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Abstract

We prove a shape theorem for the set of infected individuals in a
spatial epidemic model with 3 states (susceptible-infected-recovered)
on Zd, d ≥ 3, when there is no extinction of the infection. For this,
we derive percolation estimates (using dynamic renormalization tech-
niques) for a locally dependent random graph in correspondence with
the epidemic model.

Keywords: Shape theorem, epidemic model, first passage locally dependent
percolation.
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1 Introduction

Mollison has introduced in [13], [14] a stochastic spatial general epidemic
model on Zd, describing the evolution of individuals submitted to infection
by contact contamination of infected neighbors. More precisely, each site of
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Zd can be healthy, infected, or immune. At time 0, there is an infected indi-
vidual at the origin, and all other sites are occupied by healthy individuals.
An infected individual emits germs according to a Poisson process, it stays
infected for a random time, then it recovers and becomes immune to further
infection. A germ emitted from x ∈ Zd goes to one of the neighbors y ∈ Zd

of x chosen at random. If the individual at y is healthy then it becomes
infected and begins to emit germs; if this individual is infected or immune,
nothing happens. The germ emission processes and the durations of infec-
tions of different individuals are mutually independent.

Since its introduction, this epidemic model has given rise to many studies,
and to other models that are variations of this “SIR” (Susceptible-Infected-
Recovered) structure. A first direction is whether the different states aymp-
totically survive or not, according to the values of the involved parameters
(e.g. the infection and recovery rates). A second direction is the obtention
of a shape theorem for the asymptotic behavior of infected individuals, when
there is no extinction of the infection (throughout this paper, extinction is
understood as extinction of the infection).

Kelly in [8] proved that for d = 1, extinction is almost sure for the spa-
tial general epidemic model. Kuulasmaa in [10] has studied the threshold
behavior of this model in dimension d ≥ 2. He proved that the process
has a critical infection rate below which extinction is almost certain, and
above which there is survival. His work (as well as the following ones on
this model) is based on the analysis of a directed oriented percolation model,
that he calls a locally dependent random graph, in correspondence with the
epidemic model. See also the related paper [11].

Cox & Durrett have derived in [5] a shape theorem for the set of infected
individuals in the spatial general epidemic model on Z2, when there is no
extinction, and the contamination rule is nearest neighbor. This result was
extended to a finite range contamination rule by Zhang in [15]. The proofs
in [5], [15] are based on the correspondence with the locally dependent ran-
dom graph, and they refer to [4] (which deals with first passage percolation).
They rely on the introduction of circuits to delimit and control open paths,
hence cannot be used above dimension d = 2.

Chabot proved in [3] the shape theorem for the infected individuals of the
spatial general epidemic model in dimension d ≥ 3, with the restriction to de-
terministic durations of infection: in that case the oriented percolation model
is comparable to a non-oriented Bernoulli percolation model (as noticed in
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[10], the case with constant durations of infection is the only one where the
edges are independent). He also exploited the papers [1] by Antal & Pisz-
tora, and [7] by Grimmett & Marstrand on dynamic renormalization to deal
with dimension d ≥ 3. He introduced some random neighborhoods for points
in Zd and with these instead of circuits he was able to extend the proof of [5].

In the present work, we prove the shape theorem for infected individuals
in the spatial general epidemic model in dimension d ≥ 3, when the du-
rations of infection are random variables. There, the comparison with non
oriented percolation done in [3] is not longer valid. Our approach requires
to adapt techniques of [7], and to derive sub-exponential estimates to play
the role of the exponential estimates of [1]. It is then possible to follow the
skeleton of [3].

In Section 2 we define the spatial general epidemic model, the locally depen-
dent random graph, and we state our main result, Theorem 2.1. In Section 3
we derive the necessary percolation estimates on the locally dependent ran-
dom graph for Theorem 2.1. We prove the latter in Section 4, thanks to an
analysis of the passage times for the epidemic.

2 The model: definition and result

Let d ≥ 3. The epidemic model on Zd is represented by a Markov process
(ηt)t≥0 of state space Ω = {0, i, 1}Z

d

. The value ηt(x) ∈ {0, i, 1} is the
state of individual x at time t: state 1 if the individual is healthy (but not
immune), state i if it is infected, or state 0 if it is immune. To describe how
the epidemic propagates, we introduce a locally dependent oriented bond
percolation model on Zd.

For x = (x1, . . . , xd) ∈ Zd, y = (y1, . . . , yd) ∈ Zd, ‖x−y‖1 =
∑d

i=1 |xi−yi|
denotes the l1 norm of x− y, and we write x ∼ y if x, y are neighbors, that
is ‖x − y‖1 = 1. Let (Tx, e(x, y) : x, y ∈ Zd, x ∼ y) be independent random
variables on a probability space, whose probability is denoted by Pλ for a
parameter λ > 0, such that

1) the Tx’s are positive with a common distribution satisfying Pλ(Tx =
0) < 1;

2) the e(x, y)’s are exponentially distributed with parameter λ.
We define

X(x, y) =
{
1 if e(x, y) < Tx;
0 otherwise.

(1)

The oriented bond (x, y) is said open with passage time e(x, y) (abbreviated
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λ-open, or open when the parameter is fixed) if X(x, y) = 1 and closed (with
infinite passage time) if X(x, y) = 0.

For a given infected individual x, Tx denotes the amount of time x stays
infected; during this time of infection, x emits germs according to a Poisson
process of parameter 2dλ; when Tx is over, x recovers and its state becomes
0 forever. An emitted germ from x reaches one of the 2d neighbors of x
uniformly. If this neighbor is in state 1, it immediately changes to state i,
and begins to emit germs according to the same rule; if this neighbor is in
state 0 or i, nothing happens.

We denote by Co
o the set of sites x ∈ Zd that will ever become infected

if, at time 0, the origin o = (0, . . . , 0) is the only infected site while all other
sites are healthy, that is

Co
o = {x ∈ Zd : ∃ t ≥ 0, ηt(x) = i|η0(o) = i, ∀ z 6= o, η0(z) = 1}. (2)

It was proven in [5, (1.2)] (see also [13, p. 322], [10, Lemma 3.1]) that Co
o is

the set of sites that can be reached from the origin following an open path,
that is a path of open oriented bonds.

More generally, for each x ∈ Zd we define the ingoing and outgoing clus-
ters to and from x to be

C i
x = {y ∈ Zd : y → x}, Co

x = {y ∈ Zd : x → y}, (3)

and the corresponding critical values to be

λi
c = inf{λ : P (|C i

x| = +∞) > 0}, λo
c = inf{λ : P (|Co

x| = +∞) > 0},
(4)

where “x → y” means that there exists (at least) an open path Γx,y =
(x0 = x, x1, . . . , xn = y) from x to y, and |A| denotes the cardinality of a set
A. Although we are using the symbol o for both the origin and the outgoing
cluster we believe no confusion will arise because in the former case it appears
as a subindex while in the latter it does so as a superindex.

We will prove in Section 3 the following proposition.

Proposition 2.1

λi
c = λo

c.

This common value will be denoted by λc = λc(Z
d).

We can now state our main result:
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Theorem 2.1 Assume λ > λc. Define, for t ≥ 0,

ξt = {x ∈ Zd : x is immune at time t} = {x ∈ Zd : ηt(x) = 0};

ζt = {x ∈ Zd : x is infected at time t} = {x ∈ Zd : ηt(x) = i}.

Then there exists a convex subset D ⊂ Zd such that, for all ε > 0 we have

(
(1−ε)tD∩Co

o

)
⊂
(
ξt∪ζt

)
⊂
(
(1+ε)tD∩Co

o

)
a.s. for t large enough; (5)

and if E(T d
z ) < ∞ we also have

ζt ⊂
(
(1 + ε)tD \ (1− ε)tD

)
a.s. for t large enough. (6)

In other words, the epidemic’s progression follows linearly the boundary of a
convex set.

To derive this theorem we follow some of the fundamental steps of [5], but
since in dimensions three or higher, circuits are not useful as in dimension 2,
this is not a straightforward adaptation. On the percolation model, we first
construct for each site z ∈ Zd a neighborhood V(z) in such a way that two
neighborhoods are always connected by open paths. For x, y ∈ Zd, we show
that the time τ(x, y) for the epidemic to go from x to y is ‘comparable’ (in
a sense to be precised later on) to the time τ̂(x, y) it takes to go from V(x)
to V(y). Then we approximate the passage times between different sites by
a subadditive process, we derive through Kingman’s subbaditive theorem a
radial limit ϕ(x) (for all x), which is asymptotically the linear growth speed
of the epidemic in direction x. We establish that the global propagation
speed is at most linear in z for τ̂(o, z). Finally we prove an asymptotic shape
theorem for τ̂(o, ·), from which we deduce Theorem 2.1.

3 Percolation estimates

In this section we collect some results concerning the locally dependent ran-
dom graph, that is the oriented percolation model given by the random vari-
ables (X(x, y), x, y ∈ Zd) introduced in Section 2. Note that although these
r.v.’s are not independent, the random vectors {X(x, x + e1), . . . , X(x, x +
ed), X(x, x − e1), . . . , X(x, x − ed) : x ∈ Zd} (where (e1, . . . , ed) denotes the
canonical basis of Zd) are i.i.d. This small dependence forces us to explain
why some results known for independent percolation remain valid in this
context.

5



Remark 3.1 The function X(x, y) is increasing in the independent random
variables Tx and −e(x, y). It then follows as in [5, Lemma (2.1)] that the
r.v. (X(x, y) : x, y ∈ Zd, y ∼ x) satisfy the following property: If U and V
are bounded increasing functions of the random variables (X(x, y) : x, y ∈
Zd, y ∼ x), then E(UV ) ≥ E(U)E(V ).

For n ∈ N \ {0}, let Bn = [−n, n]d, let ∂Bn denote the boundary vertex
points of Bn, and, for x ∈ Rd, B(x, n) = x + Bn. For A,R ⊂ Zd, “A → R”
means that there exists an open path Γx,y from some x ∈ A to some y ∈ R.

Theorem 3.1 Suppose λ < λo
c, then there exists βo > 0 such that for all

n > 0,
Pλ(o → ∂Bn) ≤ exp(−βon).

This is a special case of [2, Theorem (3.1)], whose proof can be adapted to
obtain:

Theorem 3.2 Suppose λ < λi
c, then there exists βi > 0 such that for all

n > 0,
Pλ(∂Bn → o) ≤ exp(−βin).

It is worth noting that in the context of our paper, by Remark 3.1, [2, The-
orem (3.1)] can be proved using the BK inequality instead of the Reimer
inequality (see [6, Theorems (2.12), (2.19)]).

Theorems 3.1, 3.2 yield Proposition 2.1:

Proof of proposition 2.1. Suppose λ < λi
c. Then by translation invariance

and Theorem 3.2 we have that for any x ∈ ∂Bn, Pλ(o → x) ≤ exp(−βin).
Adding over all points of ∂Bn we get Pλ(o → ∂Bn) ≤ K ′nd exp(−βin) for
some constant K ′, which implies that limn→+∞ Pλ(o → ∂Bn) = 0. Therefore
λ ≤ λo

c and λi
c ≤ λo

c. The other inequality is obtained similarly. �

From now on, we assume λ > λc(Z
d) and use the following notation: For

x, y ∈ Zd, A ⊂ Zd,
(i) {x → y within A} is the event on which there exists an open path
Γx,y = (x0 = x, x1, . . . , xn = y) from x to y such that xi ∈ A for all
i ∈ {0, . . . , n− 1}. Note that the end point y may not belong to A.
(ii) {x → y outside A} is the event on which there exists an open path
Γx,y = (x0 = x, x1, . . . , xn = y) from x to y such that none of the xi’s
(i ∈ {0, . . . , n}) belongs to A.
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Definition 3.1 For x ∈ Zd, A ⊂ Zd let

C i
x(A) = {y ∈ A : y → x within A} and

Co
x(A) = {y ∈ A : x → y within A}.

Note that with this definition C i
x(A) ⊂ A and Co

x(A) ⊂ A.
Next proposition on percolation on slabs follows from the methods of [7]

or [6, Chapter 7].

Proposition 3.1 For any k ∈ N \ {0}, let Sk = Zd−1 × {0, 1, . . . , k} denote
the slab of thickness k. Then for k large enough we have infx∈Sk

Pλ(|C
i
x(Sk)| =

+∞) > 0 and infx∈Sk
Pλ(|C

o
x(Sk)| = +∞) > 0.

More precisely, to adapt [6, Chapter 7], it is convenient to define the processes
for different values of λ on the same probability space, whose probability
is denoted by P . This is done as follows: Let e1(x, y) be a collection of
independent exponential r.v.’s as before, but now with parameter 1. Then
let eλ(x, y) = λ−1e1(x, y), and

Xλ(x, y) =
{
1 if eλ(x, y) < Tx;
0 otherwise.

(7)

The following lemma implies that given K and δ1 > 0, there exists ε1 > 0
such that for any λ ∈ [0, K] the random field {Xλ+δ1(u, v) : u, v ∈ Zd} is
stochastically above the random field {max{Xλ(u, v), Y (u, v)} : u, v ∈ Zd}
where the random variables Y (u, v) are i.i.d. Bernoulli with parameter ε1 and
are independent of the random variables Xλ(u, v). This lemma justifies the
use of this sprinkling technique. Its proof is elementary and will be omitted.
Then, with Lemma 3.1 one can adapt the proof of [6, Theorem (7.2)] to get
Proposition 3.1.

Lemma 3.1 Let K and δ1 be strictly positive, then there exists ε > 0 such
that for any λ ≤ K,u ∈ Zd,

P (Xλ+δ1(u, v) = 1 ∀v ∼ u| Xλ(x, y) : x, y ∈ Zd, x ∼ y) > ε a.s.

We introduce now some notation: For A ⊂ Zd we define the exterior vertex

boundary ∆VA as:

∆VA = {x ∈ Zd : x /∈ A, x ∼ y for some y ∈ A}.

If x → y let D(x, y) be the smallest number of bonds required to build
an open path from x to y. For A ⊂ Zd, x ∈ A, y ∈ ∆VA, “D(x, y) <
m within A” means that there is an open path Γx,y using less than m bonds
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from x to y whose sites are all in A except for y.
The rest of this section provides some upper bounds for the tail of the con-
ditional distribution of D(x, y) given the event {x → y}. These estimates
are not optimal and better results can be obtained by adapting the methods
of [1]. Instead of getting exponential decays in ‖x − y‖1 (or in n) we get

exponential decays in ‖x−y‖
1/d
1 (or in n1/d). We have adopted this approach

because the weaker results suffice for our purposes and are easier to obtain.

Lemma 3.2 There exist δ > 0, C1 > 0 and k ∈ N \ {0} such that
(i) ∀n > 0, x ∈ Bn+k \Bn, y ∈ (Bn+k \Bn) ∪∆V (Bn+k \Bn) we have :

P (x → y within Bn+k \Bn) > δ.

(ii) Let

An,m = {z : −k + n ≤ z1 < n,−∞ < z2 ≤ k}∪
{z : −k + n ≤ z1 ≤ m+ k, 0 < z2 ≤ k}∪
{z : m < z1 ≤ m+ k,−∞ < z2 ≤ k}.

∀n < m, ∀x ∈ Am,n, ∀y ∈ Am,n ∪∆VAm,n, we have:

P (D(x, y) < C1(‖x− y‖1 + |x2|+ |y2|) within Am,n) > δ.

Again, the proof of this lemma relies on the methods of [6, Chapter 7] and [7].
Since it is not an entirely straightforward adaptation we make some remarks
that we believe will help the reader.

Remark 3.2 In [6, Chapter 7], renormalised sites, which we will call r-sites,
are introduced. These are the hypercubes Bk = [−k, k]d and their translates
B(2kx, k) = [−k, k]d + 2kx, x ∈ Zd. We will denote by x both the point
in Zd and the r-site centered at 2kx since we believe no confusion will arise
from this. Loosely speaking, these r-sites are called occupied if they are well
connected with their neighbors. Crucial for this method is the fact that for
any given p ∈ (0, 1) the set of occupied r-sites dominates a Bernoulli prod-
uct measure of density p if k is large enough. In [6, Chapter 7] and [7],
p is taken above the critical value for non-oriented Bernoulli percolation on
some subset of Zd, but here it is convenient to take it above the critical value
of 2-dimensional oriented bond percolation. This choice of p and the corre-
sponding choice of k guarantee the following property:

(P) There exists γ > 0 such that for any pair of r-sites u and v the probability
that there exists a path of occupied r-sites going from u ∈ Zd to v ∈ Zd which
uses at most 2‖u− v‖1 r-sites is at least γ.
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From this property (P) one deduces that there exist δ > 0 and C1 such that
for any pair x, y ∈ Z2 × [−k, k]d−2 the probability that there is an open path
from x to y contained in Z2 × [−k, k]d−2 that uses at most C1‖x− y‖1 bonds
is at least δ.

Remark 3.3 We have to add |x2| + |y2| because if x ∈ {z : −k + n ≤ z1 <
n,−∞ < z2 ≤ 0} and y ∈ {z : m < z1 ≤ m + k,−∞ < z2 ≤ 0}, to move
from x to y staying in Am,n we need to reach first the set {z : −k+n ≤ z1 ≤
m+k, 0 < z2 ≤ k} (i.e. to increase the second coordinate until it is positive).

Lemma 3.3 Let k be given by Lemma 3.2 and let x and y be points in Zd.
For n ∈ Z let Hn = {x ∈ Zd : x1 = n} and define the events

Jn = {x → Hx1−1−ik within B(x, nk), i = 0, . . . ⌊n/2⌋}∩
{Hy1+1+ik → y within B(y, nk), i = 0, . . . ⌊n/2⌋},

Gn = {x → ∂B(x, kn), ∂B(y, kn) → y},

where, for any a ∈ R, ⌊a⌋ denotes the greatest integer not greater than a.
Then, there exists β > 0 such that

P (Jn|Gn) ≥ 1− exp(−βn).

Proof of lemma 3.3. By translation invariance we may assume that x is the
origin. When Gn occurs there are open paths from o to B(o, ik)\B(o, (i−1)k)
and to y from B(y, ik) \ B(y, (i − 1)k) for i = 2, . . . , n. Hence we conclude
by part (i) of Lemma 3.2. �

Lemma 3.4 Let k be given by Lemma 3.2 and let Gn be as in Lemma 3.3.
Then, there exist constants C2, C3 and α2 > 0 such that for all x, y ∈ Zd,
n ∈ N we have

P (D(x, y) > C2‖x− y‖1 + C3(nk)
d| Gn) ≤ exp(−α2n).

Proof of lemma 3.4. Again, by translation invariance we may assume that x
is the origin and without loss of generality, we also assume that y1 > 0 and
y2 ≥ 0. By Lemma 3.3 it suffices to show that

P (D(o, y) > C2‖x− y‖1 + C3(nk)
d| Jn)

decays exponentially in n.
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Let r = ⌊n/2⌋, and for 1 ≤ j ≤ r let

A0 = {z : −k ≤ z1 < 0, −∞ < z2 ≤ y2 + k}∪
{z : −k ≤ z1 ≤ y1 + k, y2 < z2 ≤ y2 + k}∪
{z : y1 < z1 ≤ y1 + k, −∞ < z2 ≤ y2 + k},

Aj = {z : −(j + 1)k ≤ z1 < −jk, −∞ < z2 ≤ y2 + k}∪
{z : −(j + 1)k ≤ z1 ≤ y1 + (j + 1)k,

y2 + jk < z2 ≤ y2 + (j + 1)k}∪
{z : y1 + jk < z1 ≤ y1 + (j + 1)k, −∞ < z2 ≤ y2 + (j + 1)k}. (8)

Note that the sets A0, . . . , Ar are disjoint. Figure 1 should help the reader

y

0

AAAA A A A3 3A1 1A 0 02 2

Figure 1: the event W3

to visualize them. On the event Jn, we can reach from the origin each of
these sets by means of an open path contained in Bnk and from each of these
sets we can reach y by means of an open path contained in B(y, nk). Hence,
on Jn for each i ∈ {0, . . . , r} there exists a random point Ui ∈ Bnk ∩ Ai and
there is an open path from the origin to Ui such that all its sites except Ui

are in Bnk ∩ (∩r
j=iA

c
j). If there are many possible values of Ui we choose the

first one in some arbitrary deterministic order. Similarly, there is a point
Vi ∈ B(y, nk) ∩ ∆Ai and an open path from Vi to y such that all its sites
are in B(y, nk) ∩ (∩r

j=iA
c
j). Let ui and vi be possible values of Ui and Vi

respectively. Then define

Fi(ui, vi) = {Ui = ui, Vi = vi},
Ei(ui, vi) = {D(ui, vi) < C‖ui − vi‖1 within Ai} and

Wi = ∪ui,vi (Fi(ui, vi) ∩ Ei(ui, vi)) ,
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where the union is over all possible values of Ui and Vi.
Now we define a subset of Zd

Ri = Bnk ∪ B(y, nk) ∪
(
A0 . . . ∪ Ai−1

)
∩
(
Ac

i ∪ . . . ∪ Ac
n−1

)
, (9)

and we denote by σi the σ-algebra generated by {Tx, e(x, y) : x ∈ Ri, x ∼ y}.
Then, noting that 1Fi(ui,vi)Π

i−1
j=01W c

j
is σi-measurable write for i = 1, . . . r:

P
(
Wi ∩ Jn ∩ (∩i−1

j=0W
c
j )
)
=
∑

ui,vi

E
(
1Fi(ui,vi)1Ei(ui,vi)1Jn(Π

i−1
j=01W c

j
)
)

=
∑

ui,vi

E
(
1Fi(ui,vi)(Π

i−1
j=01W c

j
)E(1Jn1Ei(ui,vi)|σi)

)

≥
∑

ui,vi

P (Ei(ui, vi))E
(
1Fi(ui,vi)(Π

i−1
j=01W c

j
)E(1Jn |σi)

)

=
∑

ui,vi

P (Ei(ui, vi))E
(
1Fi(ui,vi)(Π

i−1
j=01W c

j
)1Jn

)

≥ δ
∑

ui,vi

P
(
Fi(ui, vi) ∩ Jn ∩ (∩i−1

j=0W
c
j )
)
= δP

(
Jn ∩ (∩i−1

j=0W
c
j )
)
,

where the sums are over all possible values of Ui and Vi, the first inequality
follows from the facts that Ei(ui, vi) is independent of σi and both Jn and
Ei(ui, vi) are increasing events, the second inequality from part (ii) of Lemma
3.2 and the last equality from the fact that Jn is contained in the union of
the Fi(ui, vi)’s which are disjoint. Now, proceeding by induction one gets:

P
(
Jn ∩ (∩r−1

j=0W
c
j )
)
≤ (1− δ)rP (Jn).

Since we can choose C2 and C3 in such a way that the event {D(o, y) >
C2‖x− y‖1 + C3(nk)

d} does not occur if any of the Wi’s occurs, the lemma
follows. �

Noting that modifying the constant α2 the statement of the above lemma
holds for C3 = 1/kd, we get:

Lemma 3.5 (i) Let C2 be as in Lemma 3.4. Then, there exists α3 > 0 such
that P (D(x, y) ≥ C2‖x− y‖1 + nd|x → y) ≤ exp(−α3n);

(ii) P (x → y| |Co
x| = +∞, |C i

y| = +∞) = 1.

4 The shape theorem

Let
C̃ = {x ∈ Zd : x → ∞ and ∞ → x}. (10)
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Remark 4.1 As a consequence of Lemma 3.5 part (ii), if two sites x, y of

Zd belong to C̃, then x → y and y → x.

4.1 Neighborhoods in C̃

Definition 4.1 For x ∈ Zd, let

{
Ro

x = {y ∈ Zd : x → y outside C̃} (outgoing root from x);

Ri
x = {y ∈ Zd : y → x outside C̃} (incoming root to x).

In particular x belongs to Ro
x and Ri

x if and only if x /∈ C̃.

Our next lemma says that the distribution of the radius of Ro
o∪Ri

o decreases
exponentially.

Lemma 4.1 There exists σ1 = σ1(λ, d) > 0 such that, for all n ∈ N,

P
(
(Ro

o ∪Ri
o) ∩ ∂Bn 6= ∅

)
≤ exp(−σ1n).

Proof of lemma 4.1. For n ∈ N \ {0}, Ro
o ∩ ∂B2n 6= ∅ means that there exists

an open path o → ∂B2n outside C̃. This implies that there exists x ∈ ∂Bn

satisfying o → x → ∂B2n outside C̃. Similarly, Ri
o ∩ ∂B2n 6= ∅ implies that

there exists x ∈ ∂Bn satisfying ∂B2n → x → o outside C̃. Then for such a
point, either the cluster Co

x or the cluster C i
x is finite, and has a radius larger

than or equal to n. We adapt to our case [6, Theorems (8.18), (8.21)] to get
the existence of σ0 = σ0(λ, d) > 0 such that:

{
P (Co

x ∩ ∂B(x, n) 6= ∅, |Co
x| < +∞) ≤ exp(−σ0n);

P (C i
x ∩ ∂B(x, n) 6= ∅, |C i

x| < +∞) ≤ exp(−σ0n).
(11)

Hence

P
(
(Ro

o ∪Ri
o) ∩ ∂B2n 6= ∅

)

≤ P (Ro
o ∩ ∂B2n 6= ∅) + P

(
Ri

o ∩ ∂B2n 6= ∅
)

≤ 2
∑

x∈∂Bn

P (|Co
x| < +∞, x → ∂B(x, n))

+2
∑

x∈∂Bn

P (|C i
x| < +∞, ∂B(x, n) → x)

≤ 4|∂Bn| exp(−σ0n)

which induces the result. �
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To define the neighborhood V(x) on C̃ of a site x, we introduce the smallest

box whose interior contains Ro
x and Ri

x, which contains elements of C̃, and

is such that two elements of C̃ in this box are connected by an open path
which does not exit from a little larger box. For this last condition, which
will enable to bound the passage time through V(x), we use the parameter
C2 obtained in Lemma 3.4.

Definition 4.2 Let C′ = C2d+ 2. Let κ(x) be the smallest l ∈ N \ {0} such
that 




(i) ∂B(x, l) ∩ (Ro
x ∪Ri

x) = ∅;

(ii) B(x, l) ∩ C̃ 6= ∅;

(iii) ∀ (y, z) ∈ (B(x, l) ∩ C̃)2, y → z within B(x,C′l).

Remark 4.2 By (i) above, Ro
x ∪Ri

x ⊂ B(x, κ(x)).

The random variable κ(x) has a sub-exponential tail:

Lemma 4.2 There exists a constant σ = σ(λ, d) > 0 such that, for any
n ∈ N,

P (κ(x) ≥ n) ≤ exp(−σn1/d).

Proof of lemma 4.2. We show that the probability that any of the 3 conditions
in Definition 4.2 is not achieved for n decreases exponentially in n1/d:
(i) By translation invariance, we have by Lemma 4.1,

P
(
∂B(x, n) ∩

(
Ro

x ∪Ri
x

)
6= ∅
)
≤ exp(−σ1n). (12)

(ii) There exist m ∈ N, σ2 = σ2(λ, d) > 0 such that

P (B(x, n) ∩ C̃ = ∅) ≤ exp(−σ2⌊n/(m+ 1)⌋). (13)

Indeed, since {|C i
x(Sm)| = +∞} and {|Co

x(Sm)| = +∞} are increasing
events, it follows from Proposition 3.1 and the FKG inequality (see Re-
mark 3.1) that for m = m(λ, d) large enough we have infx∈Sm

P (|C i
x(Sm)| =

|Co
x(Sm)| = +∞) > 0. Then, (13) follows from the facts that B(x, n) inter-

sects ⌊n/(m + 1)⌋ disjoint translates of Sm, and events in disjoint slabs are
independent.

(iii) There exists σ3 = σ3(λ, d) > 0 such that

P
(
∃ (y, z) ∈ (B(x, n) ∩ C̃)2, y 6→ z within (B(x,C′n)

)

≤ exp(−σ3n
1/d). (14)
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Indeed, if no open path from y to z (both in B(x, n) ∩ C̃) is contained in
B(x,C′n), then D(y, z) ≥ 2(C′−1)n. Given our choice of C′ this implies that
D(y, z) ≥ C2‖y − z‖1 + n. Therefore, (14) follows from part (i) of Lemma
3.5. �

We define the (site) neighborhood in C̃ of x by

V(x) = B(x, κ(x)) ∩ C̃. (15)

Remark 4.3 By condition (ii) in Definition 4.2, V(x) 6= ∅.

By condition (iii) in Definition 4.2, for all y, z in V(x), there exists at least
one open path from y to z, denoted by Γ∗

y,z contained in B(x,C′κ(x)). If there
are several such paths we choose the first one according to some deterministic
order. We finally define an “edge” neighborhood Γ(x) of x:

Γ(x) = {(y′, z′) ⊂ B(x, κ(x)), (y′, z′) open}∪
{(y′, z′) ∈ Γ∗

y,z, y, z ∈ V(x)}. (16)

Those neighborhoods satisfy

V(x) ⊂ B(x, κ(x)); Γ(x) ⊂ B(x,C′κ(x)). (17)

4.2 Radial limits

We now come back to the spatial epidemic model. Indeed, the underlying
percolation model does not give any information on the time needed by the
epidemic to cover C̃. We first define an approximation for the passage time
of the epidemic, then we prove the existence of radial limits for this approx-
imation and for the epidemic. We will follow for this the construction in [5].

For x, y ∈ Zd, if x 6= y, x → y and Γx,y = (x0 = x, x1, . . . , xn = y) de-
notes an open path from x to y, we define the passage time on Γx,y to be
(see (1))

τ(Γx,y) =
n−1∑

i=0

e(xi, xi+1) (18)

and, if x = y, we put τ(Γx,x) = 0.

14



For x, y ∈ Zd, we define the passage time from x to y to be

τ(x, y) =





inf
{Γx,y}

τ(Γx,y) if x 6= y, x → y,

0 if x = y,
+∞ otherwise.

(19)

where the infimum is over all possible open paths from x to y. By analogy
with [4], [5], we also define

τ̂(x, y) = inf
x′∈V(x),y′∈V(y)

τ(x′, y′);

u(x) =





∑

(y′,z′)∈Γ(x)

τ(y′, z′) if Γ(x) 6= ∅,

0 otherwise.

(20)

By Remarks 4.1, 4.3, τ̂(x, y) is well defined.

Remark 4.4 If V(x) ∩ V(y) 6= ∅, then τ̂(x, y) = 0.

We now show that if y ∈ Co
x \R

o
x, τ̂(x, y) approximates τ(x, y).

Lemma 4.3 For x ∈ Zd, if y ∈ Co
x \R

o
x, we have

τ̂(x, y) ≤ τ(x, y) ≤ u(x) + τ̂(x, y) + u(y).

Proof of lemma 4.3. Let Γx,y be an open path from x to y such that τ(x, y) =

τ(Γx,y). Since y /∈ Ro
x this path must intersect C̃. Let c1 and c2 be the first

and last points we encounter in C̃ when moving from x to y along Γx,y. By
condition (i) of Definition 4.2, c1 ∈ V(x) and c2 ∈ V(y): indeed (for instance

for c1), either x ∈ C̃ and c1 = x, or the point a ∈ ∂B(x, κ(x)) ∩ Γx,y does
not belong to Ro

x and c1 is the first point on Γx,y between x and a; we might
have c1 = c2, if V(x) ∩ V(y) 6= ∅. We have

Γx,y = Γx,c1 ∨ Γc1,c2 ∨ Γc2,y

where ∨ denotes the concatenation of paths, Γx,c1 is an open path from x to
c1 contained in B(x, κ(x)), Γc1,c2 is an open path from c1 to c2 and Γc2,y is
an open path from c2 to y contained in B(y, κ(y)). We then obtain the first
inequality of the lemma since:

τ̂(x, y) ≤ τ(Γc1,c2) ≤ τ(Γx,y) = τ(x, y).

To prove the second inequality of the lemma let Γd1,d2 be an open path from
d1 ∈ V(x) to d2 ∈ V(y) such that τ(Γd1,d2) = τ̂(x, y). Since the open paths
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Γx,c1 from x to c1 and Γ∗
c1,d1

(which exists by Remark 4.1) from c1 to d1 have

edges in Γ(x) (see (16)) the open path Γx,d1 = Γx,c1 ∨ Γ∗
c1,d1

from x to d1
satisfies τ(Γx,d1) ≤ u(x). Similarly, there is an open path Γd2,y from d2 to y
such that τ(Γd2,y) ≤ u(y). We conclude with

τ(x, y) ≤ τ(Γx,d1) + τ(Γd1,d2) + τ(Γd2,y) ≤ u(x) + τ̂(x, y) + u(y).

�

Lemma 4.4 For all x, y, z ∈ Zd, we have the subadditivity property

τ̂(x, z) ≤ τ̂(x, y) + u(y) + τ̂(y, z). (21)

Proof of lemma 4.4. Let Γa,b be an open path from a ∈ V(x) to b ∈ V(y)
such that τ̂(x, y) = τ(Γa,b). Similarly, let Γc,d be an open path from c ∈ V(y)
to d ∈ V(z) such that τ̂(y, z) = τ(Γc,d) (we might have a = b, c = d or b = c).
Since both b and c are in V(y) there exists an open path Γ∗

b,c from b to c such
that τ(Γ∗

b,c) ≤ u(y) (see Remark 4.1 and (16)). The lemma then follows since
the concatenation of these three paths is an open path from a point of V(x)
to a point of V(z) and

τ̂(x, z) ≤ τ(Γa,b) + τ(Γb,c) + τ(Γc,d) ≤ τ̂(x, y) + u(y) + τ̂(y, z).

�

Before stating our next lemma we introduce some notation. For x, y ∈ Zd,
let

D(x, y) = inf
x′∈V(x),y′∈V(y)

D(x′, y′).

Note that unlike D(x, y), D(x, y) is always finite.

Lemma 4.5 There exist constants C4 and α4 > 0 such that

P (D(x, y) ≥ C4‖x− y‖1 + n) ≤ exp(−α4n
1/d), ∀ x, y ∈ Zd, n ∈ N.

Proof of lemma 4.5. Let K be a positive constant. Then

P (D(x, y) ≥ K‖x− y‖1 + (2d+ 1)Kn)
≤ P (κ(x) > n) + P (κ(y) > n)

+ P (D(x, y) ≥ K‖x− y‖1 + (2d+ 1)Kn, κ(x) ≤ n, κ(y) ≤ n)
≤ P (κ(x) > n) + P (κ(y) > n)
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+
∑

x′∈B(x,n),y′∈B(y,n)

P (D(x′, y′) ≥ K‖x− y‖1 + (2d+ 1)Kn, x′ → y′)

≤ P (κ(x) > n) + P (κ(y) > n)

+
∑

x′∈B(x,n),y′∈B(y,n)

P (D(x′, y′) ≥ K‖x′ − y′‖1 +Kn, x′ → y′).

Taking K = C2 (given in Lemma 3.5) the result follows from Lemmas 3.5
and 4.2. �

Of course, the random variables u(x) and τ̂(x, y) are almost surely finite.
But we will need a better control of their size, provided by our next lemma.

Lemma 4.6 For all x, y ∈ Zd, r ∈ N \ {0}, u(x) and τ̂(x, y) have a finite
r-th moment.

Proof of lemma 4.6. By Lemma 4.2, u(x) is bounded above by a sum of
passage times e(y, z) with y and z in the box B(x, Y ), where Y is a random
variable whose moments are all finite. By Lemmas 4.2 and 4.5 the same
happens to τ̂(x, y). Therefore it suffices to show that if (Xi, i ∈ N) is a
sequence of i.i.d. random variables and N is a random variable taking values
in N, then the moments of

∑N
i=1 Xi are all finite if it is the case for both the

Xi’s and N . To prove this write:

E(|
N∑

i=1

Xi|
r) =

∞∑

n=1

E(|X1 + . . .+Xn|
r1{N=n})

≤
∞∑

n=1

[E(|X1 + . . .+Xn|
2r)P (N = n)]1/2

≤
∞∑

n=1

[E(|X1|+ . . .+ |Xn|)
2rP (N = n)]1/2

≤
∞∑

n=1

[n2rC2rP (N = n)]1/2

where the second line follows from Cauchy-Schwartz’ inequality, the factor
n2r counts the number of terms in the development of (|X1| + . . . + |Xn|)

2r

and the constant C2r depends on the distribution of the Xi’s. As N has all
its moments finite P (N = n) decreases faster than n−2r−4 and the sum is
finite. �

We now construct a process (ϑ·) which is subadditive in every direction,
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and has a.s., by Kingman’s Theorem, a radial limit denoted by µ. We will
then check that τ̂(o, ·) also has, in every direction, the same radial limit, and
we will extend this conclusion to τ(o, ·) on the set Co

o of sites that have ever
been infected. Hence we first prove

Theorem 4.1 For all z ∈ Zd, there exists µ(z) ∈ R+ such that almost surely

lim
n→+∞

τ̂(o, nz)

n
= µ(z), (22)

lim
n→+∞

[
τ(o, nz)

n
− µ(z)

]
1{nz∈Co

o} = 0. (23)

Proof of theorem 4.1. (i) For all z ∈ Zd, (m,n) ∈ N2, let

ϑz(m,n) = τ̂(mz, nz) + u(nz). (24)

The process (ϑz(m,n))(m,n)∈N2 satisfies the hypotheses of Kingman’ subaddi-
tive ergodic theorem (see [12, Theorem VI.2.6]) by (21). Hence there exists
µ(z) ∈ R+ such that

lim
n→+∞

1

n
ϑz(0, n) = µ(z) a.s. and in L1. (25)

Since the random variables (u(z) : z ∈ Zd) are identically distributed, it
follows from Lemma 4.6 and Chebychev’s inequality that

∑∞
n=0 P (u(nz) >

nε) < +∞ for all ε > 0, so that by Borel-Cantelli’s Lemma

lim
n→+∞

u(nz)

n
= 0, a.s. (26)

Thus by (25), (26) we have (22) for all z ∈ Zd.

(ii) Since Ro
o is a.s. finite, if nz ∈ Co

o , then nz ∈ Co
o \ Ro

o for n large
enough. Hence, from Lemma 4.3, for n large enough we have

∣∣∣∣
τ(o, nz)

n
− µ(z)

∣∣∣∣1{nz∈Co
o\R

o
o} ≤

u(o) + u(nz)

n
+

∣∣∣∣
τ̂(o, nz)

n
− µ(z)

∣∣∣∣

and we conclude by (26) and (22). �
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4.3 Extending µ

We have proved the existence of a linear propagation speed in every direction
of Zd. However, to derive an asymptotic shape result, in particular for the
approximating passage times (τ̂(x, y), x, y ∈ Zd), we need to control this
propagation speed uniformy in all directions. For this we study µ(z), z ∈ Zd,
and we follow [4] to construct a Lipschitz, convex and homogeneous function
ϕ which extends µ to Rd. The asymptotic shape of the epidemic will be given
by the convex set D defined later on in (50).

Lemma 4.7 The function g defined on Zd by

∀z ∈ Zd, g(z) = E(ϑz(0, 1)) (27)

has a barycentric extension to Rd.

Proof of lemma 4.7. By (25), we have a.s., for all z ∈ Zd,

lim
n→+∞

ϑz(0, n)

n
= inf

n∈N
E

(
ϑz(0, n)

n

)
= inf

n∈N

g(nz)

n
= µ(z). (28)

To do a barycentric extension of g, we decompose [0, 1]d in simplexes: each
of them having a unique barycentric decomposition, g will be defined on its
elements as the barycenter of its values on extremal points. This (arbitrary)
construction will be translation invariant.

1. Let M denote the center of [0, 1]d. We define g(M) to be the mean of
the values of g on the 2d elements of Zd ∩ [0, 1]d.

2. For the center c of each face F of [0, 1]d (which is a cube of dimension
d − 1) we define g(c) to be the mean of the values of g on the 2d−1

elements of Zd ∩ F. We proceed similarly on each sub-cube, up to
sub-faces of dimension 2.

3. Now, on sub-faces F of dimension 2, we link the center to the 4 elements
of Zd∩F , to obtain 4 triangles, or simplexes, of dimension 2. On each of
them, we define g(x) for each point x to be the barycentric combination
of the values of g on the 3 extremal points.

4. We deal with dimension 3 sub-faces by taking barycentric combinations
between the dimension 2 simplexes and the center of the dimension 3
sub-face. This way we have decomposed each dimension 3 sub-face into
4×6 simplexes, on which for each point x we define g(x) in a barycentric
way. We go on in the same way until the dimension d cube, that is
[0, 1]d.
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The function g is continuous on [0, 1]d. Then, for z = (z1, . . . , zd) ∈ Zd, to
each d-cube

∏d
i=1[zi, zi+1] we associate the 2d−1d! simplexes translated from

those described in [0, 1]d, and we define as previously g(x) for each point
x ∈

∏d
i=1[zi, zi + 1] to be the barycentric combination of the values of g on

d+ 1 extremal points. �

Following [4, Lemma 3.2], we define a sequence of functions (gn)n≥0 by

∀x ∈ Rd, gn(x) =
g(nx)

n
. (29)

Lemma 4.8 The elements of the sequence (gn)n≥0 are Lipschitz functions
with a common Lipschitz constant denoted by γ∗, hence the sequence is
equicontinuous.

Proof of lemma 4.8. It is enough to prove that g is a Lipschitz function. For
all x, y ∈ Zd, by subadditivity and symmetry of ϑ· on Zd we get

g(x) + g(y) ≥ g(x+ y), (30)

g(x+ y) + g(−y) ≥ g(x), (31)

g(−y) = g(y) ≤ ‖y‖1g(e1). (32)

Indeed,

g(x+ y) = E(ϑx+y(0, 1)) = E (τ̂(o, n(x+ y)) + u(n(x+ y)))
≤ E (τ̂(o, nx) + u(nx)) + E (τ̂(nx, n(x+ y))) + E (u(n(x+ y)))
= g(x) + E (τ̂(o, ny)) + E (u(o))
= g(x) + g(y)

where we have used successively (27), (24), (21) and the translation invari-
ance of the distributions of τ̂ and u. Then, writing (30) for x = (x+y)+(−y)
gives (31). For (32), we first use the symmetry of ϑ· on Zd to get g(−y) =
g(y), that we then combine with (30) to write

g(y) ≤
d∑

i=1

g(|yi|ei) ≤
d∑

i=1

|yi|g(ei) = ‖y‖1g(e1).

Therefore by (30), (31), (32),

|g(x+y)−g(y)| ≤ g(y)1{g(x+y)≥g(y)}+g(−y)1{g(x+y)<g(y)} ≤ ‖y‖1g(e1). (33)
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If we now take x, y ∈ Rd, from the previous barycentric construction, let
(x0 = x, . . . , xn = x + y) be the sequence of points on the simplexes crossed
by [x, x+ y]. Then

|g(x+ y)− g(x)| ≤
n−1∑

k=0

|g(xk+1)− g(xk)|.

Thus, since ‖y‖1 =
∑n−1

k=0 ‖xk+1 − xk‖1, we have to show that on a given
simplex the Lipschitz constant of g does not depend on the simplex. Assum-
ing now that x, y belong to the same simplex, they are written uniquely as
a barycentric combination of the d + 1 extremal points (z0, . . . , zd) of that
simplex, z0 being the center of the cube translated from [0, 1]d containing the
simplex. Similarly, each zi, 0 ≤ i ≤ d, is the barycenter of 2d extremal points
(ci, 1 ≤ i ≤ 2d), with coefficients given by the barycentric construction:

x =
d∑

i=0

αizi; y =
d∑

i=0

βizi;
d∑

i=0

αi =
d∑

i=0

βi = 1;

z0 =
2d∑

l=1

κlcl; zi =
2d∑

l=1

ιlcl, 1 ≤ i ≤ d;
2d∑

l=1

κl =
2d∑

l=1

ιl = 1. (34)

As (zi − z0, 1 ≤ i ≤ d) is a basis of the vector space Rd, denoting by ‖.‖∗1 the
l1-norm w.r.t. this basis, there exists a constant γ0 > 0 such that

∀z ∈ Rd,
1

γ 0

‖z‖1 ≤ ‖z‖∗1 ≤ γ0‖z‖1. (35)

Since [0, 1]d is decomposed in a finite number 2d−1d! of simplexes, (35) is
valid for all these simplexes, for a constant γ > 0 which is the infimum of all
the γ0’s. We have, using (33), (34), (35),

|g(x)− g(y)| =

∣∣∣∣∣

d∑

i=0

(αi − βi)g(zi)

∣∣∣∣∣ =
∣∣∣∣∣

d∑

i=0

(αi − βi)(g(zi)− g(z0))

∣∣∣∣∣

≤
d∑

i=0

|αi − βi|

∣∣∣∣∣∣

2d∑

l=1

(ιl − κl)(g(cl)− g(c0))

∣∣∣∣∣∣

≤
d∑

i=0

|αi − βi|
2d∑

l=1

|ιl − κl|‖cl‖1g(e1)

≤
d∑

i=0

|αi − βi|2
d × 2× 2d× g(e1) = 2d+2dg(e1)‖x− y‖∗1
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≤ 2d+2γdg(e1)‖x− y‖1

hence there exists γ∗ > 0 such that

∀x, y ∈ Rd, |g(x)− g(y)| ≤ γ∗‖x− y‖1. (36)

�

Lemma 4.9 The sequence (gn)n≥0 converges uniformly on each compact sub-
set of Rd to a function ϕ which extends µ to Rd, is Lipschitz with Lips-
chitz constant γ∗, convex and homogeneous (that is which satisfies ϕ(α1x) =
α1ϕ(x) for all x ∈ Rd and α1 > 0).

Proof of lemma 4.9. (i) For x ∈ Zd,

gn(x) =
g(nx)

n
=

E(ϑnx(0, 1))

n
=

E(ϑx(0, n))

n
.

Hence by (25) we get

lim
m→∞

gm(x) = µ(x) ∀ x ∈ Zd. (37)

Let now x ∈ Qd, and

Nx = min{k ≥ 1, k ∈ N : kx ∈ Zd}. (38)

Then, gnNx
(x) = g(nNxx)/(nNx) converges to µ(Nxx)/Nx as n goes to in-

finity. To prove the convergence of gm(x) over the whole sequence, write
m = n(m)Nx + j(m) where j(m) ∈ {0, . . . , Nx − 1}, so that

gm(x) =
g(mx)

m
=

g(n(m)Nxx+ j(m)x)

n(m)Nx + j(m)

=
g(n(m)Nxx)

n(m)Nx

×
n(m)Nx

n(m)Nx + j(m)

+
g(n(m)Nxx+ j(m)x)− g(n(m)Nxx)

n(m)Nx + j(m)
.

By (36), the second term of the last right hand side above converges to 0 as
m goes to infinity. Therefore,

lim
m→∞

gm(x) = lim
m→∞

g(n(m)Nxx)

n(m)Nx

×
n(m)Nx

n(m)Nx + j(m)
=

µ(Nxx)

Nx

, ∀x ∈ Qd.

(39)
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It follows from Lemma 4.8 and Arzela-Ascoli’s Theorem that any subsequence
of (gm(x))m≥0 has a further subsequence that converges uniformly on compact
subsets of Rd to a Lipschitz function ϕ with the same Lipschitz constant γ∗

as the gm’s (cf. (36)). Since, by (39), ϕ(x) must be equal to µ(Nxx)/Nx for
all x ∈ Qd and ϕ is Lipschitz, the limiting function does not depend on the
subsequence and the whole sequence (gm)m≥0 converges uniformy on compact
subsets of Rd to ϕ which extends µ by (37).

∀ x ∈ Qd, lim
n→+∞

gn(x) = ϕ(x). (40)

This implies convergence on Rd, since every subsequence of (gn)n≥0 has a
subsequence which converges uniformly on each compact subset of Rd to a
continuous function, equal to ϕ on Qd.

(ii) To prove that ϕ is homogeneous we start noting that for z ∈ Zd and
k ∈ N we have:

ϕ(z) = µ(z) = lim
n→+∞

ϑz(0, n)

n
= lim

n→+∞

ϑz(0, nk)

nk
=

µ(kz)

k
=

ϕ(kz)

k
. (41)

Now let x ∈ Qd and recall that ϕ(x) = µ(Nxx)/Nx = ϕ(Nxx)/Nx. Then if n
is a multiple of Nx, we let k = n/Nx ∈ N and write by (41),

ϕ(x) =
ϕ(Nxx)

Nx

=
ϕ(kNxx)

kNx

=
ϕ(nx)

n
. (42)

Since Nx is a multiple of Nkx, (42) implies:

ϕ(kx) =
ϕ(Nxkx)

Nx

=
ϕ(kNxx)

Nx

=
kϕ(Nxx)

Nx

= kϕ(x), ∀ x ∈ Qd, k ∈ N.

Hence, if r = n/m and x ∈ Qd we have:

ϕ(rx) = nϕ((1/m)x) = (n/m)ϕ(x),

so that ϕ is homogeneous on Qd.

(iii) To prove that ϕ is convex on Qd, take x, y ∈ Qd and α ∈ Q ∩ (0, 1).
Then let k1, k2 be elements in N such that k1α ∈ N, k2x ∈ Zd and k2y ∈ Zd.
Using subadditivity of g and homogeneity of ϕ write:

ϕ(αx+ (1− α)y) = lim
n→∞

g(nαx+ n(1− α)y)

n
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= lim
n→∞

g(nk1αk2x+ nk1(1− α)k2y)

nk1k2

≤ lim
n→∞

g(nk1αk2x) + g(nk1(1− α)k2y)

nk1k2

=
ϕ(k1k2αx) + ϕ(k1k2(1− α)y)

k1k2
= αϕ(x) + (1− α)ϕ(y).

Since ϕ is continuous it is also homogeneous and convex on Rd. �

4.4 Behavior of τ̂

Our next result says that for z ∈ Zd, τ̂(0, z) grows at most linearly in ‖z‖∞.

Theorem 4.2 There exist K = K(λ, d) > 0 and α > 0 such that

P (τ̂(o, z) > K‖z‖∞) ≤ exp(−α(‖z‖1/d∞ ), ∀ z ∈ Zd,
P (τ̂(o, z) > K(‖z‖∞ + n)) ≤ exp(−αn1/d), ∀ z ∈ Zd, n ∈ N,∑

z∈Zd

P (τ̂(o, z) > K‖z‖∞) < +∞.

Proof of theorem 4.2. Let K ≥ 0, z ∈ Zd. Then write:

P (τ̂(o, z) > K(‖z‖∞ + n))
≤ P (4κ(z) > ‖z‖∞ + n) + P (4κ(o) > ‖z‖∞ + n) + P (A) (43)

where

A = {τ̂(o, z) > K(‖z‖∞ + n), 4κ(z) ≤ ‖z‖∞ + n, 4κ(o) ≤ ‖z‖∞ + n} (44)

⊂ ∪(x,y)∈B(o,(‖z‖∞+n)/4)×B(z,(‖z‖∞+n)/4){x → y, τ(x, y) > K(‖z‖∞ + n)}.

Noting that if (x, y) ∈ B(o, (‖z‖∞ + n)/4)× B(z, (‖z‖∞ + n)/4) we have

‖z‖∞ − n ≤ 2‖x− y‖∞ ≤ 3‖z‖∞ + n and
3(‖z‖∞ + n) = 3‖z‖∞ + n+ 2n ≥ 2(‖x− y‖∞ + n), (45)

from (44), for C2 given in Lemma 3.5, we get:

P (A) ≤
∑

x∈B(o,(‖z‖∞+n)/4)

∑

y∈B(z,(‖z‖∞+n)/4)(
P (3τ(x, y) > 2K(‖x− y‖∞ + n), D(x, y) < (C2 + 1)(‖x− y‖1 + n)

24



+P (x → y,D(x, y) ≥ (C2 + 1)(‖x− y‖1 + n))
)
. (46)

It now follows from Lemma 3.5 part (i) that we have

P (x → y,D(x, y) ≥ (C2 + 1)(‖x− y‖1 + n))
≤ exp(−α3(‖x− y‖1 + n)1/d)
≤ exp(−α3(‖x− y‖∞ + n)1/d). (47)

Then, taking K large enough, by large deviation results for exponential vari-
ables, we also have, for some α5 > 0,

P (3τ(x, y) > 2K(‖x− y‖∞ + n), D(x, y) < (C2 + 1)(‖x− y‖1 + n))
≤ P (3τ(x, y) > 2K(‖x− y‖∞ + n), D(x, y) < (C2 + 1)d(‖x− y‖∞ + n))
≤ exp(−α5(‖x− y‖∞ + n)). (48)

Hence, from (45)–(48), for some constants R and α6 > 0 we have:

P (A) ≤ R(‖z‖∞ + n)2d exp(−α6(‖z‖∞ + n)1/d),

which gives, by modifying the constants,

P (A) ≤ R′ exp(−α7(‖z‖∞ + n)1/d). (49)

All the statements of the Theorem now follow from (49), (43) and Lemma
4.2. �

4.5 Asymptotic shape for τ̂

Theorem 4.3 Let ε > 0, and

Ât = {z ∈ Zd : τ̂(o, z) ≤ t},
D = {x ∈ Rd : ϕ(x) ≤ 1}. (50)

Then, a.s. for t large enough,

(1− ε)tD ∩ Zd ⊂ Ât ⊂ (1 + ε)tD ∩ Zd. (51)

Remark 4.5 The set D is bounded: indeed passage times along edges are
bounded below by passage times of exponential distributions, hence the epi-
demic cannot propagate quicker than this first passage percolation process,
whose passage times have exponential distribution of parameter λ/(2d), and
which, by [9, Theorem (1.15)], moves linearly following the boundary of a
convex set.
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In the sequel K is a fixed constant satisfying the conclusions of Theorem
4.2, γ∗ is the Lipschitz constant of ϕ (see (36)) and Nx was defined in (38)
for any x ∈ Qd \ {o}.

Lemma 4.10 Let ρ > 0 and let δ ≤ ρ/(2K). Then, for all x ∈ Qd \ {o},

∑

k>0

P ( sup
z∈B(kNxx,δkNx)∩Zd

τ̂(kNxx, z) ≥ kNxρ) < ∞, (52)

∑

k>0

P ( sup
z∈B(kNxx,δkNx)∩Zd

τ̂(z, kNxx) ≥ kNxρ) < ∞. (53)

Proof of lemma 4.10. Let k > 0, z ∈ B(o, δkNx) ∩ Zd. By Theorem 4.2 we
have:

P (τ̂(o, z) ≥ kNxρ) ≤ P (τ̂(o, z) ≥ K‖z‖∞ + ⌊kNxρ/2⌋)
≤ exp(−α⌊kNxρ/2⌋

1/d).

Therefore, for some constant C,

∑

k>0

P ( sup
z∈B(o,δkNx)∩Zd

τ̂(o, z) ≥ kNxρ) ≤
∑

k>0

C(δkNx)
d exp(−α⌊kNxρ/2⌋

1/d)

< ∞.

Now (52) follows from the translation invariance of τ̂ . The proof of (53) is
analogous. �

For x = (x1, . . . , xd) ∈ Qd \ {o} and δ > 0, we define the cone associated to
x of amplitude δ as

C(x, δ) = Zd ∩
(
∪t≥0 B(xt, δt)

)
. (54)

Lemma 4.11 Let x ∈ Qd \ {o}. Then for any 0 < δ′ < δ the set C(x, δ′) \
∪k≥0B(kNxx, δkNx) is finite.

The proof of this lemma is elementary and left to the reader.

Proof of theorem 4.3. Fix ε ∈ (0, 1) and let ρ, δ and ι be three small posi-
tive parameters such that δ ≤ ρ/(2K), whose values will be determined later.
The set Y = {x ∈ Qd : 1−2ι < ϕ(x) < 1−ι} is a ring between two balls with
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the same center but with a different radius, because by Lemma 4.9, ϕ is ho-
mogeneous and positive except that ϕ(o) = 0. Hence the (compact) closure
of Y , which is recovered by balls of the same radius centered on the rational
points of Y , is in fact covered by a finite number of such balls. Thus there ex-
ists a finite subset Y of Y such that Zd ⊂ ∪x∈YC(x, δ/2) (if the balls recover
the ring, the cones associated to them recover the whole space). Hence, to
prove the first inclusion of (51) it suffices to show that for any x ∈ Y and any
sequences (tn)n>0 and (zn)n>0 such that tn ↑ ∞ in R+, zn ∈ C(x, δ/2) ∩ Zd

with ‖zn‖∞ ≥ n and ϕ(zn) ≤ (1− ε)tn, we have τ̂(o, zn) ≤ tn a.s. for n suf-
ficiently large. So, let (tn)n>0 and (zn)n>0 be such sequences. Using Lemma
4.11, let kn ∈ N be such that zn ∈ B(knNxx, δknNx), hence kn ≥ Cn for some
constant C. Since by Lemma 4.9, ϕ is Lipschitz with Lipschitz constant γ∗,
write, for γ = γ∗d:

knNx(1− 2ι) ≤ ϕ(knNxx) ≤ ϕ(zn) + γδknNx ≤ (1− ε)tn + γδknNx.

Therefore

knNx ≤
( 1− ε

1− 2ι− γδ

)
tn.

It now follows from this inequality and the subadditivity property (21) of τ̂
that:

τ̂(o, zn)

tn
≤
( 1− ε

1− 2ι− γδ

)( τ̂(o, knNxx)

knNx

+
u(knNxx)

knNx

+
τ̂(knNxx, zn)

knNx

)
.

Therefore, by Theorem 4.1, Lemma 4.6 (the variables u(.) are identically
distributed, and kn ≥ Cn), Lemmas 4.9 and 4.10 we obtain:

lim sup
n→+∞

τ̂(o, zn)

tn
≤
( 1− ε

1− 2ι− γδ

)(
ϕ(x) + ρ

)
a.s.

Since x ∈ Y this implies:

lim sup
n→+∞

τ̂(o, zn)

tn
≤
( 1− ε

1− 2ι− γδ

)(
1− ι+ ρ

)
a.s.

Taking ι, ρ and δ small enough, the right hand side is strictly less than 1
which proves that τ̂(o, zn) ≤ tn a.s. for n sufficiently large.

Similarly, to prove the second inclusion of (51) it suffices to show that for
any x ∈ Y and any sequences tn ↑ ∞ in R+ and zn in C(x, δ/2) ∩ Zd such
that ϕ(zn) ≥ (1 + ε)tn we have τ̂(o, zn) > tn a.s. for n sufficiently large. As
before, we let (tn)n>0 and (zn)n>0 be such sequences and we let kn ∈ N be
such that zn ∈ B(knNxx, δknNx). Then,

knNx(1− ι) ≥ ϕ(knNxx) ≥ ϕ(zn)− γδknNx ≥ (1 + ε)tn − γδknNx.
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Therefore,

knNx ≥
( 1 + ε

1− ι+ γδ

)
tn.

Proceeding then as for the first inclusion, we get:

τ̂(o, zn)

tn
≥
( 1 + ε

1− ι+ γδ

)( τ̂(o, knNxx)

knNx

−
u(zn)

knNx

−
τ̂(zn, knNxx)

knNx

)
,

and

lim inf
n→+∞

τ̂(o, zn)

tn
≥

( 1 + ε

1− ι+ γδ

)(
ϕ(x)− ρ

)
a.s.

≥
( 1 + ε

1− ι+ γδ

)(
1− 2ι− ρ

)
a.s.

Now, taking ι, ρ and δ small enough, the right hand side is strictly bigger
than 1 and the second inclusion of (51) is proved. �

4.6 Asymptotic shape for the epidemic

We can now prove our main result:

Proof of theorem 2.1. (i) We first show that the infection grows at least
linearly as t goes to infinity, that is, given ε > 0,

P
(
(ζt ∪ ξt) ⊃ ((1− ε)tD ∩ Co

o) for all t large enough
)
= 1.

Since Ro
o is finite a.s. this will follow from:

P
(
(ζt ∪ ξt) ⊃ ((1− ε)tD ∩ (Co

o \R
o
o)) for all t large enough

)
= 1. (55)

Let z ∈ (1− ε)tD ∩ (Co
o \R

o
o), then by Theorem 4.3,

τ̂(o, z) ≤ (1− ε/2)t, a.s. for t large enough, (56)

and by Lemma 4.3, τ(o, z) ≤ (1 − ε/2)t + u(o) + u(z). Since u(o) < ∞ a.s.
we have u(o) < (ε/4)t a.s. for t large enough. Hence (55) will follow if we
show that supz∈tD u(z) ≤ (ε/4)t a.s. for t large enough: To derive this, it is
enough to show that supz∈(n+1)D u(z) ≤ (ε/4)n a.s. for n(∈ N) large enough.
By Remark 4.5, D is bounded, hence the number of points in (n+ 1)D with
coordinates in Z is less than C5(n+ 1)d for some constant C5. Then write

P

(
sup

z∈(n+1)D

u(z) ≥
εn

4

)
≤ C5(n+ 1)dP

(
u(o) ≥

εn

4

)
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≤ C5(n+ 1)d
4d+2

(εn)d+2
E(u(o)d+2).

Thus, by Lemma 4.6,
∑

n∈N P (supz∈(n+1)D u(z) ≥ εn/4) < ∞, and (55) fol-
lows from Borel-Cantelli’s Lemma.

(ii) Next we show that

P
(
(ζt ∪ ξt) ⊂ ((1 + ε)tD ∩ Co

o) for all t large enough
)
= 1. (57)

If z belongs to ξt or ζt, then τ(o, z) ≤ t hence by Lemma 4.3, τ̂(o, z) ≤ t for
z ∈ Co

o \R
o
o, which implies z ∈ (1 + ε)tD for t large enough by Theorem 4.3.

Since Ro
o is finite (57) follows.

(iii) Finally, assuming E(|Tz|
d) < ∞, we show that

P (ζt ∩ (1− ε)tD = ∅ for t large enough) = 1. (58)

Let z ∈ (1 − ε)tD ∩ Co
o , then, by (56), τ(o, z) ≤ (1 − ε/2)t if t is large

enough. Hence, (58) follows if we show that Tz ≥ (ε/2)τ(o, z) occurs only
for a finite number of z’s. But from (57) we get that for some δ > 0 we
have τ(o, z) ≥ δ‖z‖∞ except for a finite number of z’s. Therefore, it suffices
to show that for any δ′ > 0 the event {Tz ≥ δ′‖z‖∞} can only occur for a
finite number of z’s. This will follow from Borel-Cantelli’s Lemma once we
prove that

∑
z∈Zd P (Tz ≥ δ′‖z‖∞) < ∞. To do so we write, since the Tz’s

are identically distributed:

∑

z∈Zd

P (Tz ≥ δ′‖z‖∞) =
∑

n∈N

∑

z:‖z‖∞=n

P (Tz ≥ δ′n) ≤ c
∑

n∈N

nd−1P (To ≥ δ′n)

for some constant c, and this last series converges because To has a finite
moment of order d. �
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