N

N
N

HAL

open science

Complexity Insights of the Minimum Duplication
Problem

Guillaume Blin, Paola Bonizzoni, Riccardo Dondi, Romeo Rizzi, Florian

Sikora

» To cite this version:

Guillaume Blin, Paola Bonizzoni, Riccardo Dondi, Romeo Rizzi, Florian Sikora. Complexity Insights
of the Minimum Duplication Problem. 38th International Conference on Current Trends in Theory
and Practice of Computer Science (SOFSEM 2012), Jan 2012, Spindleruv Mlyn, Czech Republic.
pp-153-164. hal-00629047

HAL Id: hal-00629047
https://hal.science/hal-00629047
Submitted on 4 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00629047
https://hal.archives-ouvertes.fr

Complexity Insights of the Minimum
Duplication Problem

Guillaume Blin!, Paola Bonizzoni?, Riccardo Dondi®, Romeo Rizzi?, Florian
b b b b
Sikoral®

! Université Paris-Est, LIGM - UMR CNRS 8049, France.
{gblin,sikora}@univ-mlv.fr
2 DISCo, Universita degli Studi di Milano-Bicocca, - Milano, Italy.
bonizzoni@disco.unimib.it
3 DSLCSC, Universita degli Studi di Bergamo, - Bergamo, Italy.
riccardo.dondi@unibg.it
4 DIMI - Universita di Udine - Udine, Italy. Romeo.Rizzi@dimi.uniud.it
5 Lehrstuhl fiir Bioinformatik, Friedrich-Schiller-Universitét Jena, Germany.

Abstract. The MINIMUM DUPLICATION problem is a well-known prob-
lem in phylogenetics and comparative genomics. Given a set of gene trees,
the MINIMUM DUPLICATION problem asks for a species tree that induces
the minimum number of gene duplications in the input gene trees. More
recently, a variant of the MINIMUM DUPLICATION problem, called MIN-
IMUM DUPLICATION BIPARTITE, has been introduced in [14], where the
goal is to find all pre-duplications, that is duplications that precede, in
the evolution, the first speciation with respect to a species tree. In this
paper, we investigate the complexity of both MINIMUM DUPLICATION
and MINIMUM DUPLICATION BIPARTITE problems. First of all, we prove
that the MINIMUM DUPLICATION problem is APX-hard, even when the
input consists of five uniquely leaf-labelled gene trees (progressing on the
complexity of the problem). Then, we show that the MINIMUM DUPLI-
CATION BIPARTITE problem can be solved efficiently by a randomized
algorithm when the input gene trees have bounded depth.

1 Introduction

The evolutionary history of the genomes of eukaryotes is the result of a series of
evolutionary events, called speciations, that produce new species starting from a
common ancestor. This evolutionary history has been deeply studied in Compu-
tational Biology, and is usually represented using a special type of phylogenetic
tree called species tree [9]. A species tree is a rooted binary tree whose leaves are
uniquely labelled by a set /A representing the extant species, where the common
ancestor of the contemporary species is associated with the root of the tree.
The internal nodes represent hypothetical ancestral species (and the associated
speciations). Speciations are not the only events that influence the evolution. In-
deed, there are other events, such as gene duplication, gene loss and lateral gene
transfer that, although not leading to new species, are fundamental in evolution.
In this paper, we focus on gene duplications which are known to be essential
for the evolution of many eukaryotes groups, such as vertebrates, insects and



A\
SER
\ 7/ \
N7 \
N\ \
/

\ \

Si(%. ¢)Si(v o) Ss(v o)

Fig. 1. (a) a gene tree T'. (b) a species tree S where M is the 1ca mapping from
T to S; each gene in {g9, g4, g5} is mapped by function f in the species that gene
belongs to. (c) a reconciled tree for T' and S based on the a priori duplication of
gene ¢g; into genes h and gs.

plants [8]. Gene duplication can be described as the genomic event that causes a
gene inside a genome to be copied, resulting in two copies of the same gene that
can evolve independently. Genes of extant species are called homologous if they
evolved from a common ancestor, through speciations and duplications events
[10]. Evolution of homologous genes, with regards to the extant species, is usu-
ally represented using another special type of phylogenetic tree called gene tree.
A gene tree is a rooted binary tree whose leaves are (not necessarily uniquely)
labelled using elements of the set A. Indeed, despite the fact that, biologically
speaking, leaves in the gene tree represent genes, for ease, the gene tree is la-
belled according to the species from which the corresponding gene was sampled.
Therefore, leaves similarly labelled represent duplicated genes that evolved in-
dependently and appear in a common extant species. As in the species tree,
the root and the internal nodes respectively represent the common ancestor and
ancestral genes explaining their evolution.

With regards to the set of labels A, gene and species trees are said to be
comparable. Nevertheless, due to complex evolutionary processes such as gene
duplication and loss, comparable gene and species trees very often present in-
compatibilities. A challenging problem is then to reconcile the gene and species
trees with hypothetical gene duplications. For example, in Fig. [T} given two
comparable gene and species trees inducing incompatibilities, one can infer a
reconciled tree based on the a priori duplication of gene g; into genes h and g3
(h is a hypothetical ancestor of genes g2, g4), which afterwards both speciate
according to the topology of the species tree. Based on the principle of parsi-
mony, one is interested in finding the minimum number of gene duplications that
can explain all the incompatibilities. This last can be inferred by the so-called
lowest common ancestor mapping (Lca mapping), denoted by M and defined as
follows. M maps any gene of the gene tree to the latest species from which the
gene could be sampled. In other words, M maps each ancestral gene g of the



gene tree to the most recent common ancestor of the extant species from which
all the descendant of g were sampled.

For example, in Fig. [l according to M, g3 is mapped to S; since S; is the
most recent common ancestor of Sy and S5 from which were sampled (repre-
sented as a function f) respectively the descendant g4 and g5 of g3. Observe
that, considering M, any leaf of the gene tree is mapped to the unique leaf of
S similarly labelled (according to A). Given M, a gene in the gene tree is a
gene duplication if it has a descendant with the same M mapping. Then, the
reconciliation cost is defined as the number of gene duplications in the gene tree
induced by the species tree. Computation of this distance has been widely in-
vestigated in the context of the MINIMUM DUPLICATION problem [I5IT3ITTIA],
where given a set of gene trees, the objective is to compute a species tree that
induces a minimum number of gene duplications.

The MINIMUM DUPLICATION problem is known to be NP-hard [I3]. More re-
cently, the MINIMUM DUPLICATION problem has been related to the MINIMUM
TRIPLETS CONSISTENCY [4]. The complexity of MINIMUM TRIPLETS CONSIS-
TENCY has been deeply studied, and the problem is known to be W[2]-hard [5]
and inapproximable within factor O(logn) [B]. These results coupled with the
reduction provided in [4] implies that the MINIMUM DUPLICATION is NP-hard,
W(2]-hard (despite of [15]) and inapproximable within factor O(logn) even in
the specific case of a forest composed of an unbounded number of uniquely
leaf-labelled gene trees with three leaves [4]. Therefore, different heuristics and
Integer Linear Programs have been developed [2I3I706]. Recently, the MINIMUM
DUPLICATION BIPARTITE problem has been introduced to tackle the MINIMUM
DUPLICATION problem [I4]. The MINIMUM DUPLICATION BIPARTITE problem
corresponds to finding all pre-duplications; that is duplications that precede, in
the evolution, the first speciation with respect to a species tree. Roughly, this
means that only the first level of the species tree is of importance. Indeed, one is
interested in knowing if a given species belongs to the subtree of S rooted at the
left child of the root or at the right one. Therefore, one can view the species tree
as a bipartition (A1, A3) of the set of species A. Solving the MINIMUM DUPLI-
CATION BIPARTITE problem recursively produces a natural greedy heuristic for
the MINIMUM DUPLICATION problem. The MINIMUM DUPLICATION BIPARTITE
problem was shown to be 2-approximable [I4], but its complexity remains open.

In this contribution, we provide results relying both on the MINIMUM Du-
PLICATION problem and the MINIMUM DUPLICATION BIPARTITE problem. First
of all, we prove that the MINIMUM DUPLICATION problem is APX-hard, even
when the input consists of five uniquely leaf-labeled gene trees (that is for a
bounded number of gene trees). Then, we show that the MINIMUM DUPLICA-
TION BIPARTITE problem can be solved efficiently by a randomized algorithm
when the input gene trees have bounded depth. greedy heuristic for the MINI-
MUM DUPLICATION problem. Due to space consideration, we do not provide full
details and proofs which are deferred to the full version of the paper.



2 On a tight inapproximability

We present a reduction from MINIMUM VERTEX COVER on cubic graphs (MVCC)
to the specific case of the MINIMUM DUPLICATION problem — denoted MIN-5-
Dupr — where given a set of five uniquely leaf labelled gene trees F = {11, T, T5,
T4, Ts}, the objective is to compute a species tree S that induces a minimum
number of gene duplications (afterwards denoted as d(F, S)). Let G = (Vg, Eg)
be a cubic graph (i.e. every vertex has degree three), MVCC problem asks for a
subset V5 C Vi, such that for each edge (v;,v;) € Eg, at least one of {v;,v,} be-
longs to V. In a first step, starting from any cubic graph G = (Vg, E¢), we will
construct an associated input F = {T1,...,T5} of MIN-5-Dup. Then, we will
demonstrate that any species tree S such that d(F,S) < ¢ = 6|Fg| + 3|Vg| + 1
must be canonical (defined afterwards). Finally, we will prove that our construc-
tion is indeed an L-reduction.

In order to define formally the gene trees, let us first define the central notion
of comb graph. We will consider a specific subclass of comb graphs corresponding
to a binary tree where all the internal nodes lie on a single simple (i.e. with no
repeated vertices) path referred as the spine. For ease, we will nevertheless use
the term comb graph in the following to denote those last. Given a sequence
L = (l4,...,1lg) of k labels, let C(L) denote the comb graph whose leaves are
labelled according to a postorder traversal using L (i.e. I, € L is the label of the
unique leaf of depth x). For example, in Fig. [1} the gene tree (a) corresponds to
the comb graph C({(g2, g4, g5))-

Let us now define two operations on trees. Let T7 ATy be a tree obtained
from two trees 17 and 75, by connecting the roots of 77 and T5 to a new vertex
v which becomes the root of T7 ATs. Inserting 75 in the edge e of T7 will denote
the operation that leads to a tree obtained from 77 and 75 by replacing the edge
e = (v,v") in T} by two edges (v, w) and (w,v") and connecting the root of T
to the new vertex w.

We are now ready to define the gene trees 11, ..., T5. Roughly, we will asso-
ciate to each vertex v € V5, a specific tree T, and to each edge e € Eg, two trees
T}, T2. These trees will be then combined to build the gene trees 11, ..., T. For
ease, let us consider the following order of edges of Eg, (e1,€2,...€/g,|) St
Ver = (vi,v5), ey = (vp,vr) With o < y, ¢ < j and h < k, either (i < h)
or (i = h and j < k). According to this order, we define the following three
sequences of labels: M; = <m%,m§,. mllEG‘> My = (m2,m3,.. meG‘> and
L = (I},12,13,13,.. l|1E B |E ‘> Roughly, any edge e, is represented by the
four labels {ml,m2, i1 12}. First of all, for any edge e, € Eg, let us build
the two trees Telz = C((l3,m2,12)) and T2 = C((12,m2,1})). Moreover, for

any v € Vg st v is incident to the edges e;, e, and e,, we build a tree
T, = (C((mk,m},mI)AC((I,1},1L))) AC((m2,m2, m2)) (see Fig..

We will now bulld the gene trees 177 to 15 by starting from a comb graph
where subtrees representing vertices and edges will be inserted in. Let T5 be
obtained from C((fjvg|+1, f|1vc‘7 e f|qu\7f\Vc|’ o S fL f1), by inserting

in the edge connecting f; and its parent the subtree C(M;)AC(Ms). Regarding
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Fig. 2. The trees Ty, Tlm and Tfm for v € Vg incident to the edges e, e, and e,.

e

the construction of T3 to Ty, let us assume that we are also provided a 4-coloring
A: Ve = {1,2,3,4} of G (for example, by applying the polynomial-time greedy
Welsh-Powell algorithm [I6]). Let any T;, 1 < i < 4, be first define as a the fol-
lowing comb graph: T; = C((f1, fa, - "f\VGI+1vf\1\/G\7'"f\qvcpf\lvg\—l o fED.
We then insert, for each v; € Vi, the tree T;, in the edge connecting the parents
of f; and fi11 in the gene tree T, where x = A(v;) (see Fig. [3). Moreover, for
each e, = (v;,v;) € Eg (ordered from e; to e|g,)), the tree T is inserted in the
edge connecting the parent of f; and its other child in the gene tree T, where
z =min{l,2,3,4} \ {\(v;), A(v;)} (i.e. the gene tree having the smallest index
and not containing neither 7T, , nor T, ). Finally, for each e, = (v;, vj) € Eq, the
tree Tei is inserted in the edge connecting the parent of f; and its other child
in the gene tree T, where z = max{1,2,3,4} \ {A(v:), A(v;)} (i.e. the gene tree
having the biggest index and not containing neither 7,,, nor T;,,). A sketch of
this construction is given in Fig.

Due to space constraints, we only provide here a sketch of our proof (full
details available in appendix). First of all, we can prove that, by construction,
all the gene trees are indeed uniquely leaf-labelled. Then, we can prove that only
canonical solutions are of interest. Roughly, a canonical solution (i.e. a species
tree S) is a copy of Ty where extra leaves of L = {I1,12 : Ve, € Eg} are each

T T

inserted either in C(M;) or C(M,). The insertion of 11,12 in C(M;) or C(M>)
depends on the fact that the edge e, = (v;, v;) is covered by v; or v;.

We can, moreover, prove that, in a canonical solution, (1) each vertex on the
path from the root of Tj, with 1 < j < 4, to the parent of fy, |11 (excluding
this last) induces a duplication (that is 5|Vg| + 2|E¢| in total), (2) each edge
ex = (v5,v;) € Eg induces a duplication in the root of one of {T}} , 772 } and
a duplication in the root of either T, or Ty, One can then easily see that the
minimum number of duplications is then related to the minimum cover size.

Hence the following lemma holds.

Lemma 1. Let G = (Vg, Eg) be an instance of MVCC and let F = {Ty,...,T5}
be the corresponding instance of MIN-5-Dup. Then, starting from a cover Vi
of G, we can compute in polynomial time a solution S of MIN-5-DUP for F s.t.
d(F,S) < 5|Vg| + 3|Eq| + |V4|; starting from a solution S of MIN-5-DUP for
F s.t. d(F,S) <5|Vg| + 3|Eg| + p, we can compute in polynomial time a cover
of G of size at most p.
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Fig.3. Gene trees 17 to T5 obtained from the cubic graph G where L; =
<f|1vg\v"'7f|qvc\""7f117""ff> and V1 < i <4, \(v;) = i.

Lemma (1| concludes the reduction. Since MVCC is APX-hard [I], provided
our L-reduction, we can conclude that MIN-5-DUP is also APX-hard.

Theorem 1. The MINIMUM DUPLICATION problem is APX-hard, even when the
iput consists of five uniquely leaf-labelled gene trees

3 A randomized approach

In this section, we investigate the complexity of the MINIMUM DUPLICATION
BIPARTITE problem and show that it can be solved efficiently by a randomized
algorithm when the input gene trees have bounded depth. A randomized algo-
rithm can be seen simply as an algorithm that is allowed to do some random
decisions as it processes the input. Whereas defining a randomized algorithm is
quite easy, the performance analysis of this last is more complicated. Indeed,
first, one has to compute the probability of success of the randomized algorithm
(i.e. probability to end up with an optimal solution). Then, one can amplify the
probability of success simply by repeatedly running the algorithm, with inde-
pendent random choices, and taking the best solution found. If one, moreover,
prove that the overall running time required to get a high probability of success
is polynomial in the size of the input, then it implies that the problem is ran-
domized polynomial (in RP-class). For further details on randomized algorithms,
the reader should consider the book of Kleinberg and Tardos [12].



In order to prove that the MINIMUM DUPLICATION BIPARTITE problem is
randomized polynomial, we first provide a randomized algorithm for a variant
of the MINIMUM CuT problem, called MINIMUM CuUT IN COLORED GRAPH.
Then, we will prove that the MINIMUM DUPLICATION BIPARTITE problem can
be translated into a MINIMUM CUT IN COLORED HYPERGRAPH problem that
can be solved efficiently applying our randomized algorithm on hypergraphs
with bounded hyperedges degree. It is of importance to note that, as far as we
know, this is the first attempt of solving by randomization the minimum cut in
colored hypergraph. Providing a randomized algorithm for general hypergaphs
with unbounded hyperedges degree is still open.

Let us first introduce the MINIMUM CUT IN COLORED GRAPH problem:
Given a set of colors C and an undirected colored graph G = (V, E) where any
edge is colored with a color from C, find a minimal colored cut of G — that is a
partition of V' into two non-empty sets A and B such that the number of colors
used by the edges having one end in A and the other in B is minimized.

For ease, let col : E +— C be a function returning the color of a given
edge and mul(c) = |{e : e € E and col(e) = c}| be a function returning the
multiplicity of a given color. Moreover, for sake, given a graph G = (V, E), let
col(G) = U, col(e) denote the set of colors used in G. Let us now describe
an algorithm inspired by the folklore CONTRACTION ALGORITHM [12] used for
solving the classical MINIMUM CuUT problem (é.e. minimizing the number of
edges having one end in A and the other in B) on uncolored graph by randomized
algorithm.

Asin [12], our COLORED CONTRACTION ALGORITHM uses a connected multi-
graph G = (V| E) — that is an undirected graph that is allowed to have more
then one edge between the same pair of vertices — which is moreover colored.
The algorithm starts by choosing, uniformly at random, a color ¢ € col(G) and
contracting any edge e € F such that col(e) = ¢ (and thus all such edges).
Contracting an edge (u,v) € E will produce a new graph G' = (V' E’) in
which w and v are identified as a single new vertex w whereas all other ver-
tices are keeping their original identity (i.e. V' = {V U {w}} \ {u,v}). In G,
E' ={EU{(w,v"): v € {u,v}, (v ,v") € E}}\{(v,v") : v € {u,v},v" € V}.
Roughly, E’ is a copy of E where any edge (u,v) has been removed whereas
any other edge has been preserved, but if one of its ends was equal to u or v,
then this end is updated to be equal to the new node w. Note that the contrac-
tion operation may end up in a multigraph even when starting from a classical
graph G. In this process, contracting all the edges that have the selected color
¢ roughly corresponds to a sequence of mul(c) contractions, each reducing the
number of vertices by one. COLORED CONTRACTION ALGORITHM then contin-
ues recursively on G’, by choosing, uniformly at random, a color ¢ € col(G’)
and contracting any edge e € E such that col(e) = c. As these recursive calls
proceed, the vertices of V' should be viewed as supervertices: each supervertex
w corresponds to the subset S(w) C V that has been “swallowed up” in the
contractions that produced w. The algorithm ends when it reaches a graph G’



with only two super-vertices v4 and vg. We output (A = S(va), B = S(vp)) as
the colored-cut found by the algorithm.

Let us now analyze the performance of the COLORED CONTRACTION AL-
GORITHM — which cannot be derived directly from the one of the original CON-
TRACTION ALGORITHM. Since the algorithm is making random choices, there
is some probability that it will succeed in finding a minimum colored-cut (and
some probability that it would not). In order to prove that this algorithm is
worthwhile, we will prove that the probability of success is only polynomially
small; inducing that, by running the algorithm a polynomial number of times and
returning the best colored-cut found in any run, one would be able to produce
an optimal colored-cut with high probability.

Theorem 2. The COLORED CONTRACTION ALGORITHM returns an optimal
colored-cut G with probability at least (|V|**)~twhere k = MAX ccmul(c)

Proof. Let us assume that the optimal minimum colored-cut (A4, B) of G is of
size OPT; that is the set of edges having one end in A and the other end in B
(referred afterwards as the cut-set) is colored using OPT colors of C. Note that
unlike the classical MINIMUM CUT problem, the goal here is to minimize the
number of colors in the cut-set itself. Moreover, let Gopr = G[A U B, {(u,v) :
(u,v) € E and u € A,v € B}] corresponds to the bipartite graph representing
the cut-set of (A, B). In order to compute a lower bound on the probability that
the COLORED CONTRACTION ALGORITHM returns the minimum colored-cut
(A, B), we first notice some important properties.

First, remark that any vertex v € V cannot have a degree less than OPT.
Indeed, otherwise, ({v},V \ {v}) would correspond to a colored-cut inducing
at most OPT — 1 colors, contradicting our hypothesis that (A, B) is an optimal
minimum colored-cut of G. Therefore, any vertex of G is of degree at least OPT;
inducing the following lower bound on E: |E| > %IV‘ We know moreover that,
since each color of C can be used at most k = MAX.ccmul(c) times in F, we have
that |E| < k- |C|. This leads to the following inequalities.

|[V]-opT <2-|E| <2k-|C| (1)

Let us now evaluate the probability Pr[F;| that the COLORED CONTRACTION
ALGORITHM fails at the j** step of the recursion (that is when already j — 1
contractions have been done). Considering what could go wrong in the j** step
of the COLORED CONTRACTION ALGORITHM, one can check that the unique
issue would be that the uniformly at random choice of a color ¢ unfortunately
select one color of the set of OPT colors used by the cut-set — which will be then
contracted inducing that the algorithm would not be able to find the optimal
colored-cut (A, B) since at least a node of A and a node of B would be both
contracted into the same supervertex. Hence the probability that an edge of
the current graph G’ is both in the optima cut-set and contracted is at most

T)CP’TV since there are at most OPT edges to be chosen among |C’| edges, where




C' = col(G"). According to Inequality |1} considering that the graph at j* step
is G’ and C' = col(G)

OPT _ 2k-|C'| _ 2k
PriF:] < < 92
W< E T S e T @)

The colored-cut (A4, B) will actually be returned by the algorithm if no edge
of the cut-set is contracted in any of the at most |V| — 2 iterations. If we write
S; for the event that an edge of the cut-set has not been contracted until the

jth step, then, accordmg to Inequahty Pr(S;] >1—Pr(F;]=1- W where

the graph at j' step is G’ = (V’, E'). For ease, let us consider the sequence of
color choices as being S¢ = (c1,¢2...) and \j = 37,5 .14 o es, Mul(c;). On the
whole the probability that the COLORED CONTRACTION ALGORITHM returns
the optimal colored-cut (A, B) is thus at least

A1—1 Alse|—1

2k
Pr[Success| > (1- (1- -) (3)

o~ o, A Ems

-1 ) As—1 ) Alsel—

V| —i—2k V| —i—2k V| —i—2k
> iz e= 2Ry, WIZr=2hy WIZPZ 20y 4
= U= =) .AH T @

i= i=A2 i=A|se|-1

Alsel

. Hl(v ik Wk V- 2k -2k V- Qs - 1) - %
- Vi-i ~ vl =2k T V[ =D = 1)
(5)

=0

5 vi—i—2 1
HQk 1 ‘V‘ - |V|2k

> = (Jvph)~ (6)

O

Then according to Theorem [2] we know that a single run of the COLORED
CONTRACTION ALGORITHM fails to find an optimal colored-cut with probability
at most (1 — (]V|?¥)~1). One can then amplify the probability of success simply
by repeatedly running the algorithm, with independent random choices, and
taking the best colored-cut found. It is known that the function (1 —n~1)"
converges monotonically from i up to % as n increases from 2 [12]. Thus, if we
run the algorithm |V |?* times, then the probability that we fail to find an optimal
colored-cut in any run is at most (1 — (|V[26)=1)IVI*" < 1 Ag usually done, it
is easy to even reduce more the failure probability with further repetitions by
running the algorithm |V|2’C In|V| times which induces a probability of failure

of at most e~ IVl = \VI On the overall, the running time required to get a

high probability of success is polynomial in |V|, since each run of the COLORED
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Fig. 4. Illustration of the construction of Gx and G’ given F = (11, Tz). Consid-
ering the minimum colored-cut {1,2,3,4,5}, {6, 7, 8,9} of size 1, the only induced
duplication is represented as a star on 77.

CONTRACTION ALGORITHM takes polynomial time, and we run it a polynomial
number of times.

Let us now demonstrate how this result can be used in order to solve the
MINIMUM DUPLICATION BIPARTITE problem.

Theorem 3. The MINIMUM DUPLICATION BIPARTITE problem is randomized
polynomial time solvable when the gene trees are of bounded depth.

Proof. In the following, for ease, given a binary tree T = (V, E) and a vertex
v € V, let us denote by v (resp. v¥*) the left (resp. right) child of v and by
Cy the cluster of v i.e. the set of all leaves belonging to the subtree rooted
in v. Moreover, for ease, 97 will denote the root of the tree T. Given a gene
tree forest F = {Th = (V4, E1), T2 = (Va, E3),...} built on A, considering the
definition of the MINIMUM DUPLICATION BIPARTITE problem, one wants to
define a bipartition (A;, A2) of A = UTie # Vi inducing the minimum number of



pre-duplications. In T;, a node v of V; is a duplication with respect to (A1, As), if
o’ € {vl, v}, such that (A1 N ¢w # 0) A (A2 (¢ # B) is true. In other words,
v is a duplication if for one of its children — say v’ — (,» contains two leaves not
belonging to the same part of the bipartition (A3, A2). Given F and a set of colors
C, we define the following colored hypergraph G = (V, E) associated to F. Let
V = A = Jper Cor and there are two hyperedges, for any node vy, of the tree Tj,
o, = {Gr + [Gr| = 2} and Bj, = {(,r : |,z = 2} colored with color col(ay,) =
col(Bl) = ci € C in E. An illustration of such construction is provided in Fig.
Then in G, a colored-cut of size k' corresponds to a bipartition of the set A
inducing k&’ duplications. Indeed, if the hyperedge o (resp. 3%) belongs to the
cut-set, then it induces a duplication for the corresponding vertex vy in T; since
there exist at least two leaves in (v{; (resp. CU}}?) belonging to different parts of
the bipartition (/117 Ag)

Thus, if one can find a minimum colored-cut in such hypergraphs, then one
would be able to solve in polynomial time the MINIMUM DUPLICATION BIPAR-
TITE problem. Just consider the COLORED CONTRACTION ALGORITHM pre-
sented previously in this section. From any colored hypergraph Gz = (V, E), one
may build a colored graph G’ = (V, E’) where any hyperedge e = {v;1, V32 ... vix }
colored with color ¢ = col(e) has been replaced by a path v;1, vi2 . . . v colored
with cin B’ (i.e. E' = {(vik, Vik+1) : Vi € e,e € E}). Notice that an edge e € E'
colored with ¢ is cut if and only if an hyperedge colored ¢ of G is cut. Once
this colored graph has been obtained, one may apply the COLORED CONTRAC-
TION ALGORITHM which will produce a minimum colored-cut of G’ which also
induces a minimum colored cut in Gx. Since this algorithm has a complexity
exponential in the maximum multiplicity of any color of the considered graph,
when the size of each hyperedge is bounded, so does the multiplicity of any color
since the maximal size of an hyperedge corresponds to the maximal depth of the
input gene trees: leading to a randomized polynomial solution for the MINIMUM
DUPLICATION BIPARTITE problem. a

4 Conclusion

In this paper we have investigated the complexity of two variants of the MINI-
MUM DUPLICATION problem. We have proved that the MINIMUM DUPLICATION
problem is APX-hard, even when the input consists of five uniquely leaf-labelled
gene trees. Then, we have shown that the MINIMUM DUPLICATION BIPARTITE
problem can be solved efficiently by a randomized algorithm when the input
gene trees have bounded depth.

A natural open problem is the complexity of the MINIMUM DUPLICATION
BIPARTITE problem when the gene trees have unbounded depth. Furthermore,
it would be interesting to deepen the analysis on the complexity of the MINIMUM
DUPLICATION problem, when the input consists of less than five uniquely leaf-
labelled gene trees.
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5 Appendix - Detailed proof of APX-hardness

5.1 Extra notations

Given a binary tree T = (V, E), with leaves labelled by A and A" C A, we
define the restriction of T to A’, denoted T|A’, as the subtree obtained from
T by retaining only leaves with a label belonging to A’ and by contracting all
the internal vertices of degree 2. For ease, we will note lcar(u,v) the lowest
common ancestor of two nodes u and v in a tree 7.

For ease, in the following, we will consider that n = |V| and m = |Eg|. Let
us define the following ordered sequences of labels:

- Lf = <fn+17fr1w"'7fg,7fna'--f11>"'7f1q7f1>;
- L = L f

L= (s free o 1),

—L;:( Lo, with 1 <@ <n.

Moreover, let P, be the set of internal vertices in T, 1 < z < 4, belonging
to the path from the root of T}, to the parent p7 ,, of f,, 1. We define the spine
of any gene tree T,,, 1 < x <4, as P, \ {p},1}-

Recall that given a gene tree T and a species tree S, a vertex v of T is
duplicated with respect to S if M(v) = M(v') where v is a descendant of v in
T (i.e. v’ belongs to Ty,).

5.2 Preliminary properties

Let us introduce some fundamental properties that will be used in the rest of
this appendix.

Property 1. Let T, T’ be two gene trees labelled by the same sets of leaves A.
Consider the bipartitions by = (Cyz, Gyr), b2 = (Cﬁ;/ , Cﬁ%) of A. Then either by
and by are identical or any species tree S induces at least one duplication in the
root of one of {T,T"}.

Property 2. Let T be a gene tree and S be a species tree labelled by the same
sets of leaves A. Then either T and S are isomorphic or d(7,5) > 1.

Proof. Let us prove this lemma by induction. By hypothesis, let T" and S be
two trees not isomorphic. If both 7" and S have depth 2, it is easy to check that
d(T,S) > 1. Assume now that 7" and S have depth larger than 2. Then at least
one of the following statements holds: (a) T'|¢yz and S|Cyz are not isomorphic
or (b) T|¢yr and S|Cyz are not isomorphic or (c) T'|Cyr and S|Cyr are not
isomorphic or (d) T\Q;? and S |C19§ are not isomorphic. Then, by induction,
a(T,S) > 1. O

Property 3. Let T = (Vp, Er) be a gene tree and S = (Vg, Eg) be a species tree.
Let v be a vertex of Vi such that v has at least one child v’, which is not a leaf.
If there exists a vertex w of Vg such that (a) ¢, \ ¢or C Cw, (b) Cw 2 ¢ and (c)
Cw N ¢y # 0, then v is duplicated.
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Fig. 5. Illustration of Property [3| where (a) ¢, \ {» C Cuw, (b) Cw 2 ¢y and (c)
Cw N Cv’ 7é 0.

Proof. Let us consider the vertex w in S. Notice that, since (a) ¢, \ (v C Cuw,
(b) Cw 2 ¢» and (c) ¢y N ¢y # 0 then there exist at least a label [, such that
l € ¢y \ Cu (otherwise (,, would contain (,). Furthermore, as (, N ¢y # 0, it
follows that v’ and v are mapped with vertices of S that are on the path from w
to ¥g. Let w’ be the vertex of S to which v’ is mapped (i.e. M(v') = w’). Note
that w’ is defined such that ¢, C (. and #z such that ¢,y C ¢, and |¢.| < |Cwr|-
Since w’ is an ancestor of w, it follows that ¢, C (.. Hence, v is mapped with
w’ (i.e. M(v) =w’). As a consequence v is duplicated. O

5.3 Missing proofs

First of all, let us prove that, by construction, all the gene trees T1,...,T5 are
uniquely leaf-labelled.

Lemma 2. The trees T1, ..., Ts are uniquely leaf-labelled trees.

Proof. 1t is easy to see that T5 is uniquely leaf-labelled by construction. Indeed,
each of the three comb graphs C(Ly), C(M1), C(M;) used to build T3 is uniquely
leaf-labelled. Moreover, the trees C(Lys), C(M;), C(M2) have pairwise disjoint
sets of leaves.

Now consider the gene trees 11, 15, T3 and Ty. First, remark that any tree T,
with v € Vg is uniquely leaf-labelled and so do the trees Telm and fo. Then, one
has only to pay attention to their relative placement in the gene trees. More pre-
cisely, by construction, one has to be sure that a tree T;,, where v € V{; is incident
to edges e, = (v,v'), e, = (v,v"”) and e, = (v,v"’) does not belong to the same
gene tree than none of {T,, Ty, T} and none of {Telz,Tfl,T;y,Tfy, T) T2 }.
This is indeed true since all those trees are associated to the gene trees consid-
ering their corresponding color in the 4-coloring of G. One has also to be sure
that the trees Telz and fo do not belong to the same gene tree (which is the
case by construction). O



Fig. 6. Illustration of Lemma |3| when for each f7 € L}, lcas(fi, f7) >
lcas(fiy1, f7)-

Let us now prove that only canonical solutions are of interest. Remind that
a canonical solution (i.e. a species tree S) is a copy of T5 where extra leaves
of L = {IL,i2 : Ve, € Eg} are each inserted either in C(M;) or C(Ma). More
formally, a species tree S is canonical if and only if S|(MUM,ULy) is isomorphic
to Ts and any label in (g \ {1, belongs to ¢, where v is the other child of the
parent of f; in S.

First, let us consider the following order induced by the lca mapping M.
Consider three vertices v,v’,v” of a tree T' and the following ordering of their
lowest common ancestors: we write lcagp(v,v’) > lecap(v',v”) when the depth
of the 1ca of v/,v” is greater than the one of v,v’. We will moreover note
lcar(v,v") > lecar(v',v"”) or lcar(v',v"”) > lcar(v,v’) when the depth of the
lca of v,v’ and the 1lca of v/,v" is equal.

Lemma 3. Let S be a solution of MIN-5-DUP for the instance F = {T1,...,T5}.
Then, either d(F,S) > 6n+3m+ 1 or all the vertices on the spines of the gene
trees Ty, T, T3, Ty are duplicated.

Proof. Consider any species tree S and two leaves f;, fiy1 of T5, for a given
1 <i<n+1 Let w] (resp. w}, ) be the parent of f; (resp. fi11) in the gene
tree Tj, with j € {1,2,3,4}. Let z; (resp. x;+1) denote the parent in T of f; (resp.
fit1). Moreover, let y; (resp. y2) be the vertices in S mapped, according to the
lca mapping M, with z; (resp. z;11) — i.e. M(x;) = y1 (resp. M(z11) = y2).

In what follows, we consider a label f?, with 1 < z < ¢, and prove that,
considering the previously mentioned mapping, either all the internal vertices on
the path from x; to ;41 in T5 are duplicated (hence d(F,S) > g = 6n+3m+1)
or all the internal vertices on the path from w] (included) to w},; (not included)
are duplicated in T3, 1 < j < 4. To do so, we will consider a case by case analysis
based on the possible mappings of f;, fi+1 and f7 in S.

Assume that for each f7 € L%, lcag(fi, f?) > lcag(fit1, f7). Notice that
there exists two possible cases: lcag(f;, f7) > lcag(fit1, f7), for each f7, or



there exists at least one f7 such that lcag(f;, f7) > lcas(fit1, fi). i 1cas(fi, f7)
> lcag(fit1, f7), for each f7, then Property [3| applies to each internal ver-
tex between x;, x;41. Indeed for each internal vertex between x;, x;41, there
exists a vertex between lcag(fi, f7) and lcag(fi+1, f7) such that Property
applies, as the cluster of each of the latter vertices does not contain f; (see
Figure @ Hence d(F,S) > q = 6n + 3m + 1. Now assume that for some f,
lcag(fi, f7) > lcas(fit1, fi)- Let us consider the leaves in Cu? \nggrl and let S¥
be the set of internal vertices of T, between wyf, ; and wf. Property |§| applies to
the vertex w?, as lcag(fit1, fi) contains f;, fi+1 but not f7#, which is contained
in both wa+1 and (y». Hence wy is duplicated. Now, consider the lowest vertex
s7 € S¥ not duplicated and denote by ¢7 its child which is not on the spine of T,
1 <z < 4. Let z; be the vertex of S where s¥ is mapped (i.e. M(s?) = z1), and
notice that z; > lcag(f7?, f;). Since s? is not duplicated, then the cluster of one
of the children of z; contains ¢z, while the other contains {f?, fi, fi+1}, for each
1 < z < q. But then, since ml,m?2 € (sz, it follows that for each internal node
between x;, x;+1, there exists a vertex between lcar(f;, f7) and z; such that
Property [3| applies, as the cluster of each of the latter vertices does not contain
m?2, while the cluster of each vertex between z; and z;41 contains a label m2.
Hence d(F,S) > 6n+ 3m + 1.

Now, let us consider the case lcag(f;, f7) < lcag(fi+1, f7). It follows by
Propertythat the internal vertices of S¥ and w} are all mapped in a vertex zj,
hence inducing a duplication in w§. Indeed, (u= = (= \ { fi}, while lcar(f;, f7)
contains f;, but not f; ;.

Now consider the lowest vertex sf € S7 that is not duplicated. Then the
cluster of one of the children of z; (the vertex where s7 and w? are mapped)
contains (sz, while the other contains {fZ, fi, fi+1}, for each 1 < z < ¢. Since
mi S Csf, it follows that for each internal node between x;, x;1, there exists a
vertex between lcag(fs, f7) and z; such that Property [3| applies, as the cluster
of each of the latter vertices does not contain m?2, while the cluster of each vertex
between x; and x;,; contains m2. Hence d(F,S) > 6n + 3m + 1.

Since we have shown that for each pair of leaves f;, fit1, either d(F,S) >
6n + 3m + 1, or all the internal nodes between wi (included) and wf,; (not
included) are duplicated, it follows that we have proved the lemma. a

While in the previous lemma we have focused on the duplications induced on
vertices of the spine of the gene trees T1,...,7Ty, in what follows, we will focus
on the duplications induced in the subtrees representing the vertices and edges
(i.e. Tpy, TF).

€

Lemma 4. Let S be a solution of MIN-5-DUP over instance F = {T1,...,Ts}
and let Telw, Tfm, Ty, Ty, be four subtrees of Tt, ..., Ty, s.t. e, = (vi,v;) € Eg.
Then (1) the root of at least one of T, , T2 is duplicated with respect to S; (2)
the roots of at least two of Telw, Ti, Ty, Ty; are duplicated with respect to S.

e

Proof. 1t follows from Property |1| that the root of at least one of Telz, Tgm is
duplicated with respect to .S since both Telm7 sz are labelled by the same set of
leaves and they are not isomorphic.



Now, let us prove the second part of the lemma. We have shown that any
species tree induces a duplication in the root of at least one of T} , T? . Let us
consider a species tree S. If S induces a duplication in the roots of both TelT and
sz, then the lemma holds. Hence assume that S induces a duplication in exactly
one of Telz, sz, w.lo.g. Telz. Thus, assume that S does not induce a duplication
in the root of wa.

Let us define L, = {ml,m2,11,12} and consider the following restrictions
of o, and T);: Ty, |Ly, Ty, | Ly The roots of both T, |L, and T, |L, induce the
following bipartitions B(v;) = ({mL,iL}; {m2}) and B(v;) = ({ml,12}; {m2}).

Let v be the vertex of S, which is the lowest common ancestor of {m?2,11,12}.
Since we have assumed that the root of T2 is not duplicated, it follows that
the subtree rooted at v restricted to {m2,lL,12} must induce the bipartition
({m2,13};{I2}). Now assume that both the root of T}, and the root of T, are
mapped to v and consider where the leaf m! is possibly placed in a the subtree
rooted in v. If ml is clustered with 2, then the root of Ty, is duplicated, as
bipartition B(v;) = ({mk,2};{m2}). If m} is clustered with I} and m2, then

the root of T, is duplicated, as bipartition B(v;) = ({ml,iL};{m2}).

T
Assume now that the root of T, or the root of Ty, w.l.o.g. ﬂva is not
mapped to v. Then, both the root of T;, and at least one of its children are
mapped to an ancestor of v. Let y be the ancestor of v to which 19Tu1- is mapped.
The clusters of both children of y contain a leaf of (y, . More precisely, the
cluster of the child z of y that is on the path from v to y will contain the leaf set
{ml, 1L, m2}, as so does the (,. Hence, one of the children of Jr, , w.lo.g. 19%(‘,1_),

has a cluster not included in ¢, but sharing some elements with (.. This implies
that 19%(%) is mapped in y, thus a duplication occurs in the root of Tj,,. a

Let us now consider canonical solution and prove the following lemma.

Lemma 5. Let S be a solution of MIN-5-DUP over instance F = {T1,...,T5}.
Then, we can compute in polynomial time a canonical solution S* of MIN-5-
Dup over instance F, such that d(F,S*) < d(F,S), and such that for each e, =
(vi,vj) € Eg and the corresponding subtrees Telw, wa, Ty, Ty, of Th, T2, T3, Ty:
(1) the root of exactly one of T} , T2 is duplicated with respect to S*; (2) the
root of at least one of T, Ty, is duplicated with respect to S*.

Proof. Let S be a solution of MIN-5-DUP over instance 77, ..., 5. If S induces
at least 6n 4+ 3m + 1 duplications, since a canonical solution induces at most
5n + 3m + p duplications, where p < n, it follows that for any canonical solution
S* that satisfies properties (1) and (2) of the lemma, d(F, S*) < d(F, S). Indeed
in a canonical solution S*, there are 5n + 2m duplications on the spines of the
gene trees 11,715, T3, Ty, plus m duplications in the root of either Telw or sz, for
any e, € Eg and p duplications in the roots of any subtree T),,, for any v; € V.
Hence, assume that S induces less than 6n+3m+1 duplications. By Lemmal[3]
it follows that S induces a duplication in all the the vertices on the spine of each
gene tree T;, 1 < ¢ < 4. Now, consider the set R of clusters associated with
the roots of subtrees T, , T2 , T,,, T,, and define two subsets of R as follows:
Safe(S) ={x € R: x is not duplicated in S}, Dup(S) = R\ Safe(S).



Now let us compute a canonical solution S*. First, starting from Safe(S)
and Dup(S), let us compute two sets Safe(S*) and Dup(S*) as follows. Notice
that by Lemma [4] at least one of the roots of T} , T2 is duplicated. We assume
w.l.o.g. that if the cluster of ¥, (resp. of 79Tuj) is in Dup(S), then the cluster
of U1 (resp. of Jr2 ) is in Dup(S). Notice that, if the clusters of both J71 ,
U7z are in Dup(S), then we can assign one of these two clusters to Safe(S) and
eveﬁtually one of 19T,Ui, 19ij to Dup(S), without improving the size of Dup(S).
Now, define Safe(S*) = Safe(S) and Dup(S*) = Dup(S).

Let S’ be a tree isomorphic to Ts. Then starting from S’ we construct a
solution S* of MIN-5-DUP as follows. Let us consider the subtree of S’ having
as leaf set M7 U Ms. Let 7’ be the root of this subtree, and let r;, 1 < i < 2, be
the root of C'(M;) in 5.

First, let us assign the elements of L = (I1,11,13,13, ... I[5 |, g, ) to two sets
Ly, Ly as follows. If the cluster of d71 (resp. ¥72 ) belongs to Safe(S*), then
assign the leaves [1 (resp. [2) to L;. If the cluster of Ur,, belongs to Safe(S*),
then assign lm, l;, li to Li where v; is incident to the edges e, e, and e,. All
the other leaves in L are assigned to Ly. Then a subtree C(Lq) is inserted in
the edge {r’,r1}. The subtree C(My) is substituted with a subtree C'(Mz U L),
where the order on My U Lo is induced by the order on the corresponding edges
and that [1 < m2.

Now, we claim that the tree S* induces at most Dup(S*) duplications, for
the trees T} , T2 , T,,, T,,. Indeed, assume that T} is in Safe(S*). Then, since
at most one Of l;, 12 is assigned to Ly, at least one of [1 and [2 is assigned to Lo.
It follows that the root of T} is not duplicated (a s1m11ar proof holds for T2 ).

Now consider a subtree Tm in Safe(S*). As 1L, ml are assigned to L1, and as
m? is assigned to Lo, it follows that the root of Tvi is not duplicated. Since the
other vertices are arranged following the order on L, it follows that no duplication
is induced in any internal vertex of T),,.

Now consider a subtree T, in Dup(S*). By construction, the subtrees of
Vi do not have duplications. Furthermore, as all the leaves I},
ll 11 (related to v;) are assigned to Lo, it follows that also the vertices in the

Yy’ vz
restriction T, |[{I1, l;, li} are not duplicated. Finally, the vertex of T),, associated
with clusters {ml,m},ml I}, l;,l } is mapped to 7/, hence it is not duplicated

as its children are not mapped to r’.

Now, consider the other vertices of 11,15, T3, Ty not yet considered. Since by
construction, the only other vertices of 13,75, T3, T4 that are duplicated with
respect to S* are those vertices in the spines of the gene trees 17,75, T3, Ty, the
correctness of the lemma follows. O

We are now ready to prove the main lemma; that is that our reduction is an
L-reduction.

Lemma 6. Let G = (Vg, Eq) be an instance of MVCC and let F = {Ty,...,T5}
be the corresponding instance of MIN-5-Dup. Then, starting from a cover V(,
of G, we can compute in polynomial time a solution of MIN-5-DUP over in-
stance F = {T1,...,Ts} such that d(F,S) < bn+3m+ |VL|. Moreover, starting



from a solution S to MIN-5-DUP over instance F = {T1,...,Ts} such that
d(F,S) < b5n+3m+p, we can compute in polynomial time a cover of G of size
at most p.

Proof. Given a cover V} of G = (Vz, Eg), define a solution S to MIN-5-DUP as
follows. The construction follows that of Lemma [5 by assigning T, to Safe(S)
if V; ¢ V/.

Let us consider a species tree S inducing at most 5n + 3m + p duplications.
By Lemmalj] it follows that starting from S, we can compute in polynomial time
a canonical solution S* of MIN-5-DUP over instance F = {11, ..., 75}, inducing
5n + 3m + p’ duplications, with p’ < p. Since S* is a canonical solution, we can
assume that there exists exactly p’ duplications induced by S* in the subtrees
{T,, : vi € Vg }. By Lemma 5| for each edge {v;,v;} € Eg, at least one of the
subtrees from {T,, Ty, } has a duplication in its root. Hence, the set of vertices
V! C V corresponding to those trees in {7y, : v; € Vz} having a duplication in
their root forms a cover of G. Since |V'| = p’ < p, it follows that the lemma
holds. ad
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