj)

)
,

12



where the union is over all possible values of Uj and Vj. Now we define a
subset of Zd

Rj =
(
B(nk) ∪ By(nk) ∪ (A0 ∪ . . . ∪ Aj−1)

)
∩
(
Ac

j ∩ . . . ∩ Ac
n−1

)
, (17)

and we denote by σj the σ-algebra generated by {Tx, e(x, y) : x ∈ Rj, x ∼
y}. Then, noting that 1Fj(uj ,vj)Π

j−1
ℓ=01W c

ℓ
is σj-measurable, write for j =

1, . . . , ⌊n/2⌋:

P
(
Wj ∩ Jn ∩ (∩j−1

ℓ=0W
c
ℓ )
)
=
∑

uj ,vj

E
(
1Fj(uj ,vj)1Ej(uj ,vj)1Jn(Π

j−1
ℓ=01W c

ℓ
)
)

=
∑

uj ,vj

E
(
1Fj(uj ,vj)(Π

j−1
ℓ=01W c

ℓ
)E(1Jn1Ej(uj ,vj)|σj)

)

≥
∑

uj ,vj

P (Ej(u
j, vj))E

(
1Fj(uj ,vj)(Π

j−1
ℓ=01W c

ℓ
)E(1Jn |σj)

)

=
∑

uj ,vj

P (Ej(u
j, vj))E

(
1Fj(uj ,vj)(Π

j−1
ℓ=01W c

ℓ
)1Jn

)

≥ δ
∑

uj ,vj

P
(
Fj(u

j, vj) ∩ Jn ∩ (∩j−1
ℓ=0W

c
ℓ )
)
= δP

(
Jn ∩ (∩j−1

ℓ=0W
c
ℓ )
)
, (18)

where the sums are over all possible values of Uj and Vj, the first inequality
follows from Remark 3.2 since both Jn and Ej(u

j, vj) are increasing events,
and from the fact that Ej(u

j, vj) is independent of σj; the second inequality
follows from Lemma 3.7(ii) and the last equality from the fact that Jn is
contained in the union of the Fj(u

j, vj)’s which are disjoint. We rewrite (18)
as

P
(
Jn ∩ (∩j

ℓ=0W
c
ℓ )
)

≤ (1− δ)P
(
Wj ∩ Jn ∩ (∩j−1

ℓ=0W
c
ℓ )
)

≤ (1− δ)P
(
Jn ∩ (∩j−1

ℓ=0W
c
ℓ )
)

Now, proceeding by induction on j one gets:

P
(
Jn ∩ (∩⌊n/2⌋−1

ℓ=0 W c
ℓ )
)
≤ (1− δ)⌊n/2⌋P (Jn).

Since we can choose C2 and C3 in such a way that the event {D(o, y) >
C2‖y‖1 + C3(nk)

d} does not occur if any of the Wi’s occurs, the lemma fol-
lows. �

We conclude this Section with:
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Proposition 3.11 Assume λ > λc.
(i) Let C2 be as in Lemma 3.10. Then, there exists α3 > 0 such that for

all x, y ∈ Zd, n ∈ N, we have

P (D(x, y) ≥ C2‖x− y‖1 + nd|x → y) ≤ exp(−α3n);

(ii) P (x → y| |Cout
x | = +∞, |C in

y | = +∞) = 1.

Proof of Proposition 3.11. (i) Modifying the constant α2, the statement of
Lemma 3.10 above holds for C3 = 1/kd.

(ii) We have that {x → ∞ and ∞ → y} = ∩nGn. Hence for all k,

P (D(x, y) = +∞, x → ∞ and ∞ → y) ≤ P (D(x, y) = +∞, Gk)

≤ P (D(x, y) = +∞|Gk),

which converges to 0 when k goes to infinity by Lemma 3.10. We thus have
P (D(x, y) = +∞|x → ∞ and ∞ → y) = 0. �

4 The shape theorem

In the percolation model, let C∞ be the cluster of sites connected to ∞:

C∞ = {x ∈ Zd : x → ∞ and ∞ → x}. (19)

Remark 4.1 As a consequence of Proposition 3.11(ii), C∞ is a connected
set: if two sites x, y of Zd belong to C∞, then x → y and y → x.

4.1 Neighborhoods in C∞

In this subsection, we construct neighborhoods V(·) of sites in Zd.
We first deal separately with finite clusters, which will have no influ-

ence on the asymptotic shape of the epidemic. We will include them in the
neighborhoods V(·) of sites we construct.

Definition 4.2 For x ∈ Zd, let

{
Rout

x = {y ∈ Zd : x → y outside C∞} (outgoing root from x);
Rin

x = {y ∈ Zd : y → x outside C∞} (incoming root to x).

14



In particular x belongs to Rout
x and Rin

x if and only if x /∈ C∞. Otherwise
Rout

x and Rin
x are empty. By next lemma, the distribution of the radius of

Rout
o ∪Rin

o decreases exponentially.

Lemma 4.3 There exists σ1 = σ1(λ, d) > 0 such that, for all n ∈ N,

P
(
(Rout

o ∪Rin
o ) ∩ ∂B(n) 6= ∅

)
≤ exp(−σ1n).

Proof of Lemma 4.3. For n ∈ N \ {0}, Rout
o ∩ ∂B(2n) 6= ∅ means that

there exists an open path o → ∂B(2n) outside C∞. This implies that there
exists x ∈ ∂B(n) satisfying o → x → ∂B(2n) outside C∞. Similarly, Rin

o ∩
∂B(2n) 6= ∅ implies that there exists x ∈ ∂B(n) satisfying ∂B(2n) → x → o
outside C∞. Then for such a point, either the cluster Cout

x or the cluster C in
x

is finite, and has a radius larger than or equal to n. Relying on Proposition
A.11,b) in Appendix A, we can follow the proof of [8, Theorems (8.18), (8.21)]
to get the existence of σ0 = σ0(λ, d) > 0 such that:

{
P (Cout

x ∩ ∂Bx(n) 6= ∅, |Cout
x | < +∞) ≤ exp(−σ0n);

P (C in
x ∩ ∂Bx(n) 6= ∅, |C in

x | < +∞) ≤ exp(−σ0n).
(20)

Hence

P
(
(Rout

o ∪Rin
o ) ∩ ∂B(2n) 6= ∅

)
≤ P

(
Rout

o ∩ ∂B(2n) 6= ∅
)

+P
(
Rin

o ∩ ∂B(2n) 6= ∅
)

≤ 2
∑

x∈∂B(n)

P (|Cout
x | < +∞, x → ∂Bx(n))

+2
∑

x∈∂B(n)

P (|C in
x | < +∞, ∂Bx(n) → x)

≤ 4|∂B(n)| exp(−σ0n)

which induces the result. �

To define the neighborhood V(x) on C∞ of a site x, we introduce the smallest
box whose interior contains Rout

x and Rin
x , which contains elements of C∞, and

is such that two elements of C∞ in this box are connected by an open path
which does not exit from a little larger box. For this last condition, which
will enable to bound the travel time through V(x), we use the parameter C2

obtained in Lemma 3.10.

Definition 4.4 Let C′ = C2d+ 2. Let κ(x) be the smallest l ∈ N \ {0} such
that 




(i) ∂Bx(l) ∩
(
Rout

x ∪Rin
x

)
= ∅;

(ii) Bx(l) ∩ C∞ 6= ∅;
(iii) ∀ (y, z) ∈ (Bx(l) ∩ C∞)2, y → z within Bx(C

′l).
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Remark 4.5 By (i) above, Rout
x ∪Rin

x ⊂ Bx(κ(x)).

In the next lemma, we bound the probability a box of size n does not admit
properties (i)–(iii) above, that is, we prove that the random variable κ(x)
has a sub-exponential tail.

Lemma 4.6 There exists a constant σ = σ(λ, d) > 0 such that, for any
n ∈ N,

P (κ(x) ≥ n) ≤ exp(−σn1/d).

Proof of Lemma 4.6. We show that the probability that any of the 3 condi-
tions in Definition 4.4 is not achieved for n decreases exponentially in n1/d:
(i) By translation invariance, we have by Lemma 4.3,

P
(
∂Bx(n) ∩

(
Rout

x ∪Rin
x

)
6= ∅
)
≤ exp(−σ1n). (21)

(ii) There exist m ∈ N, σ2 = σ2(λ, d) > 0 such that for any n ∈ N,

P (Bx(n) ∩ C∞ = ∅) ≤ exp(−σ2⌊n/(m+ 1)⌋). (22)

Indeed, by Theorem 3.5, there exists m = m(λ, d) large enough such that
p(λ, d) > pc(Sm), the critical percolation value in the slab Sm. Then we have

P (Bx(n) ∩ C∞ = ∅) ≤ P (∀ z ∈ {x+ je1, 0 ≤ j ≤ n}, z /∈ C∞)
= P (∀ z ∈ {x+ je1, 0 ≤ j ≤ n}, C in

z or Cout
z is finite)

We denote by Sm(l) = {l(m+1), · · · , (l+1)(m+1)−1}×Zd−1 for l ≥ 0 the slab
of thickness m to which z belongs. If C in

z (or Cout
z ) is finite, so is C in

z (Sm(l))
(or Cout

z (Sm(l))). Because {|C in
z (Sm(l))| = +∞} and {|Cout

z (Sm(l))| = +∞}
are increasing events it follows from Theorem 3.5 and the FKG inequality
(see Remark 3.2) that

infu∈Sm(l) P (|C in
u (Sm(l))| = |Cout

u (Sm(l))| = +∞)
≥ infu∈Sm(l)

(
P (|C in

u (Sm(l))| = +∞)P (|Cout
u (Sm(l))| = +∞)

)
> 0. (23)

Since events occurring in two different slabs are independent, we have

P (∀ z ∈ {x+ je1, 0 ≤ j ≤ n}, z /∈ C∞)
≤ P (∀ l ≥ 0, ∀ z ∈ {x+ je1, 0 ≤ j ≤ n} ∩ Sm(l),

C in
z (Sm(l)) or C

out
z (Sm(l)) is finite)

≤ (P (∀ z ∈ {je1, 0 ≤ j ≤ m},

C in
z (Sm(0)) or C

out
z (Sm(0)) is finite

)⌊n/(m+1)⌋

≤ exp(−σ2⌊n/(m+ 1)⌋)
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with σ2 = σ2(λ, d) > 0, independent of n, because, for z0 = ⌊m/2⌋e1, using
(23) we have

P (∃ z ∈ {x+ je1, 0 ≤ j ≤ m}, |C in
z (Sm(0))| = |Cout

z (Sm(0))| = +∞)
≥ P (|C in

z0
(Sm(0))| = |Cout

z0
(Sm(0))| = +∞) > 0.

(iii) There exists σ3 = σ3(λ, d) > 0 such that

P (∃ (y, z) ∈ (Bx(n) ∩ C∞)2, y 6→ z within (Bx(C
′n))

≤ exp(−σ3n
1/d). (24)

Indeed, if no open path from y to z (both in Bx(n) ∩ C∞) is contained in
Bx(C

′n), then D(y, z) ≥ 2(C′ − 1)n. Given our choice of C′ this implies that
D(y, z) ≥ C2‖y − z‖1 + n. Therefore (24) follows from Proposition 3.11(i).
�

We define the (site) neighborhood in C∞ of x by

V(x) = Bx(κ(x)) ∩ C∞. (25)

Remark 4.7 (a) By Definition 4.4(ii), V(x) 6= ∅.
(b) By Definition 4.4(iii), for all y, z in V(x), there exists at least one open
path from y to z, denoted by Γ∗

y,z, contained in Bx(C
′κ(x)). If there are

several such paths we choose the first one according to some deterministic
order.

We finally define an “edge” neighborhood Γ(x) of x:

Γ(x) = {(y′, z′) ⊂ Bx(κ(x)), (y
′, z′) open}∪

{(y′, z′) ∈ Γ∗
y,z, y, z ∈ V(x)}. (26)

Those neighborhoods satisfy

V(x) ⊂ Bx(κ(x)); Γ(x) ⊂ Bx(C
′κ(x)). (27)

4.2 Travel times and radial limits

We now come back to the spatial epidemic model. In this subsection, we
estimate the time needed by the epidemic to cover C∞, taking advantage of
the analysis of paths in the percolation model done in section 3. We first
define an approximation for the passage time of the epidemic, then we prove
the existence of radial limits for this approximation and for the epidemic.
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We will follow for this the spirit of the construction in [7].

By analogy with [6], [7] (although neighborhoods in our context are defined
differently), we define, for x, y ∈ Zd, the travel time from V(x) to V(y) and
the time spent around x to be (remember (4))

τ̂(x, y) = inf
x′∈V(x),y′∈V(y)

τ(x′, y′); (28)

u(x) =





∑

(y′,z′)∈Γ(x)

τ(y′, z′) if Γ(x) 6= ∅,

0 otherwise.

(29)

By Remarks 4.1, 4.7(a), τ̂(x, y) is finite. If V(x)∩V(y) 6= ∅, then τ̂(x, y) = 0.

We now show that if y ∈ Cout
x \Rout

x , τ̂(x, y) approximates τ(x, y).

Lemma 4.8 For x ∈ Zd, if y ∈ Cout
x \Rout

x , we have

τ̂(x, y) ≤ τ(x, y) ≤ u(x) + τ̂(x, y) + u(y). (30)

Proof of Lemma 4.8. Let Γx,y be an open path from x to y such that τ(x, y) =
τ(Γx,y). Since y /∈ Rout

x this path must intersect C∞. Let c1 and c2 be the
first and last points we encounter in C∞ when moving from x to y along
Γx,y. By Definition 4.4(i), c1 ∈ V(x) and c2 ∈ V(y): indeed (for instance for
c1), either x ∈ C∞ and c1 = x, or the point a ∈ ∂Bx(κ(x)) ∩ Γx,y does not
belong to Rout

x and c1 is the first point on Γx,y between x and a; we might
have c1 = c2, if V(x) ∩ V(y) 6= ∅. We have, denoting by ∨ the concatenation
of paths,

Γx,y = Γx,c1 ∨ Γc1,c2 ∨ Γc2,y

where Γx,c1 (resp. Γc2,y) is an open path from x to c1 contained in Bx(κ(x))
(resp. from c2 to y contained in By(κ(y))) and Γc1,c2 is an open path from c1
to c2. We then obtain the first inequality of (30) since:

τ̂(x, y) ≤ τ(Γc1,c2) ≤ τ(Γx,y) = τ(x, y).

To prove the second inequality of (30), let Γd1,d2 be an open path from d1 ∈
V(x) to d2 ∈ V(y) such that τ(Γd1,d2) = τ̂(x, y). Since the open paths Γx,c1

from x to c1 and Γ∗
c1,d1

(which exists by Remark 4.7(b)) from c1 to d1 have

edges in Γ(x) (see (26)), the open path Γx,d1 = Γx,c1 ∨ Γ∗
c1,d1

from x to d1
satisfies τ(Γx,d1) ≤ u(x). Similarly, there is an open path Γd2,y from d2 to y
such that τ(Γd2,y) ≤ u(y). We conclude with

τ(x, y) ≤ τ(Γx,d1) + τ(Γd1,d2) + τ(Γd2,y) ≤ u(x) + τ̂(x, y) + u(y).
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�

We now prove that τ̂(., .) is almost subadditive, which will enable us later on
in Theorem 4.12 to appeal to Kingman’s Theorem.

Lemma 4.9 For all x, y, z ∈ Zd, we have the subadditivity property

τ̂(x, z) ≤ τ̂(x, y) + u(y) + τ̂(y, z). (31)

Proof of Lemma 4.9. Let Γa,b be an open path from a ∈ V(x) to b ∈ V(y)
such that τ̂(x, y) = τ(Γa,b). Similarly, let Γc,d be an open path from c ∈ V(y)
to d ∈ V(z) such that τ̂(y, z) = τ(Γc,d) (we might have a = b, c = d or b = c).
Since both b and c are in V(y) there exists an open path Γ∗

b,c from b to c such
that τ(Γ∗

b,c) ≤ u(y) (see Remark 4.7(b) and (26)). The lemma then follows
since the concatenation of these three paths is an open path from a point of
V(x) to a point of V(z) and

τ̂(x, z) ≤ τ(Γa,b) + τ(Γ∗
b,c) + τ(Γc,d) ≤ τ̂(x, y) + u(y) + τ̂(y, z).

�

We introduce a new notation, for the length of the shortest path between
two neighborhoods. For x, y ∈ Zd, let

D(x, y) = inf
x′∈V(x),y′∈V(y)

D(x′, y′). (32)

Note that unlike D(x, y), D(x, y) is always finite. Next proposition corre-
sponds to Proposition 3.11(i) for D(x, y) instead of D(x, y). It will be used
in the Lemma 4.11 which follows.

Proposition 4.10 There exist constants C4 and α4 > 0 such that

P (D(x, y) ≥ C4‖x− y‖1 + n) ≤ exp(−α4n
1/d), ∀ x, y ∈ Zd, n ∈ N.

Proof of Proposition 4.10. Let C2 be given in Proposition 3.11. Then

P (D(x, y) ≥ C2‖x− y‖1 + (2d+ 1)C2n)
≤ P (κ(x) > n) + P (κ(y) > n)

+ P (D(x, y) ≥ C2‖x− y‖1 + (2d+ 1)C2n, κ(x) ≤ n, κ(y) ≤ n)
≤ P (κ(x) > n) + P (κ(y) > n)
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+
∑

x′∈Bx(n),y′∈By(n)

P (D(x′, y′) ≥ C2‖x− y‖1 + (2d+ 1)C2n, x
′ → y′)

≤ P (κ(x) > n) + P (κ(y) > n)

+
∑

x′∈Bx(n),y′∈By(n)

P (D(x′, y′) ≥ C2‖x
′ − y′‖1 + C2n, x

′ → y′).

The result follows from Proposition 3.11 and Lemma 4.6. �

Of course, the random variables u(x) and τ̂(x, y) are almost surely finite.
But we will need later on repeatedly a better control of their size, provided
by our next lemma.

Lemma 4.11 For all x, y ∈ Zd, r ∈ N \ {0}, u(x) and τ̂(x, y) have a finite
r-th moment.

Proof of Lemma 4.11. By Lemma 4.6, u(x) is bounded above by a sum of
passage times e(y, z) with y and z in the box Bx(Y ), where Y is a random
variable whose moments are all finite. By Lemmas 4.6 and 4.10 the same
happens to τ̂(x, y) (if x′ ∈ V(x), y′ ∈ V(y) are the sites that achieve D(x, y),
then τ̂(x, y) ≤ τ(x′, y′)). Therefore it suffices to show that if (Xi, i ∈ N) is a
sequence of i.i.d. random variables and N is a random variable taking values
in N, then the moments of

∑N
i=1 Xi are all finite if it is the case for both the

Xi’s and N . To prove this write:

E(|
N∑

i=1

Xi|
r) =

∞∑

n=1

E(|X1 + . . .+Xn|
r1{N=n})

≤
∞∑

n=1

[E(|X1 + . . .+Xn|
2r)P (N = n)]1/2

≤
∞∑

n=1

[E(|X1|+ . . .+ |Xn|)
2rP (N = n)]1/2

≤
∞∑

n=1

[n2rC2rP (N = n)]1/2

where the second line comes from Cauchy-Schwartz’ inequality, the factor
n2r counts the number of terms in the development of (|X1| + . . . + |Xn|)

2r

and the constant C2r depends on the distribution of the Xi’s. As N has all
its moments finite P (N = n) decreases faster than n−2r−4 and the sum is
finite. �
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We now construct a process (ϑ·) which will be subadditive in every direc-
tion, and will have a.s., by Kingman’s Theorem, a radial limit denoted by µ.
We will then check that τ̂(o, ·) also has, in every direction, the same radial
limit, and we will extend this conclusion to τ(o, ·) on the set Cout

o of sites
that have ever been infected. Hence we first prove

Theorem 4.12 For all z ∈ Zd, there exists µ(z) ∈ R+ such that almost
surely

lim
n→+∞

τ̂(o, nz)

n
= µ(z) and (33)

lim
n→+∞

[
τ(o, nz)

n
− µ(z)

]
1{nz∈Cout

o } = 0. (34)

Proof of Theorem 4.12. (i) For all z ∈ Zd, (m,n) ∈ N2, let

ϑz(m,n) = τ̂(mz, nz) + u(nz). (35)

The process (ϑz(m,n))(m,n)∈N2 satisfies the hypotheses of Kingman’ subad-
ditive ergodic theorem (see [15, Theorem VI.2.6]) by (31). Hence (noticing
also that ϑz(0, n) = ϑnz(0, 1)) there exists µ(z) ∈ R+ such that

lim
n→+∞

1

n
ϑz(0, n) = lim

n→+∞
E

(
ϑz(0, n)

n

)
= lim

n→+∞
E

(
ϑnz(0, 1)

n

)

= inf
n∈N

E

(
ϑz(0, n)

n

)
= inf

n∈N
E

(
ϑnz(0, 1)

n

)
= µ(z) (36)

a.s. and in L1. Since the random variables (u(z) : z ∈ Zd) are identically
distributed, it follows from Lemma 4.11 and Chebychev’s inequality that∑∞

n=0 P (u(nz) > nε) < +∞ for all ε > 0, so that by Borel-Cantelli’s Lemma

lim
n→+∞

u(nz)

n
= 0, a.s. (37)

Thus by (35), (36), (37) we have (33) for all z ∈ Zd.

(ii) Since Rout
o is a.s. finite, if nz ∈ Cout

o , then nz ∈ Cout
o \ Rout

o for n
large enough. Hence, from Lemma 4.8, for n large enough we have

∣∣∣∣
τ(o, nz)

n
− µ(z)

∣∣∣∣1{nz∈Cout
o \Rout

o } ≤
u(o) + u(nz)

n
+

∣∣∣∣
τ̂(o, nz)

n
− µ(z)

∣∣∣∣

and we conclude that (34) is satisfied by (37) and (33). �
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4.3 Extending µ

We have proved the existence of a linear propagation speed in every direction
of Zd. However, to derive an asymptotic shape result, in particular for the
approximating travel times (τ̂(x, y), x, y ∈ Zd), we need to extend µ from
Zd to a Lipschitz, convex and homogeneous function on Rd. The asymptotic
shape of the epidemic will be given by the convex set D defined in (38) below.
As a first step, we prove properties of µ on Zd.

Lemma 4.13 The function µ satisfies the following properties for all x, y ∈
Zd, k ∈ N:

(i) µ(x) = lim
n→+∞

E

(
τ̂(o, nx)

n

)
,

(ii) µ(x+ y) ≤ µ(x) + µ(y),
(iii) µ(x) = µ(−x),
(iv) µ(ei) = µ(eℓ), ∀i, ℓ ∈ {1, . . . , d},
(v) µ(kx) = kµ(x),
(vi) µ(x) ≤ µ(e1)‖x‖1.

Proof of Lemma 4.13. Since ϑx(0, n) = τ̂(o, nx) + u(nx), part (i) follows
from (36), (37). To prove part (ii) write:

µ(x+ y) = lim
n→+∞

E

(
τ̂(o, n(x+ y))

n

)

≤ lim
n→+∞

E

(
τ̂(o, nx)

n

)
+ lim

n→+∞
E

(
τ̂(nx, n(x+ y))

n

)
+ lim

n→+∞
E

(
u(nx)

n

)

= lim
n→+∞

E

(
τ̂(o, nx)

n

)
+ lim

n→+∞
E

(
τ̂(nx, n(x+ y))

n

)

= µ(x) + µ(y),

where the first equality follows from part (i), the inequality from (31), the
second equality from (37) and the third one from part (i) and translation
invariance of τ̂ . Parts (iii)–(iv) follow immediately from part (i) and the
corresponding properties of τ̂(o, x). To prove part (v) write:

µ(kx) = lim
n→+∞

E

(
ϑnkx(0, 1)

n

)
= k lim

n→+∞
E

(
ϑnkx(0, 1)

nk

)
= kµ(x),

where the first and third equalities follow from (36). Finally, part (vi) follows
from parts (ii)–(iv). �

Next corollary extends Lemma 4.13(iii)–(iv).
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Corollary 4.14 For any permutation σ of {1, · · · , d}, any
y = (y1, y2, · · · , yd) ∈ Zd and any choice of the signs ±,

µ(±yσ(1),±yσ(2), · · · ,±yσ(d)) = µ(y1, y2, · · · , yd).

Proof of Corollary 4.14. Clearly τ̂(o, (y1, y2, . . . , yd)) has the same distribu-
tion as τ̂(o, (±yσ(1),±yσ(2), · · · ,±yσ(d))) for any choice of the signs and any
permutation σ, hence the corollary follows from Lemma 4.13(i). �

Lemma 4.15 For all u, v ∈ Zd, for the Lipschitz constant γ∗ = µ(e1) we
have

|µ(u)− µ(v)| ≤ γ∗‖u− v‖1,

Proof of Lemma 4.15. Let y = u− v, x = v. We have

µ(u)− µ(v) = µ(x+ y)− µ(x) ≤ µ(y) = µ(u− v) ≤ µ(e1)‖u− v‖1,

where the inequalities follow from Lemma 4.13(ii) and (vi). Similarly, taking
x = u, y = v − x gives

µ(v)− µ(u) ≤ µ(e1)‖v − u‖1,

and the lemma follows. �

In a second step, we extend µ to Rd and we introduce the set D.

Proposition 4.16 There exists an extension of µ to Rd, which is Lipschitz
with Lipschitz constant γ∗ given by Lemma 4.15, convex and homogeneous
on Rd. Moreover, µ(x) = 0 if and only if x = 0 and the set

D = {x ∈ Rd : µ(x) ≤ 1} (38)

is convex, bounded and contains an open ball centered at o.

Proof of Proposition 4.16. We start by extending µ to Qd. For x ∈ Qd let

Nx = min{k ≥ 1, k ∈ N : kx ∈ Zd} and (39)

µ(x) =
µ(Nxx)

Nx

. (40)
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We now prove that this extension is homogeneous: let α ∈ Q be positive and
let x ∈ Qd, x 6= o. Then, there exist k1, k2 ∈ N multiples of Nx and Nαx

respectively, such that k1x, k2αx ∈ Zd and k1x = k2αx. Write

µ(αx) =
µ(Nαxαx)

Nαx

=
µ(k2αx)

k2
=

µ(k1x)

k2
=

k1
k2

µ(k1x)

k1
= α

µ(Nxx)

Nx

= αµ(x),

using (40) for the first equality, Lemma 4.13(v) for the second and fifth ones.
To prove that µ is Lipschitz on Qd, let x, y ∈ Qd. Then,

|µ(x)− µ(y)| =

∣∣∣∣
µ(Nxx)

Nx

−
µ(Nyy)

Ny

∣∣∣∣ =
∣∣∣∣
µ(NyNxx)

NyNx

−
µ(NxNyy)

NxNy

∣∣∣∣

=
|µ(NxNyx)− µ(NxNyy)|

NxNy

≤
γ∗‖NxNyx−NxNyy‖1

NxNy

= γ∗‖x− y‖1,

using Lemma 4.13(v) for the second equality and Lemma 4.15 for the in-
equality.

To prove that µ is convex on Qd, take x, y ∈ Qd and α ∈ Q∩ (0, 1). Then let
k1, k2 be elements in N such that k1α ∈ N, k2x ∈ Zd, k2y ∈ Zd and write:

µ(αx+ (1− α)y) = lim
n→+∞

E
( τ̂(o, nαx+ n(1− α)y)

n

)

= lim
n→+∞

E
( τ̂(o, nk1αk2x+ nk1(1− α)k2y)

nk1k2

)

≤ lim
n→+∞

E
( τ̂(o, nk1αk2x) + τ̂(o, nk1(1− α)k2y) + u(nk1αk2x)

nk1k2

)

= lim
n→+∞

E
( τ̂(o, nk1αk2x) + τ̂(o, nk1(1− α)k2y)

nk1k2

)

=
µ(k1k2αx) + µ(k1k2(1− α)y)

k1k2
= αµ(x) + (1− α)µ(y),

where the first equality follows from Lemma 4.13(i) the inequality from
Lemma 4.9, the third equality from (37), the fourth from Lemma 4.13(i)
and the last one from the homogeneity of µ on Qd.

To prove that µ(x) > 0 if x 6= o we argue by contradiction: assume µ(x) = 0
and without loss of generality that x = (x1, . . . , xd) with x1 6= 0. First note
that since µ is Lipschitz and homogeneous, the conclusion of Corollary 4.14
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also holds for any (x1, . . . , xd) ∈ Rd, then write

µ(2x1, 0, · · · , 0) = µ(2x1, 0, · · · , 0)− µ(x1, x2, · · · , xd)

≤ µ(x1,−x2, · · · ,−xd) = 0,

using Lemma 4.13(ii) for the inequality, and Corollary 4.14 with the as-
sumption µ(x) = 0 for the last equality. Then since µ is homogeneous we get
µ(e1) = 0. However, considering a standard first passage percolation model
with passage times e(z, y) and adding a ‘tilde’ to quantities associated to this
model, we have τ̃(o, z) ≤ τ(o, z) a.s. for all z ∈ Zd. Since by [12, Theorem
(2.18)],

lim
n→+∞

τ̃(o, ne1) = µ̃(e1),

it follows from (34) that µ̃(e1) ≤ µ(e1) = 0. But from [12, Theorems (1.7)
and (1.15)] we get µ̃(e1) > 0, thus reaching a contradiction.

The convexity of µ implies that D is convex. We prove by contradiction
that D contains an open ball centered at o: otherwise, there exists a se-
quence (xn)n∈N such that xn /∈ D, limn→+∞ xn = 0; therefore on the one
hand µ(xn) > 1, and on the other hand limn→+∞ µ(xn) = 0 because µ(o) = 0
and µ is continuous, hence a contradiction.

Finally we argue again by contradiction to prove that the set D is bounded:
otherwise there would exist a sequence (yn)n∈N with yn ∈ D and ‖yn‖1 > n.
Then xn = yn/‖yn‖1 satisfies ‖xn‖1 = 1, and, since µ is homogeneous,
limn→+∞ µ(xn) = 0. By compactness (xn)n∈N has a converging subsequence
to some x such that µ(x) = 0 with ‖x‖1 = 1; since we have already proved
there is no such x we get a contradiction. �

4.4 Behavior of τ̂

Our next result establishes how τ̂(o, z) grows for z ∈ Zd.

Theorem 4.17 There exist K = K(λ, d) > 0 and α > 0 such that

P (τ̂(o, z) > K‖z‖∞) ≤ exp(−α(‖z‖1/d∞ ), ∀ z ∈ Zd,
P (τ̂(o, z) > K(‖z‖∞ + n)) ≤ exp(−αn1/d), ∀ z ∈ Zd, n ∈ N,∑

z∈Zd

P (τ̂(o, z) > K‖z‖∞) < +∞.

Proof of Theorem 4.17. Let K ≥ 0, z ∈ Zd. Then write:

P (τ̂(o, z) > K(‖z‖∞ + n))
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≤ P (4κ(z) > ‖z‖∞ + n) + P (4κ(o) > ‖z‖∞ + n) + P (A) (41)

where, if B = B(o, (‖z‖∞ + n)/4)× B(z, (‖z‖∞ + n)/4),

A = {τ̂(o, z) > K(‖z‖∞ + n), 4κ(z) ≤ ‖z‖∞ + n, 4κ(o) ≤ ‖z‖∞ + n}

⊂ ∪(x,y)∈B{x → y, τ(x, y) > K(‖z‖∞ + n)}. (42)

Note that if (x, y) ∈ B we have

‖z‖∞ − n ≤ 2‖x− y‖∞ ≤ 3‖z‖∞ + n and
3(‖z‖∞ + n) = 3‖z‖∞ + n+ 2n ≥ 2(‖x− y‖∞ + n). (43)

From (42), (43), for C2 given in Proposition 3.11, we get:

P (A) ≤
∑

x∈B(o,(‖z‖∞+n)/4)

∑

y∈B(z,(‖z‖∞+n)/4)(
P (3τ(x, y) > 2K(‖x− y‖∞ + n), D(x, y) < (C2 + 1)(‖x− y‖1 + n))

+P (x → y,D(x, y) ≥ (C2 + 1)(‖x− y‖1 + n))
)
. (44)

It now follows from Proposition 3.11(i) that we have, for some α5 > 0,

P (x → y,D(x, y) ≥ (C2 + 1)(‖x− y‖1 + n))
≤ exp(−α5(‖x− y‖1 + n)1/d)
≤ exp(−α5(‖x− y‖∞ + n)1/d). (45)

Then, taking K large enough, by large deviation results for exponential vari-
ables, we also have, for some α6 > 0,

P (3τ(x, y) > 2K(‖x− y‖∞ + n), D(x, y) < (C2 + 1)(‖x− y‖1 + n))
≤ P (3τ(x, y) > 2K(‖x− y‖∞ + n), D(x, y) < (C2 + 1)d(‖x− y‖∞ + n))
≤ exp(−α6(‖x− y‖∞ + n)). (46)

Hence, from (43)–(46), for some constants R and α7 > 0 we have:

P (A) ≤ R(‖z‖∞ + n)2d exp(−α7(‖z‖∞ + n)1/d),

which gives, by modifying the constants,

P (A) ≤ R′ exp(−α8(‖z‖∞ + n)1/d). (47)

The theorem’s statements now follow from (47), (41) and Lemma 4.6. �
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4.5 Asymptotic shape for τ̂

Next theorem is the last necessary step to prove the shape theorem.

Theorem 4.18 Let ε > 0, and Ât = {z ∈ Zd : τ̂(o, z) ≤ t}. Then, a.s. for t
large enough, for D defined in (38),

(1− ε)tD ∩ Zd ⊂ Ât ⊂ (1 + ε)tD ∩ Zd. (48)

In the sequel K and α are fixed constants satisfying the conclusions of The-
orem 4.17, γ∗ is the Lipschitz constant of µ (see Lemma 4.15) and Nx was
defined in (39) for any x ∈ Qd \ {o}. To prove Theorem 4.18 we need the
two following lemmas.

Lemma 4.19 Let ρ > 0 and let δ ≤ ρ/(2K). Then, for all x ∈ Qd \ {o},

∑

k>0

P ( sup
z∈BkNxx(δkNx)∩Zd

τ̂(kNxx, z) ≥ kNxρ) < ∞, (49)

∑

k>0

P ( sup
z∈BkNxx(δkNx)∩Zd

τ̂(z, kNxx) ≥ kNxρ) < ∞. (50)

Proof of Lemma 4.19. By translation invariance we may assume that x is
the origin. We derive only (49), since the proof of (50) is analogous. Let
k > 0, z ∈ B(δkNx) ∩ Zd. By Theorem 4.17 we have:

P (τ̂(o, z) ≥ kNxρ) ≤ P (τ̂(o, z) ≥ K‖z‖∞ + kNxρ/2)

≤ exp
(
− α

⌊kNxρ

2K

⌋1/d)
.

Therefore, for some constant C,

∑

k>0

P ( sup
z∈B(δkNx)∩Zd

τ̂(o, z) ≥ kNxρ) ≤
∑

k>0

C(δkNx)
d exp

(
− α

⌊kNxρ

2K

⌋1/d)

< ∞.

Now (49) follows from the translation invariance of τ̂ . �

For x ∈ Qd \ {o}, δ > 0, we define the cone associated to x of amplitude δ as

Cx(δ) = Zd ∩
(
∪t≥0 Btx(δt)

)
. (51)

Lemma 4.20 Let x ∈ Qd \ {o}. Then for any 0 < δ′ < δ the set Cx(δ
′) \

∪k≥0BkNxx(δkNx) is finite.
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Proof of Lemma 4.20. Let z ∈ Cx(δ
′). By (51), z ∈ Bt0x(δ

′t0) for some
t0 ≥ 0. Let k0 = inf{i ∈ N : iNx ≥ t0}. Hence 0 ≤ k0Nx − t0 < Nx, so that

‖z − k0Nxx‖1 ≤ ‖z − t0x‖1 + |t0 − k0Nx|‖x‖1

< ‖z − t0x‖1 +Nx‖x‖1 ≤ δ′t0 +Nx‖x‖1

is smaller than δt0 ≤ δk0Nx if t0 ≥ t1. Note that Z
d∩ (∪t≤t1Btx(δt)) contains

a finite number of points to conclude. �

In the next proof we use that since the Lipschitz constant of µ is γ∗ for
the norm ‖.‖1 (by Proposition 4.16), it is γ = γ∗d for the norm ‖.‖∞.

Proof of Theorem 4.18. Fix ε ∈ (0, 1) and let ρ, δ and ι be three small
positive parameters such that δ ≤ ρ/(2K), whose values will be determined
later. The set Y = {x ∈ Qd : 1−2ι < µ(x) < 1−ι} is a ring between two balls
with the same center but with a different radius, because by Proposition 4.16,
µ is homogeneous and positive except that µ(o) = 0. Hence the (compact)
closure of Y , which is recovered by balls of the same radius centered on
the rational points of Y , is in fact covered by a finite number of such balls.
Thus there exists a finite subset Y of Y such that Zd ⊂ ∪x∈YCx(δ/2) (if
the balls recover the ring, the cones associated to them recover the whole
space). Hence, to prove the first inclusion of (48) it suffices to show that
for any x ∈ Y and any sequences (tn)n>0 and (zn)n>0 such that tn ↑ ∞ in
R+, zn ∈ Cx(δ/2) ∩ Zd with ‖zn‖∞ ≥ n and µ(zn) ≤ (1 − ε)tn, we have
τ̂(o, zn) ≤ tn a.s. for n sufficiently large. So, let (tn)n>0 and (zn)n>0 be such
sequences. Using Lemma 4.20 (taking a subsequence if necessary) let kn ∈ N

be such that zn ∈ BknNxx(δknNx), hence kn ≥ Cn for some constant C. Since
µ is Lipschitz, write

knNx(1− 2ι) ≤ µ(knNxx) ≤ µ(zn) + γδknNx ≤ (1− ε)tn + γδknNx,

so that

knNx ≤
( 1− ε

1− 2ι− γδ

)
tn. (52)

It now follows from (52) and the subadditivity property (31) of τ̂ that:

τ̂(o, zn)

tn
≤
( 1− ε

1− 2ι− γδ

)( τ̂(o, knNxx)

knNx

+
u(knNxx)

knNx

+
τ̂(knNxx, zn)

knNx

)
.

Therefore, by Theorem 4.12, Lemma 4.11 (the variables u(.) are identically
distributed, and kn ≥ Cn), Lemmas 4.16 and 4.19 we obtain:

lim sup
n→+∞

τ̂(o, zn)

tn
≤
( 1− ε

1− 2ι− γδ

)(
µ(x) + ρ

)
a.s.
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Since x ∈ Y this implies:

lim sup
n→+∞

τ̂(o, zn)

tn
≤
( 1− ε

1− 2ι− γδ

)(
1− ι+ ρ

)
a.s.

Taking ι, ρ and δ small enough, the right hand side is strictly less than 1
which proves that τ̂(o, zn) ≤ tn a.s. for n sufficiently large.

Similarly, to prove the second inclusion of (48) it suffices to show that for
any x ∈ Y and any sequences tn ↑ ∞ in R+ and zn in Cx(δ/2) ∩ Zd such
that µ(zn) ≥ (1 + ε)tn we have τ̂(o, zn) > tn a.s. for n sufficiently large. As
before, taking subsequences if necessary, we let (tn)n>0 and (zn)n>0 be such
sequences, and kn ∈ N be such that zn ∈ BknNxx(δknNx). Proceeding then
as for the first inclusion, we get:

knNx(1− ι) ≥ µ(knNxx) ≥ µ(zn)− γδknNx ≥ (1 + ε)tn − γδknNx,

knNx ≥
( 1 + ε

1− ι+ γδ

)
tn,

τ̂(o, zn)

tn
≥
( 1 + ε

1− ι+ γδ

)( τ̂(o, knNxx)

knNx

−
u(zn)

knNx

−
τ̂(zn, knNxx)

knNx

)
,

and

lim inf
n→+∞

τ̂(o, zn)

tn
≥

( 1 + ε

1− ι+ γδ

)(
µ(x)− ρ

)
a.s.

≥
( 1 + ε

1− ι+ γδ

)(
1− 2ι− ρ

)
a.s.

Now, taking ι, ρ and δ small enough, the right hand side is strictly bigger
than 1 and the second inclusion of (48) is proved. �

4.6 Asymptotic shape for the epidemic

We can now prove our main result, the shape theorem.
Proof of Theorem 2.2. Let ε > 0 be given.
(i) We first show that the infection grows at least linearly as t goes to infinity,
that is,

P
(
(Υt ∪ Ξt) ⊃ ((1− ε)tD ∩ Cout

o ) for all t large enough
)
= 1. (53)

Since Rout
o is finite a.s. this will follow from:

P
(
(Υt ∪ Ξt) ⊃ ((1− ε)tD ∩ (Cout

o \Rout
o )) for all t large enough

)
= 1. (54)
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By Theorem 4.18, if 0 < a < b then atD ∩ Zd ⊂ Âbt a.s. for t large enough.
Hence, for t large enough z ∈ (1− ε)tD ∩ (Cout

o \Rout
o ) implies

τ̂(o, z) ≤ (1− ε/2)t a.s. (55)

and by Lemma 4.8, τ(o, z) ≤ (1 − ε/2)t + u(o) + u(z). Since u(o) < +∞
a.s. we have u(o) < (ε/4)t a.s. for t large enough. Hence, by (7), (54) will
follow if we show that supz∈tD u(z) ≤ (ε/4)t a.s. for t large enough, which is
implied by supz∈(n+1)D u(z) ≤ (ε/4)n a.s. for n = ⌊t⌋. By Proposition 4.16,
D is bounded, hence the number of points in (n + 1)D with coordinates in
Z is less than C5(n+ 1)d for some constant C5. Then write

P

(
sup

z∈(n+1)D

u(z) ≥
εn

4

)
≤ C5(n+ 1)dP

(
u(o) ≥

εn

4

)

≤ C5(n+ 1)d
4d+2

(εn)d+2
E(u(o)d+2).

Thus, by Lemma 4.11,
∑

n∈N P (supz∈(n+1)D u(z) ≥ εn/4) < ∞, and (54) fol-
lows from Borel-Cantelli’s Lemma.

(ii) Next we show that

P
(
(Υt ∪ Ξt) ⊂ ((1 + ε)tD ∩ Cout

o ) for all t large enough
)
= 1. (56)

If z belongs to Ξt or Υt, then by (7) and Lemma 4.8, τ̂(o, z) ≤ t for z ∈
Cout

o \Rout
o , which implies z ∈ (1+ ε)tD for t large enough by Theorem 4.18.

Since Rout
o is finite (56) follows.

Putting together (53) and (56) yields (11).

(iii) Finally, assuming E(|Tz|
d) < ∞, we show that

P (Υt ∩ (1− ε)tD = ∅ for t large enough) = 1. (57)

Let z ∈ (1−ε)tD∩Cout
o , then, by (7), (53) and the same reasoning as for (55),

we have τ(o, z) ≤ (1 − ε/2)t if t is large enough. Hence, (57) will follow if
we show that Tz ≥ (ε/2)τ(o, z) occurs only for a finite number of z’s. Indeed
otherwise Tz ≤ (ε/2)(1− ε/2)t so that τ(o, z)+Tz < t if t is large enough: it
means that the infection has reached site z and the time of infection from z
is over before time t, hence z has recovered by time t, that is z ∈ Ξt, z /∈ Υt.

But for δ = (2(1+ε) supx∈D ‖x‖∞)−1 (by Proposition 4.16, D is bounded),
we have τ(o, z) ≥ δ‖z‖∞ except for a finite number of z’s. Because if z
satisfies τ(o, z) < δ‖z‖∞, then by (7) and (56), for δ‖z‖∞ larger than some
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t0, we have z ∈ (Υδ‖z‖∞ ∪Ξδ‖z‖∞) ⊂ (1 + ε)δ‖z‖∞D, hence the contradiction
‖z‖∞ ≤ ‖z‖∞/2.

Therefore, it suffices to show that for any δ′ > 0 the event {Tz ≥ δ′‖z‖∞}
can only occur for a finite number of z’s. This will follow from Borel-Cantelli’s
Lemma once we prove that

∑
z∈Zd P (Tz ≥ δ′‖z‖∞) < ∞. To do so we write,

since the Tz’s are identically distributed:
∑

z∈Zd

P (Tz ≥ δ′‖z‖∞) =
∑

n∈N

∑

z:‖z‖∞=n

P (Tz ≥ δ′n) ≤ c
∑

n∈N

nd−1P (To ≥ δ′n)

for some constant c, and this last series converges because To has a finite
moment of order d. Putting together (11) and (57) yields (12). �

A Appendix

In this appendix we prove Theorem 3.5, Lemma 3.7 and (20) in the proof
of Lemma 4.3. These proofs rely on dynamic renormalisation techniques in-
troduced in [2]. In applying these techniques we follow [8, Chapter 7] and
[9], but we introduce some modifications. In particular by considering some
larger boxes we avoid using the sprinkling technique more than once on any
given bond. Because of this we only need to consider two different values of
the infection parameter and we don’t need to introduce the updating func-
tions of [8].

We introduce parameters whose values will be settled in Lemma A.9 below.
We fix λ′ > λc and adopt the terminology of [8, Chapter 7]. Nonetheless, we
might change names of constants if this creates confusions with the rest of
our paper. In the sequel n,m and N are positive integers such that

2m < n and N = n+m+ 1 (58)

We consider our percolation model on the slab Z2 × [−3N, 3N ], that is, we
write our proof in Z3 for notational simplicity (but it can be generalized
to Zd, d ≥ 3). We denote by (e1, e2, e3) the canonical basis of Z3. For
x = (x1, x2, x3) ∈ Z3 and k ∈ N such that −3N + k ≤ x3 ≤ 3N − k we
recall that B(k) = [−k, k]3 and Bx(k) = x + [−k, k]3. We divide the face
F (n) = {x : x ∈ ∂B(n), x1 = n} of ∂B(n) in 4 quadrants:

T+,+(n) = {x : x ∈ ∂B(n), x1 = n, x2 ≥ 0, x3 ≥ 0}

T+,−(n) = {x : x ∈ ∂B(n), x1 = n, x2 ≥ 0, x3 ≤ 0}

T−,+(n) = {x : x ∈ ∂B(n), x1 = n, x2 ≤ 0, x3 ≥ 0}

T−,−(n) = {x : x ∈ ∂B(n), x1 = n, x2 ≤ 0, x3 ≤ 0}
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and, for any choice of (i, j) ∈ {+,−}2, we define a box of thickness 2m + 1
composed of translates of the corresponding quadrant, by

T i,j(m,n) = ∪2m+1
ℓ=1 {ℓe1 + T i,j(n)} (59)

For any of the above sets a subindex as y means we translate it by y.

Definition A.1 A seed is a translate of B(m) such that all its edges are
λ′-open.

We will be looking for oriented open paths starting in a seed inside B(2N),
and: either (a) contained in the union of boxes B(3N)∪B6Ne1(3N) and reach-
ing a seed inside B6Ne1(2N) ∩ B8Ne1(2N); or (b) contained in the union of
boxes B(3N)∪B6Ne2(3N) and reaching a seed inside B6Ne2(2N)∩B8Ne2(2N).
We will construct those paths in Lemma A.7 below.

An important tool in [8, Chapter 7] is the sprinkling technique, which en-
ables some bonds, that would be closed otherwise, to be independently open
with a probability larger than some ε′ > 0. We therefore need to find a way
to proceed similarly, in spite of the fact that we work with dependent perco-
lation. For this, it is convenient to define the processes for different values
of the rate of propagation λ̃ on our common probability space and compare
them. Let (e1(x, y), x, y ∈ Z3) be a collection of independent exponential

r.v.’s with parameter 1. Then let eλ̃(x, y) = λ̃−1e1(x, y), and

Xλ̃(x, y) =
{
1 if eλ̃(x, y) < Tx;
0 otherwise.

(60)

We recall that the event {Tx > eλ̃(x, y)} occurs if and only if the oriented

bond (x, y) is λ̃-open.

The following lemma implies that given λ > δ1 > 0, there exists ι > 0 such
that for any λ̃ such that λ̃+δ1 < λ the random field {Xλ̃+δ1

(u, v) : u, v ∈ Z3}
is stochastically above the random field {max{Xλ̃(u, v), Y (u, v)} : u, v ∈ Z3}
where the random variables Y (u, v) are i.i.d. Bernoulli with parameter ι and
are independent of the random variables Xλ̃(u, v). This lemma justifies the
use of the sprinkling technique in Lemmas A.5 and A.7 below.

Lemma A.2 Assume λ > δ1 > 0. There exists ι > 0 such that for any
λ̃ > 0 such that λ̃+ δ1 < λ, and any x, y ∈ Z3, with y ∼ x,

P (Xλ̃+δ1
(x, y) = 1 | Xλ̃+δ1

(u, v), u, v ∈ Z3, u ∼ v, (u, v) 6= (x, y);

Xλ̃(u, v), u, v ∈ Z3, u ∼ v) > ι a.s.
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Proof of Lemma A.2. Recall that Xλ̃+δ1
(x, y) is independent of the random

variables Xλ̃+δ1
(u, v), Xλ̃(u, v), u 6= x, v ∼ u, hence it suffices to show that

P (Xλ̃+δ1
(x, y) = 1 | Xλ̃+δ1

(x, z), z ∼ x, z 6= y;

Xλ̃(x, z), z ∼ x) > ι a.s. (61)

Since we are now conditioning on a finite number of random variables taking
only values 0 and 1, (61) will follow from:

P (Xλ̃+δ1
(x, y) = 1 | Xλ̃+δ1

(x, z) = az, z ∼ x, z 6= y;

Xλ̃(x, z) = bz, z ∼ x) > ι (62)

for all choices az and bz in {0, 1} with bz ≤ az.

To prove (62), we denote by Nx the union of all partitions of the set {z ∈
Z3 : z ∼ x} of neighbors of x into three disjoint sets called N 1

x ,N
0
x ,N

0,1
x

such that y ∈ N 1
x ∪ N 0,1

x . Using the inequality P (A|B) ≥ P (A ∩ B) for two
events A,B, and taking an arbitrary partition in Nx gives

P (Xλ̃+δ1
(x, y) = 1 |Xλ̃+δ1

(x, u) = 0, ∀u ∈ N 0
x ,

Xλ̃(x, v) = 1, ∀v ∈ N 1
x ;Xλ̃(x, w) = 0, Xλ̃+δ1

(x, w) = 1, ∀w ∈ N 0,1
x )

≥ P (Xλ̃+δ1
(x, y) = 1, Xλ̃+δ1

(x, u) = 0, ∀u ∈ N 0
x ,

Xλ̃(x, v) = 1, ∀v ∈ N 1
x ;Xλ̃(x, w) = 0, Xλ̃+δ1

(x, w) = 1, ∀w ∈ N 0,1
x )

Let a > 0 be such that P (Tx ∈ [a, a+γ]) > 0 for all γ > 0, and let δ2 ∈ (0, a)
be such that b defined by

b :=
(a+ δ2)λ̃

λ̃+ δ1

satisfies b < a. On the event

{Tx ∈ [a, a+ δ2/2), eλ̃(x, w) ∈ [a+ δ2/2, a+ δ2), ∀w ∈ N 0,1
x ,

eλ̃(x, v) ∈ [a− δ2/2, a), ∀v ∈ N 1
x ,

eλ̃+δ1
(x, u) ∈ [a+ δ2/2, a+ δ2), ∀u ∈ N 0

x}, (63)

for all sites v such that v ∈ N 1
x we have eλ̃(x, v) < Tx hence Xλ′(x, v) = 1; for

all sites u such that u ∈ N 0
x we have Tx < eλ′+δ1(x, u) hence Xλ̃+δ1

(x, u) = 0;
and for all sites w such that w ∈ N 0,1

x we have Tx < eλ̃(x, w) and

eλ̃+δ(x, w) =
λ̃

λ̃+ δ1
eλ̃(x, w) ≤

λ̃

λ̃+ δ1
(a+ δ2) = b < a ≤ Tx
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hence Xλ̃(u, w) = 0 and Xλ̃+δ1
(u, w) = 1.

Since the probability ε(N 0
x ,N

1
x ,N

0,1
x ) of the event (63) is strictly positive,

we conclude the proof of (62) by taking

ι = inf
Nx

ε(N 0
x ,N

1
x ,N

0,1
x ).

�

It is in view of this sprinkling procedure that we chose a propagation rate
λ′ > λc. As in [8, Section 7.2], we go on with two key geometrical lemmas.
The first one, Lemma A.3, corresponds to [8, Lemma 7.9], with a very similar
proof that we omit consequently. The second one, Lemma A.5, corresponds
to [8, Lemma 7.17], that it generalizes in view of its applications for Theorem
3.5 and Lemma 3.7.

Lemma A.3 If λc < λ′ and η > 0, then there exist integers m = m(λ′, η)
and n = n(λ′, η) satisfying (58) and such that

P (there exists a λ′-open path in B(n) ∪ T i,j(m,n) from B(m)

to a seed contained in T i,j(m,n)) > 1− η,

for any choice of (i, j) ∈ {+,−}2.

Notation A.4 Given a subset V of Z3, δ > 0 and x ∈ V , we let σ(x, V, λ′, δ)
be the σ-algebra generated by the indicator functions of the following collec-
tion of events:

{Ty > eλ′(y, z) : y ∈ V, z ∼ y} ∪ {Ty > eλ′+δ(y, z) : y ∈ V ∩ Bx(n)
c, z ∼ y}

(64)
Note that when V ∩Bx(n)

c = ∅, σ(x, V, λ′, δ) is simply the σ-algebra generated
by the indicator functions of {Ty > eλ′(y, z) : y ∈ V, z ∼ y}, which we will
denote by σ(V, λ′).

For A a subset of Z3, recall from (14) that ∆vA denotes the exterior vertex
boundary of A.

Lemma A.5 If λc < λ′ and ǫ, δ > 0, there exists m = m(λ′, ǫ, δ) and n =
n(λ′, ǫ, δ) satisfying (58) and with the following property:
For any choice of (i, j) ∈ {+,−}2, any x ∈ Z3, any set L ⊂ Z3 such that

Bx(m) ⊂ L ⊂ Z3 \ T i,j
x (m,n) (65)
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and for any σ(x, L, λ′, δ)-measurable and event H of strictly positive proba-
bility we have:

P (Gi,j|H) ≥ 1− ǫ, (66)

where

Gi,j = {there exists a path contained in Bx(n) ∪ T i,j
x (m,n) going from L

to a seed contained in T i,j
x (m,n) and such that

its first edge (u, v) with u ∈ L, v ∈ ∆vL is (λ′ + δ)-open

and all its other edges are λ′-open}.

Note that since a λ′-open edge is also (λ′ + δ)-open, all the involved edges
in the path in Gi,j are (λ′ + δ)-open, but we do not know if the first edge of
this path is λ′-open.

��

seed

Bx(n)

L x

Bx(m)

T
+,+
x

open path

Figure 2: In the open path, the first edge going out of L is (λ′+ δ)-open, and
all other edges are λ′-open.

Proof of Lemma A.5. Given A a subset of Z3 and a subset C of ∆vA, let

{A
λ′+δ
⇒ C} (67)

be the event that at least one of the bonds going from A to C is (λ′+δ)-open.
Note that this is a stronger condition than to have a (λ′+ δ)-open path from
A to C.

Let α be the probability that any given bond is λ′-open.
Since the model is invariant under translations and 90 degree rotations it

suffices to show the lemma when x is the origin and (i, j) = (+,+). We will
hence drop x, i and j from the notation. Let

V (L) = {z ∈ ∆vL : there exists a λ′-open path contained in

B(n) ∪ T (m,n) \ L going from z to a seed contained in T (m,n)}.(68)
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Here it is understood that there always is a λ′-open path from a point to
itself. Therefore any z ∈ ∆vL contained in a seed in T (m,n) is in V (L).
Note also that since the path is contained in B(n) ∪ T (m,n), V (L) is a
subset of B(n) ∪ T (m,n). Now write

G = ∪K({L
λ′+δ
⇒ K} ∩ {V (L) = K}) (69)

where the union is over all possible values of V (L).
Our next step is to show that if m and n are properly chosen, the set

V (L) is large with probability close to 1. Let k be a positive integer. Note
that if V (L) has at most k elements, by the FKG inequality (see Remark
3.2), the probability that all the bonds entering V (L) are λ′-closed is at least
(1−α)6k (recall that α is the probability that any given bond is λ′-open, and
that we are working in Z3). All the λ′-open paths going from L to a seed
contained in T (m,n) have to pass through a point in V (L). Hence if all the
bonds entering V (L) are λ′-closed, such a path does not exist. Thus we have

P (there exists a λ′-open path contained in B(n) ∪ T (m,n) \ L

going from L to a seed contained in T (m,n) | |V (L)| ≤ k)

≤ 1− (1− α)6k. (70)

But according to Lemma A.3 there exist m and n such that 2m < n and

P (there exists a λ′-open path contained in B(n) ∪ T (m,n)

going from B(m) to a seed contained in T (m,n))

is as close to 1 as we wish. This implies that

P (there exists a λ′-open path contained (except its initial point) in
B(n) ∪ T (m,n) \ L going from L
to a seed contained in T (m,n)) (71)

is as close to 1 as we wish uniformly in L’s such that

B(m) ⊂ L ⊂ Z3 \ T (m,n). (72)

The probability (71) is equal to

P (there exists a λ′-open path contained (except its initial point) in

B(n) ∪ T (m,n) \ L going from L to a seed contained in

T (m,n) | |V (L)| ≤ k)P (|V (L)| ≤ k)

+P (there exists a λ′-open path contained (except its initial point) in
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B(n) ∪ T (m,n) \ L going from L to a seed contained in

T (m,n) | |V (L)| > k)P (|V (L)| > k)

≤ (1− (1− α)6k)P (|V (L)| ≤ k) + P (|V (L)| > k)

= 1− (1− α)6kP (|V (L)| ≤ k), (73)

where the inequality comes from (70). For this upper bound to be close to
1, P (|V (L)| ≤ k) has to be small. Hence, it follows from (70)–(73) that for
any ǫ0 > 0 and any k ∈ N, we can choose m and n with 2m < n in such a
way that

P (|V (L)| ≤ k) ≤ ǫ0 (74)

for all sets L satisfying (72).

Let K be a subset of ∆vL. We will now provide a lower bound to P (L
λ′+δ
⇒

K |H) which depends on the cardinality of K but is independent of H.
Suppose K has at least 6r elements. Each point u ∈ K has a neighbor
v ∈ L, that we associate to u. But since each point of Z3 has 6 nearest
neighbors, v could be a neighbor of up to 6 points of K, to which it could
have been associated. Then, there exist distinct x1, . . . , xr ∈ L and distinct
y1, . . . , yr ∈ V (L) such that xi ∼ yi for i = 1, . . . , r.

By Lemma A.2, for some ι > 0 we have

P (Xλ′+δ(xi, yi) = 0 |Xλ′+δ(xj, yj) = 0, j = 1, . . . i− 1;H) < 1− ι (75)

for i = 1, . . . , r. It now follows from (75) and an inductive argument that

P (Xλ′+δ(xi, yi) = 0, i = 1, . . . , r |H) < (1− ι)r.

Hence for all K ⊂ ∆vL such that |K| ≥ 6r we have:

P (L
λ′+δ
⇒ K |H) ≥ 1− (1− ι)r (76)

Now write:

P (G, V (L) = K |H) = P (L
λ′+δ
⇒ K,V (L) = K |H)

= P (L
λ′+δ
⇒ K |V (L) = K,H)P (V (L) = K |H)

But the event {V (L) = K} is measurable with respect to the σ-algebra

generated by the random variables (Tx, eλ′(x, y) : x /∈ L) while both {L
λ′+δ
⇒

K} and H are measurable with respect to the σ-algebra generated by the
random variables (Tx, eλ′(x, y), eλ′+δ(x, y) : x ∈ L). Therefore {V (L) = K}

is independent of the pair of events H, {L
λ′+δ
⇒ K}, so that

P (G, V (L) = K |H) = P (L
λ′+δ
⇒ K |H)P (V (L) = K)
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Then summing up over all sets K such that |K| ≥ 6r, it follows from (69)
and (76) that

P (G|H) ≥ (1− (1− ι)r)P (|V (L)| ≥ 6r).

To complete the proof of Lemma A.5 first pick r such that (1− ι)r < ǫ/2 and
then use (74) to pick m and n such that P (|V (L)| ≥ 6r) ≥ 1− ǫ/2. �

Notation A.6 For a given x ∈ Z3 and i = 1, 2, 3, H i
x will denote the hyper-

plane perpendicular to ei passing through x. Before stating the next lemma
where x ∈ B(2N −m), we define T x(m,n) to be the thickened box built from
the quadrant opposite to the one x belongs to in the face H1

x ∩ B(2N −m),
that is

T+,+
x (m,n) if x2 ≤ 0 and x3 ≤ 0

T+,−
x (m,n) if x2 ≤ 0 and x3 > 0

T−,+
x (m,n) if x2 > 0 and x3 ≤ 0

T−,−
x (m,n) if x2 > 0 and x3 > 0

Thanks to Lemmas A.3 and A.5, in the following lemma, we construct open
paths starting in a seed inside B(2N), and reaching either a seed inside
B6Ne1(2N)∩B8Ne1(2N) or inside B6Ne2(2N)∩B8Ne2(2N). For i ∈ {1, 2}, the
successive seeds in these open paths will have centers belonging to the hyper-
planes H i

x+Nei
, H i

x+2Nei
, H i

x+3Nei
, H i

x+4Nei
, . . .; these successive seeds will be

respectively contained in BNei(2N), B2Nei(2N), B3Nei(2N), B4Nei(2N), . . .,
and we will stop as soon as we will get a seed in B8Nei(2N). This construc-
tion will use a steering procedure in which, at each stage, the choice of a seed
in T .(m,n) compensates from an earlier deviation.

Lemma A.7 Given λ′ > λc, for any ǫ, δ > 0 there exist n = n(λ′, ǫ, δ),m =
m(λ′, ǫ, δ) satisfying (58), such that for any x ∈ B(2N −m),

P (C i
x) ≥ 1− 8ǫ, for i ∈ {1, 2}

where

C i
x = {there exists a seed By(m) contained in B8Nei(2N), with yi ≤ 8N

and a path contained in B(3N) ∪B6Nei(3N)

from Bx(m) to By(m) whose edges are all (λ′ + δ)-open and

those which are to the right of (resp. above) the hyperplane

H i
y−Nei

when i = 1 (resp. i = 2) are λ′-open}
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Figure 3: Event C1
x

Proof of Lemma A.7. We consider C1
x. Since the model is invariant under

90 degree rotations, the proof will also be valid for C2
x. Let V1 be the set

of vertices of all λ′-open paths starting at Bx(m) and contained in Bx(n) ∪
T x(m,n). Therefore an edge exiting from V1 and reaching Bx(n) ∪ T x(m,n)
may be (λ′ + δ)-open but cannot be λ′-open. Let

A1
x = {V1 contains a seed in T x(m,n)}.

Note that since x ∈ B(2N −m) a path contained in Bx(n)∪T x(m,n) is also
contained in B(3N). Note also that the center of a seed in T x(m,n) belongs
to H1

x+Ne1
, and that by our definition of T x(m,n) (in Notation A.6) this seed

is contained in BNe1(2N). Thanks to Lemma A.3, there exist n,m such that

P (A1
x) > 1− ǫ (77)

If A1
x occurs, of all the seeds in T x(m,n) ∩ V1 we choose one according to

some arbitrary deterministic order. We now define a random variable Z1 as
follows: on A1

x, Z1 is the center of the chosen seed and on (A1
x)

c, Z1 = ∆
where ∆ is an extra point we add to Z3. Note that on A1

x, Z1 takes values
in the hyperplane H1

x+Ne1
. The random variable Z1 is a function of V1 which

we denote by F1. We now wish to give a lower bound to the conditional
probability given {Z1 = z1} with z1 6= ∆ that there is a path contained in
Bz1(n) ∪ T z1(m,n) from V1 to a seed in T z1(m,n) and having the following
properties:

(i) all its bonds are (λ′ + δ)-open;
(ii) all its bonds which are to the right of H1

x+(N+m)e1
are λ′-open.

Therefore to obtain the lower bound we let L1 be a value of V1 containing a
seed in T x(m,n) and consider the event:

A1(x, L1) = {there exist v1 ∈ L1 ∩ BF1(L1)(n) and a path

from v1 to a seed in T F1(L1)(m,n), contained in

BF1(L1)(n) ∪ T F1(L1)(m,n) whose edges are all (λ′ + δ)-open

and those to the right of H1
x+(N+m)e1

are λ′-open}.
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The event {V1 = L1} is σ(L1, λ
′)-measurable (recall Notation A.4), hence it

follows from Lemma A.5 that

P (A1(x, L1)|V1 = L1) ≥ 1− ǫ (78)

Let V2 be the set of vertices of all the paths with the following properties:
(i) they start from Bx(m);
(ii) they are contained in B(3N) ∪ BNe1(3N) and lie entirely to the left

of H1
x+(2N+m)e1

;

(iii) all their edges are (λ′+ δ)-open and those to the right of H1
x+(N+m)e1

are λ′-open.
We also define the event

A2
x = {V2 contains a seed centered in H1

x+2Ne1
∩ B2Ne1(2N −m)}

Noting that A2
x contains A1(x, L1) ∩ {V1 = L1} for any L1 containing a seed

in T x(m,n), summing over all such L1’s we get by (77) and (78)

P (A2
x) ≥

∑

L1

P (A1(x, L1)|V1 = L1)P (V1 = L1)

≥
∑

L1

(1− ǫ)P (V1 = L1) = (1− ǫ)P (A1
x)

≥ (1− ǫ)2 ≥ 1− 2ǫ (79)

Now we define a random variable Z2 as follows: on the event A2
x among

the seeds contained in V2 and centered in H1
x+2Ne1

∩ B2Ne1(2N − m) we
choose one according to some arbitrary deterministic order and we let Z2

be its center. On (A2
x)

c we let Z2 = ∆. Thus, Z2 is a function F2 of V2.
As before we let L2 be a possible value of V2 containing a seed centered in
H1

x+2Ne1
∩B2Ne1(2N −m) and consider the event:

A2(x, L2) = {there exist v2 ∈ L2 ∩ BF2(L2)(n) and a path from v2 to a

seed in T F2(L2)(m,n), contained in BF2(L2)(n) ∪ T F2(L2)(m,n)

whose edges are all (λ′ + δ)-open and those to the right of

H1
x+(2N+m)e1

are λ′-open}.

The event {V2 = L2} is σ(F2(L2), L2, λ
′, δ)-measurable, hence it follows from

Lemma A.5 that
P (A2(x, L2)|V2 = L2) ≥ 1− ǫ

We now let V3 be the set of vertices belonging to all the paths with the
following properties:
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(i) they start from Bx(m);
(ii) they are contained in B(3N) ∪ BNe1(3N) and lie entirely to the left

of H1
x+(3N+m)e1

;

(iii) all their edges are (λ′+δ)-open and those to the right of H1
x+(2N+m)e1

are λ′-open.
We also define the event:

A3
x = {V3 contains a seed centered in H1

x+3Ne1
∩ B3Ne1(2N −m)}

Since A3
x contains A2(x, L2) ∩ {V2 = L2} we can argue as before and get:

P (A3
x) ≥ 1− 3ǫ.

The argument is then repeated until we reach a seed in B8Ne1(2N). The total
number of steps needed is at most 8. Since at each step the probability is
reduced by ǫ, the lemma is proved. �

Then define
Cx = C1

x ∩ C2
x (80)

From Lemma A.7 we get:

Corollary A.8 Given λ′ > λc, for any ǫ, δ > 0 there exist n,m such that
for any x ∈ B(2N −m) we have

P (Cx) ≥ 1− 16ǫ

Next lemma fixes the values of all the parameters introduced up to now.

Lemma A.9 Assume λ > λc. Then, there exist constants m,N,K and ι > 0
such that for all k,

P (there exists a λ-open path contained in

[−3N, (3 + 8k)N ]× [−3N, (3 + 8k)N ]× [−3N, 3N ]

from B(m) to a seed in B8Nke1+8Nke2(2N)

whose number of edges is at most 2Kk) ≥ ι.

Proof of Lemma A.9. We first fix ǫ > 0 small enough for the two dimensional
oriented site percolation of parameter 1 − 16ǫ to be supercritical. Then we
take λ′ > λc and δ > 0 such that λ′ + δ < λ. Finally for those values of ǫ,
δ and λ′ we fix n, m and N = n +m + 1 satisfying (58) and such that the
conclusion of Corollary A.8 is valid.
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We create a two dimensional oriented site percolation on (Z+)
2 associated to

the percolation model we already have. We will refer to this model as the
“renormalized model”, while the percolation model we already had on Z3

will be referred to as the “original model”. On the renormalized model all
the paths are oriented upwards and towards the right; moreover, two subse-
quent sites of a path are at euclidean distance 1. We now explain the way
in which these models are associated. In the renormalized model site (0, 0)
is always considered open, site (0, 1) is open (closed) if C1

0 occurs (does not
occur) in the original model. Similarly, (1, 0) is open (closed) if C2

0 occurs
(does not occur) in the original model. Note that although the states of these
last two sites (0, 1) and (1, 0) are dependent, by Corollary A.8 they are both
open with probability at least 1−16ǫ. We then proceed recursively as follows.

At the n-th step we will look at the points in {(x, y) ∈ Z2
+ : x + y = n− 1}

which have been reached in the renormalized model from (0, 0) following open
paths and order them according to their second coordinates. We start from
the point having the lowest second coordinate. Assume it is (x1, n− 1− x1).
This point was reached from either (x1 − 1, n − 1 − x1) or (x1, n − 2 − x1).
In the first case, in the original model a seed is reached in left portion of
B8Nx1e1+8N(n−1−x1)e2(2N) (remember the description given before the state-
ment of Lemma A.7). Let z1 be the center of this seed. If C1

z1
occurs (does

not occur) in the original model we say that site (x1 + 1, n − 1 − x1) in the
renormalized model is open (closed). And if C2

z1
occurs (does not occur)

in the original model we say that site (x1, n − x1) is open (closed). Note
that since z1 is in the left portion of B8Nx1e1+8N(n−1−x1)e2(2N), when we at-
tempt to move upwards, the first seed we are seeking is centered to the right
of z1 due to our steering procedure, thus avoiding regions where we have
already used (λ′ + δ)-open edges. In the second case, the seed reached in
the original model (we again denote its center by z1) is in the lowest por-
tion of B8Nx1e1+8N(n−1−x1)e2(2N) and when we want to establish if C1

z1
occurs

we will be looking for paths reaching a seed whose center is above z1. We
then move to the second point in {(x, y) ∈ Z2

+ : x + y = n − 1} which has
been reached in the renormalized model from (0, 0) following open paths. Let
(x2, n−1−x2) be that point and let z2 be the center of the seed located inside
B8Nx2e1+8N(n−1−x2)e2(2N) which was reached in the original model following
open paths starting at B(m). Two different cases arise: either x2 = x1−1 or
x2 < x1 − 1. In the first case the point (x2 +1, n− 1− x2) = (x1, n− x1) has
already been declared open or closed and remains in that state. Then, we
declare (x2, n−x2) open (closed) if C2

z2
occurs (does not occur) in the original

model. In the second case (when x2 < x1 − 1) we declare (x2 +1, n− 1− x2)
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open (closed) if C1
z2

occurs (does not occur) in the original model and we de-
clare (x2, n− x2) open (closed) if C2

z2
occurs (does not occur) in the original

model. Then we go on.

We now note that for all n each site examined in the set {(x, y) : x+ y = n}
has probability bigger than 1− 8ǫ of being open and that such sites are de-
pendent at most by pairs. This implies, as explained in the following lines,
that the open cluster of the origin is stochastically above the open cluster of
an independent oriented site percolation model of parameter 1− 16ǫ.

For this, we again proceed by induction on n. We denote by a1, a2, . . . , ak the
points in the open cluster of the origin that belong to {(x, y) ∈ Z2

+ : x+ y =
n}. We assume that they are ordered according to their second coordinates.
Point a1 has two neighbors b1, b2 on {(x, y) ∈ Z2

+ : x + y = n + 1}. They
are both open with probability at least 1− 16ǫ, which is stochastically larger
than if they were both independently open with probability 1−16ǫ. In other
words, if a random vector (Y1, Y2) with coordinates taking values in {0, 1} is
such that P (Y1 = Y2 = 1) ≥ 1−16ǫ, then the vector (Y1, Y2) is stochastically
larger than the vector (X1, X2) where X1 and X2 are independent Bernoulli
r.v.’s of parameter 1 − 16ǫ. Going on, if a2 = a1 + (−1, 1), then we just
have to consider the point b3 = a2 + (0, 1), because a2 + (1, 0) has already
been examined. This point b3 will be open with probability at least 1 − 8ǫ
independently of what happened with b1 and b2. Otherwise if a2 is more
distant from a1 we have to examine b3 = a2+(1, 0) and b4 = a2+(1, 0): they
will both be open with probability at least 1 − 16ǫ independently of what
happened with b1 and b2, and so on. In the end, to each examined point on
{(x, y) ∈ Z2

+ : x + y = n + 1} is attached a r.v. with value 1 if it is open
and 0 if it is closed. The r.v.’s thus obtained are stochastically larger than a
sequence of independent Bernoulli r.v.’s of parameter 1− 16ǫ.

Thus, for our choice of ǫ the renormalized model is supercritical and there
exists a constant ι > 0 such that P ((0, 0) → (k, k)) ≥ ι for all k ∈ N. Note
also that the existence of an open oriented path from (0, 0) to (k, k) (which
has length 2k) in the renormalized model implies the existence of a (λ′ + δ)-
open path in the original model from B(m) to some seed in B8Nke1+8Nke2(2N)
whose number of edges is bounded above by 2Kk where K is some constant
that depends on N but not on k. Indeed suppose that the point follow-
ing (0, 0) in the path of the renormalized model is (1, 0). This means that
there exists an open path in the original model from a seed in B(2N) to a
seed in B8Ne1(2N). This last path is not oriented, but being contained in
B(3N)∪B6Ne1(3N), it uses only edges in this set. The total number of edges
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in the latter is a function of N which does not depend on k, that we denote
by K(N). Hence the derived open path in the original model from a seed
in B(2N) to a seed in B8Nke1+8Nke2(2N) has a number of edges bounded by
2K(N)k. �

For our next result we define the boxes:

Bi,j = B(3+8i)Ne1+(3+8j)Ne2(2N)

where i and j are non-negative integers.

Corollary A.10 Assume λ > λc. Let N be as in the conclusion of Lemma
A.9. Then, there exist ι′ > 0 and K ′ ∈ N such that: For any k ∈ N and any
0 ≤ i1, i2, j1, j2 ≤ k we have

P (there exists a λ-open path contained in

[0, (6 + 8k)N ]× [0, (6 + 8k)N ]× [−3N, 3N ] from Bi1,i2 to

Bj1,j2 whose number of edges is at most 2K ′(|i1 − j1|+ |i2 − j2|)) ≥ ι′.

Proof of Corollary A.10. We wish to join Bi1,i2 to Bj1,j2 . Lemma A.9 enables
to go from a box to another one along a diagonal direction issued from that
box. Hence applying Lemma A.9 we get

P (there exists a λ-open path contained in

[0, (6 + 8k)N ]× [0, (6 + 8k)N ]× [−3N, 3N ] from Bi1,i2 to

Bi1+r,i2+r whose number of edges is at most 2Kr) ≥ ι

for all r ∈ N such that i1 + r, i2 + r ≤ k. Since the percolation model is
invariant under 90 degree rotations, the same inequality holds if instead of
adding (r, r) to (i1, i2) we add (r,−r),(−r, r) or (−r,−r). That is, instead
of going in one direction of one diagonal issued from (i1, i2), we may take
this diagonal in the other direction, or one direction of the other diagonal
issued from (i1, i2). This depends on the relative positions of (i1, i2) and
(j1, j2) within the square [0, k] × [0, k] to which they both belong. More
precisely, from (i1, i2) and from (j1, j2) is issued a diagonal, and those two
diagonals intersect within [0, k]× [0, k]. If this intersection point has integer
coordinates, it can be written (i1+r1, i2+r2) as well as (j1+ℓ1, j2+ℓ2), with
r1 = r2 or r1 = −r2 (depending on which diagonal issued from (i1, i2) was
used), and with ℓ1 = ℓ2 or ℓ1 = −ℓ2 similarly. If this intersection point does
not have integer coordinates, on each of the involved diagonals there is one
point with integer coordinates, with those two points at distance 1, of the
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form (i1 + r1, i2 + r2) and (j1 + ℓ1, j2 + ℓ2), always with r1 = r2 or r1 = −r2,
and ℓ1 = ℓ2 or ℓ1 = −ℓ2. To summarize, there exist integers r1, r2, ℓ1, ℓ2 with
the following properties

1. r2 = r1 or r2 = −r1 and ℓ2 = ℓ1 or ℓ2 = −ℓ1;

2. 0 ≤ i1 + r1, i2 + r2, j1 + ℓ1, j2 + ℓ2 ≤ k;

3. either |i1 + r1 − (j1 + ℓ1)|+ |i2 + r2 − (j2 + ℓ2)| = 0
or |i1 + r1 − (j1 + ℓ1)|+ |i2 + r2 − (j2 + ℓ2)| = 1;

4. |r1|+ |ℓ1| ≤ |i1 − j1|+ |i2 − j2|.

(i1 − j1) + (i2 − j2) is even

(i1 + r1, i2 + r2)
= (j1 + ℓ1, j2 + ℓ2)

(i1 − j1) + (i2 − j2) is odd

(i1, i2)

(j1, j2)

(i1 + r1, i2 + r2)

(j1 + ℓ1, j2 + ℓ2)

(i1, i2)

(j1, j2)

Figure 4: Two possible cases

The corollary now follows from Lemma A.9, the FKG inequality (see Remark
3.2) and the fact that the distance from a point in Bi1+r1,i2+r2 to a point in
Bj1+ℓ1,j2+ℓ2 is bounded above by 20N . �

Proposition A.11 Suppose λ > λc. Then there exist constants C,N and
δ1 > 0 such that

a) for all M ≥ 6N , x, y ∈ [0,M ]× [0,M ]× [−3N, 3N ],

P (there exists an open path from x to y contained in

[0,M ]× [0,M ]× [−3N, 3N ] with at most C‖x− y‖1 edges) ≥ δ1

b) The original model is supercritical in a slab on thickness k = 6N .

Proof of Proposition A.11. It follows from Lemma A.9 that the probability of
having an open path of length n starting in B(m) and contained in the slab
Z× Z× [−3N, 3N ] does not converge to 0 as n goes to infinity. This proves
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part b). To prove part a) consider the boxes B(3N+8Ni)e1+(3N+8Nj)e2 with 0 ≤
i, j ≤ (M

N
−6)1

8
. Then, note that for any point in [0,M ]× [0,M ]× [−3N, 3N ]

there is such a box at distance at most 12N . The result now follows from
this, the FKG inequality (see Remark 3.2) and Corollary A.10. �

We have now all the ingredients for the

Proof of Theorem 3.5. Let x and y be two points in a slab of thickness
6N . By Proposition A.11, the probability to have an open path from x to
y in the slab is larger than δ1. Therefore the probability for the outgoing
cluster from x in the slab to be infinite, as well as the probability for the
incoming cluster to y in the slab to be infinite, is at least δ1.

Note that Proposition A.11 gives more precise information, since it re-
stricts the involved open paths to a part of the slab, and gives an upper
bound on the lengths of the paths.

Proof of Lemma 3.7. For two points x and y, the idea to build an open
path from x to y is to combine paths in different slabs using in each one
Proposition A.11,a).

(i) Let δ1,M and C be given by Proposition A.11, and let k ≥ M . For n > 0,
let x = (x1, x2, x3) ∈ Bn+k\Bn, y = (y1, y2, y3) ∈ (Bn+k\Bn)∪∆v(Bn+k\Bn).
Assume for instance that x1 < −n, n < y1, −n < x2 < n and −n < y2 < n.
Let u, v ∈ Bn+k \ Bn with −n < u1, n < u2 and n < v1, v2. By Proposition
A.11,a) there exist with a probability larger than δ1 an open path from x to
u, as well as from u to v and from v to y. By FKG inequality (see Remark
3.2) there exists therefore with a probability larger than δ31 an open path
from x to y. Since this particular case gives the maximal distance between
x and y, δ = δ31 enables to conclude.

(ii) Let n < m, x ∈ A(n,m, 0), y ∈ A(n,m, 0) ∪∆vA(n,m, 0). We proceed
similarly to (i). Assume for instance that x1 < n, x2 < 0 and m < y1, y2 < 0.
Let u, v ∈ A(n,m, 0) be such that u1 < n, 0 < u2 and m < v1, 0 < v2. By
Proposition A.11,a) there exist with a probability larger than δ1 an open
path from x to u, as well as from u to v and from v to y. We conclude with
δ = δ31 and C1 = C.

Note that we have to add (−x2)
+ + (−y2)

+ in part (ii) of the lemma be-
cause if x ∈ {z : −k + n ≤ z1 < n,−∞ < z2 ≤ 0} and y ∈ {z : m < z1 ≤
m+ k,−∞ < z2 ≤ 0}, to move from x to y staying in A(n,m, 0) we need to
reach first the set {z : −k + n ≤ z1 ≤ m + k, 0 < z2 ≤ k} (i.e. to increase
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the second coordinate until it is positive).

Proof of (20) of Lemma 4.3. Relying on Proposition A.11,b), we can fol-
low the proof of [8, Theorems (8.18), (8.21)] to derive (20).
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