Guillaume Blin
email: gblin@univ-mlv.fr

Paola Bonizzoni
email: bonizzoni@disco.unimib.it

Riccardo Dondi
email: riccardo.dondi@unibg.it

Romeo Rizzi
email: romeo.rizzi@dimi.uniud.it

Florian Sikora
email: sikora@univ-mlv.fr

Complexity Insights of the Minimum Duplication Problem

, where the goal is to find all pre-duplications, that is duplications that precede, in the evolution, the first speciation with respect to a species tree. In this paper, we investigate the complexity of both Minimum Duplication and Minimum Duplication Bipartite problems. First of all, we prove that the Minimum Duplication problem is APX-hard, even when the input consists of five uniquely leaf-labelled gene trees (progressing on the complexity of the problem). Then, we show that the Minimum Duplication Bipartite problem can be solved efficiently by a randomized algorithm when the input gene trees have bounded depth.

Introduction

The evolutionary history of the genomes of eukaryotes is the result of a series of evolutionary events, called speciations, that produce new species starting from a common ancestor. This evolutionary history has been deeply studied in Computational Biology, and is usually represented using a special type of phylogenetic tree called species tree [START_REF] Felsenstein | Phylogenies from molecular sequences: Inference and reliability[END_REF]. A species tree is a rooted binary tree whose leaves are uniquely labelled by a set Λ representing the extant species, where the common ancestor of the contemporary species is associated with the root of the tree. The internal nodes represent hypothetical ancestral species (and the associated speciations). Speciations are not the only events that influence the evolution. Indeed, there are other events, such as gene duplication, gene loss and lateral gene transfer that, although not leading to new species, are fundamental in evolution. In this paper, we focus on gene duplications which are known to be essential for the evolution of many eukaryotes groups, such as vertebrates, insects and Fig. 1. (a) a gene tree T . (b) a species tree S where M is the lca mapping from T to S; each gene in {g 2 , g 4 , g 5 } is mapped by function f in the species that gene belongs to. (c) a reconciled tree for T and S based on the a priori duplication of gene g 1 into genes h and g 3 .

plants [START_REF] Eichler | Structural dynamics of eukaryotic chromosome evolution[END_REF]. Gene duplication can be described as the genomic event that causes a gene inside a genome to be copied, resulting in two copies of the same gene that can evolve independently. Genes of extant species are called homologous if they evolved from a common ancestor, through speciations and duplications events [START_REF] Fitch | Homology-a personal view on some of the problems[END_REF]. Evolution of homologous genes, with regards to the extant species, is usually represented using another special type of phylogenetic tree called gene tree. A gene tree is a rooted binary tree whose leaves are (not necessarily uniquely) labelled using elements of the set Λ. Indeed, despite the fact that, biologically speaking, leaves in the gene tree represent genes, for ease, the gene tree is labelled according to the species from which the corresponding gene was sampled. Therefore, leaves similarly labelled represent duplicated genes that evolved independently and appear in a common extant species. As in the species tree, the root and the internal nodes respectively represent the common ancestor and ancestral genes explaining their evolution.

With regards to the set of labels Λ, gene and species trees are said to be comparable. Nevertheless, due to complex evolutionary processes such as gene duplication and loss, comparable gene and species trees very often present incompatibilities. A challenging problem is then to reconcile the gene and species trees with hypothetical gene duplications. For example, in Fig. 1, given two comparable gene and species trees inducing incompatibilities, one can infer a reconciled tree based on the a priori duplication of gene g 1 into genes h and g 3 (h is a hypothetical ancestor of genes g 2 , g 4), which afterwards both speciate according to the topology of the species tree. Based on the principle of parsimony, one is interested in finding the minimum number of gene duplications that can explain all the incompatibilities. This last can be inferred by the so-called lowest common ancestor mapping (lca mapping), denoted by M and defined as follows. M maps any gene of the gene tree to the latest species from which the gene could be sampled. In other words, M maps each ancestral gene g of the gene tree to the most recent common ancestor of the extant species from which all the descendant of g were sampled.

For example, in Fig. 1, according to M, g 3 is mapped to S 1 since S 1 is the most recent common ancestor of S 4 and S 5 from which were sampled (represented as a function f) respectively the descendant g 4 and g 5 of g 3 . Observe that, considering M, any leaf of the gene tree is mapped to the unique leaf of S similarly labelled (according to Λ). Given M, a gene in the gene tree is a gene duplication if it has a descendant with the same M mapping. Then, the reconciliation cost is defined as the number of gene duplications in the gene tree induced by the species tree. Computation of this distance has been widely investigated in the context of the Minimum Duplication problem [START_REF] Stege | Gene Trees and Species Trees: The Gene-Duplication Problem in Fixed-Parameter Tractable[END_REF][START_REF] Ma | From Gene Trees to Species Trees[END_REF][START_REF] Hallett | New algorithms for the duplication-loss model[END_REF][START_REF] Bansal | A Note on the Fixed Parameter Tractability of the Gene-Duplication Problem[END_REF], where given a set of gene trees, the objective is to compute a species tree that induces a minimum number of gene duplications.

The Minimum Duplication problem is known to be NP-hard [START_REF] Ma | From Gene Trees to Species Trees[END_REF]. More recently, the Minimum Duplication problem has been related to the Minimum Triplets Consistency [START_REF] Bansal | A Note on the Fixed Parameter Tractability of the Gene-Duplication Problem[END_REF]. The complexity of Minimum Triplets Consistency has been deeply studied, and the problem is known to be W[2]-hard [START_REF] Byrka | New results on optimizing rooted triplets consistency[END_REF] and inapproximable within factor O(log n) [START_REF] Byrka | New results on optimizing rooted triplets consistency[END_REF]. These results coupled with the reduction provided in [START_REF] Bansal | A Note on the Fixed Parameter Tractability of the Gene-Duplication Problem[END_REF] implies that the Minimum Duplication is NP-hard, W [START_REF] Bansal | Heuristics for the Gene-Duplication Problem: A Θ(n) -Speed-Up for the Local Search[END_REF]-hard (despite of [START_REF] Stege | Gene Trees and Species Trees: The Gene-Duplication Problem in Fixed-Parameter Tractable[END_REF]) and inapproximable within factor O(log n) even in the specific case of a forest composed of an unbounded number of uniquely leaf-labelled gene trees with three leaves [START_REF] Bansal | A Note on the Fixed Parameter Tractability of the Gene-Duplication Problem[END_REF]. Therefore, different heuristics and Integer Linear Programs have been developed [START_REF] Bansal | Heuristics for the Gene-Duplication Problem: A Θ(n) -Speed-Up for the Local Search[END_REF][START_REF] Bansal | The Gene-Duplication Problem: Near-Linear Time Algorithms for NNI-Based Local Searches[END_REF][START_REF] Chauve | New Perspectives on Gene Family Evolution: Losses in Reconciliation and a Link with Supertrees[END_REF][START_REF] Chang | An ILP solution for the gene duplication problem[END_REF]. Recently, the Minimum Duplication Bipartite problem has been introduced to tackle the Minimum Duplication problem [START_REF] Ouangraoua | An Approximation Algorithm for Computing a Parsimonious First Speciation in the Gene Duplication Model[END_REF]. The Minimum Duplication Bipartite problem corresponds to finding all pre-duplications; that is duplications that precede, in the evolution, the first speciation with respect to a species tree. Roughly, this means that only the first level of the species tree is of importance. Indeed, one is interested in knowing if a given species belongs to the subtree of S rooted at the left child of the root or at the right one. Therefore, one can view the species tree as a bipartition (Λ 1 , Λ 2) of the set of species Λ. Solving the Minimum Duplication Bipartite problem recursively produces a natural greedy heuristic for the Minimum Duplication problem. The Minimum Duplication Bipartite problem was shown to be 2-approximable [START_REF] Ouangraoua | An Approximation Algorithm for Computing a Parsimonious First Speciation in the Gene Duplication Model[END_REF], but its complexity remains open.

In this contribution, we provide results relying both on the Minimum Duplication problem and the Minimum Duplication Bipartite problem. First of all, we prove that the Minimum Duplication problem is APX-hard, even when the input consists of five uniquely leaf-labeled gene trees (that is for a bounded number of gene trees). Then, we show that the Minimum Duplication Bipartite problem can be solved efficiently by a randomized algorithm when the input gene trees have bounded depth. greedy heuristic for the Minimum Duplication problem. Due to space consideration, we do not provide full details and proofs which are deferred to the full version of the paper.

We present a reduction from Minimum Vertex Cover on cubic graphs (MVCC) to the specific case of the Minimum Duplication problem -denoted Min-5-Dup -where given a set of five uniquely leaf labelled gene trees F = {T 1 , T 2 , T 3 , T 4 , T 5 }, the objective is to compute a species tree S that induces a minimum number of gene duplications (afterwards denoted as d(F, S)). Let G = (V G , E G) be a cubic graph (i.e. every vertex has degree three), MVCC problem asks for a subset V G ⊆ V G , such that for each edge (v i , v j) ∈ E G , at least one of {v i , v j } belongs to V G . In a first step, starting from any cubic graph G = (V G , E G), we will construct an associated input F = {T 1 , . . . , T 5 } of Min-5-Dup. Then, we will demonstrate that any species tree S such that d(F, S) < q = 6|E G | + 3|V G | + 1 must be canonical (defined afterwards). Finally, we will prove that our construction is indeed an L-reduction.

In order to define formally the gene trees, let us first define the central notion of comb graph. We will consider a specific subclass of comb graphs corresponding to a binary tree where all the internal nodes lie on a single simple (i.e. with no repeated vertices) path referred as the spine. For ease, we will nevertheless use the term comb graph in the following to denote those last. Given a sequence L = l 1 , . . . , l k of k labels, let C(L) denote the comb graph whose leaves are labelled according to a postorder traversal using L (i.e. l x ∈ L is the label of the unique leaf of depth x). For example, in Fig. 1, the gene tree (a) corresponds to the comb graph C(g 2 , g 4 , g 5).

Let us now define two operations on trees. Let T 1 T 2 be a tree obtained from two trees T 1 and T 2 , by connecting the roots of T 1 and T 2 to a new vertex v which becomes the root of T 1 T 2 . Inserting T 2 in the edge e of T 1 will denote the operation that leads to a tree obtained from T 1 and T 2 by replacing the edge e = (v, v) in T 1 by two edges (v, w) and (w, v) and connecting the root of T 2 to the new vertex w.

We are now ready to define the gene trees T 1 , . . . , T 5 . Roughly, we will associate to each vertex v ∈ V G , a specific tree T v and to each edge e ∈ E G , two trees T 1 e , T 2 e . These trees will be then combined to build the gene trees T 1 , . . . , T 5 . For ease, let us consider the following order of edges of E G , e 1 , e 2 , . . . e |E G | s.t. ∀e x = (v i , v j), e y = (v h , v k) with x < y, i < j and h < k, either (i < h) or (i = h and j < k). According to this order, we define the following three sequences of labels:

M 1 = m 1 1 , m 1 2 , . . . m 1 |E G | , M 2 = m 2 1 , m 2 2 , . . . m 2 |E G | and L = l 1 1 , l 2 1 , l 1 2 , l 2 2 , . . . l 1 |E G | , l 2 |E G | .
Roughly, any edge e x is represented by the four labels {m 1

x , m 2 x , l 1 x , l 2 x }. First of all, for any edge e x ∈ E G , let us build the two trees

T 1 ex = C(l 1 x , m 2 x , l 2
x) and

T 2 ex = C(l 2 x , m 2 x , l 1
x). Moreover, for any v ∈ V G s.t. v is incident to the edges e x , e y and e z , we build a tree

T v = C(m 1 x , m 1 y , m 1 z) C(l 1 x , l 1 y , l 1 z) C(m 2
x , m 2 y , m 2 z) (see Fig. 2). We will now build the gene trees T 1 to T 5 by starting from a comb graph where subtrees representing vertices and edges will be inserted in. Let T 5 be obtained from

C(f |V G |+1 , f 1 |V G | , . . . , f q |V G | , f |V G | , . . . f 1 1 , . . . , f q 1 , f 1)
, by inserting in the edge connecting f 1 and its parent the subtree C(M 1) C(M 2). Regarding the construction of T 1 to T 4 , let us assume that we are also provided a 4-coloring λ : V G → {1, 2, 3, 4} of G (for example, by applying the polynomial-time greedy Welsh-Powell algorithm [START_REF] Welsh | An upper bound for the chromatic number of a graph and its application to timetabling problems[END_REF]). Let any T i , 1 ≤ i ≤ 4, be first define as a the following comb graph:

T i = C(f 1 , f 2 , . . . , f |V G |+1 , f 1 |V G | , . . . f q |V G | , f 1 |V G |-1 . . . , f q 1
). We then insert, for each v i ∈ V G , the tree T vi in the edge connecting the parents of f i and f i+1 in the gene tree T x where x = λ(v i) (see Fig. 3). Moreover, for each e x = (v i , v j) ∈ E G (ordered from e 1 to e |E G |), the tree T 1 ex is inserted in the edge connecting the parent of f i and its other child in the gene tree T x where x = min{1, 2, 3, 4} \ {λ(v i), λ(v j)} (i.e. the gene tree having the smallest index and not containing neither T vi , nor T vj). Finally, for each e x = (v i , v j) ∈ E G , the tree T 2 ex is inserted in the edge connecting the parent of f i and its other child in the gene tree T x where x = max{1, 2, 3, 4} \ {λ(v i), λ(v j)} (i.e. the gene tree having the biggest index and not containing neither T vi , nor T vj). A sketch of this construction is given in Fig. 3.

Due to space constraints, we only provide here a sketch of our proof (full details available in appendix). First of all, we can prove that, by construction, all the gene trees are indeed uniquely leaf-labelled. Then, we can prove that only canonical solutions are of interest. Roughly, a canonical solution (i.e. a species tree S) is a copy of T 5 where extra leaves of L = {l 1

x , l 2

x : ∀e x ∈ E G } are each inserted either in C(M 1) or C(M 2). The insertion of l 1

x , l 2 x in C(M 1) or C(M 2) depends on the fact that the edge e x = (v i , v i) is covered by v i or v j .

We can, moreover, prove that, in a canonical solution, (1) each vertex on the path from the root of T j , with 1 ≤ j ≤ 4, to the parent of

f |V G |+1 (excluding this last) induces a duplication (that is 5|V G | + 2|E G | in total), (2) each edge e x = (v i , v j) ∈ E G induces a duplication in the root of one of {T 1 ex , T 2
ex } and a duplication in the root of either T vi or T vj . One can then easily see that the minimum number of duplications is then related to the minimum cover size. Hence the following lemma holds.

Lemma 1. Let G = (V G , E G) be an instance of MVCC and let F = {T 1 , . . . , T 5 } be the corresponding instance of Min-5-Dup. Then, starting from a cover V G of G, we can compute in polynomial time a solution S of Min-5-Dup for F s.t. d(F, S) ≤ 5|V G | + 3|E G | + |V G |; starting from a solution S of Min-5-Dup for F s.t. d(F, S) ≤ 5|V G | + 3|E G | + p, we can compute in polynomial time a cover of G of size at most p.
* f = f 1 |V G | , . . . , f q |V G | , . . . , f 1 1 , . . . , f q 1 and ∀1 ≤ i ≤ 4, λ(v i) = i.
Lemma 1 concludes the reduction. Since MVCC is APX-hard [START_REF] Alimonti | Some APX-completeness results for cubic graphs[END_REF], provided our L-reduction, we can conclude that Min-5-Dup is also APX-hard.

Theorem 1. The Minimum Duplication problem is APX-hard, even when the input consists of five uniquely leaf-labelled gene trees

A randomized approach

In this section, we investigate the complexity of the Minimum Duplication Bipartite problem and show that it can be solved efficiently by a randomized algorithm when the input gene trees have bounded depth. A randomized algorithm can be seen simply as an algorithm that is allowed to do some random decisions as it processes the input. Whereas defining a randomized algorithm is quite easy, the performance analysis of this last is more complicated. Indeed, first, one has to compute the probability of success of the randomized algorithm (i.e. probability to end up with an optimal solution). Then, one can amplify the probability of success simply by repeatedly running the algorithm, with independent random choices, and taking the best solution found. If one, moreover, prove that the overall running time required to get a high probability of success is polynomial in the size of the input, then it implies that the problem is randomized polynomial (in RP-class). For further details on randomized algorithms, the reader should consider the book of Kleinberg and Tardos [START_REF] Kleinberg | Algorithm Design[END_REF].

In order to prove that the Minimum Duplication Bipartite problem is randomized polynomial, we first provide a randomized algorithm for a variant of the Minimum Cut problem, called Minimum Cut in Colored Graph. Then, we will prove that the Minimum Duplication Bipartite problem can be translated into a Minimum Cut in Colored Hypergraph problem that can be solved efficiently applying our randomized algorithm on hypergraphs with bounded hyperedges degree. It is of importance to note that, as far as we know, this is the first attempt of solving by randomization the minimum cut in colored hypergraph. Providing a randomized algorithm for general hypergaphs with unbounded hyperedges degree is still open.

Let us first introduce the Minimum Cut in Colored Graph problem: Given a set of colors C and an undirected colored graph G = (V, E) where any edge is colored with a color from C, find a minimal colored cut of G -that is a partition of V into two non-empty sets A and B such that the number of colors used by the edges having one end in A and the other in B is minimized.

For ease, let col : E → C be a function returning the color of a given edge and mul(c) = |{e : e ∈ E and col(e) = c}| be a function returning the multiplicity of a given color. Moreover, for sake, given a graph G = (V, E), let col(G) = e∈E col(e) denote the set of colors used in G. Let us now describe an algorithm inspired by the folklore Contraction Algorithm [START_REF] Kleinberg | Algorithm Design[END_REF] used for solving the classical Minimum Cut problem (i.e. minimizing the number of edges having one end in A and the other in B) on uncolored graph by randomized algorithm.

As in [START_REF] Kleinberg | Algorithm Design[END_REF], our Colored Contraction Algorithm uses a connected multigraph G = (V, E) -that is an undirected graph that is allowed to have more then one edge between the same pair of vertices -which is moreover colored. The algorithm starts by choosing, uniformly at random, a color c ∈ col(G) and contracting any edge e ∈ E such that col(e) = c (and thus all such edges). Contracting an edge (u, v) ∈ E will produce a new graph G = (V , E) in which u and v are identified as a single new vertex w whereas all other vertices are keeping their original identity (i.e.

V = {V ∪ {w}} \ {u, v}). In G , E = {E ∪ {(w, v) : v ∈ {u, v}, (v , v) ∈ E}} \ {(v , v) : v ∈ {u, v}, v ∈ V }.
Roughly, E is a copy of E where any edge (u, v) has been removed whereas any other edge has been preserved, but if one of its ends was equal to u or v, then this end is updated to be equal to the new node w. Note that the contraction operation may end up in a multigraph even when starting from a classical graph G. In this process, contracting all the edges that have the selected color c roughly corresponds to a sequence of mul(c) contractions, each reducing the number of vertices by one. Colored Contraction Algorithm then continues recursively on G , by choosing, uniformly at random, a color c ∈ col(G) and contracting any edge e ∈ E such that col(e) = c. As these recursive calls proceed, the vertices of V should be viewed as supervertices: each supervertex w corresponds to the subset S(w) ⊆ V that has been "swallowed up" in the contractions that produced w. The algorithm ends when it reaches a graph G with only two super-vertices v A and v B . We output (A = S(v A), B = S(v B)) as the colored-cut found by the algorithm.

Let us now analyze the performance of the Colored Contraction Algorithm -which cannot be derived directly from the one of the original Contraction Algorithm. Since the algorithm is making random choices, there is some probability that it will succeed in finding a minimum colored-cut (and some probability that it would not). In order to prove that this algorithm is worthwhile, we will prove that the probability of success is only polynomially small; inducing that, by running the algorithm a polynomial number of times and returning the best colored-cut found in any run, one would be able to produce an optimal colored-cut with high probability.

Theorem 2. The Colored Contraction Algorithm returns an optimal colored-cut G with probability at least

(|V | 2k) -1 where k = max c∈C mul(c)
Proof. Let us assume that the optimal minimum colored-cut (A, B) of G is of size opt; that is the set of edges having one end in A and the other end in B (referred afterwards as the cut-set) is colored using opt colors of C. Note that unlike the classical minimum cut problem, the goal here is to minimize the number of colors in the cut-set itself. Moreover, let

G opt = G[A ∪ B, {(u, v) : (u, v) ∈ E and u ∈ A, v ∈ B}]
corresponds to the bipartite graph representing the cut-set of (A, B). In order to compute a lower bound on the probability that the Colored Contraction Algorithm returns the minimum colored-cut (A, B), we first notice some important properties.

First, remark that any vertex v ∈ V cannot have a degree less than opt. Indeed, otherwise, ({v}, V \ {v}) would correspond to a colored-cut inducing at most opt -1 colors, contradicting our hypothesis that (A, B) is an optimal minimum colored-cut of G. Therefore, any vertex of G is of degree at least opt; inducing the following lower bound on E: |E| ≥ opt|V |

2

. We know moreover that, since each color of C can be used at most k = max c∈C mul(c) times in E, we have that |E| ≤ k • |C|. This leads to the following inequalities.

|V | • opt ≤ 2 • |E| ≤ 2k • |C| (1)
Let us now evaluate the probability P r[F j] that the Colored Contraction Algorithm fails at the j th step of the recursion (that is when already j -1 contractions have been done). Considering what could go wrong in the j th step of the Colored Contraction Algorithm, one can check that the unique issue would be that the uniformly at random choice of a color c unfortunately select one color of the set of opt colors used by the cut-set -which will be then contracted inducing that the algorithm would not be able to find the optimal colored-cut (A, B) since at least a node of A and a node of B would be both contracted into the same supervertex. Hence the probability that an edge of the current graph G is both in the optima cut-set and contracted is at most opt |C | , since there are at most opt edges to be chosen among |C | edges, where C = col(G). According to Inequality 1, considering that the graph at j th step is G and

C = col(G) P r[F j] ≤ opt |C | ≤ 2k • |C | |V | • |C | = 2k |V | (2)
The colored-cut (A, B) will actually be returned by the algorithm if no edge of the cut-set is contracted in any of the at most |V | -2 iterations. If we write S j for the event that an edge of the cut-set has not been contracted until the j th step, then, according to Inequality 2, P r

[S j] ≥ 1 -P r[F j] = 1 -2k
|V | where the graph at j th step is G = (V , E). For ease, let us consider the sequence of color choices as being S c = (c 1 , c 2 . . .) and λ j = i<j and ci∈Sc mul(c i). On the whole the probability that the Colored Contraction Algorithm returns the optimal colored-cut (A, B) is thus at least

P r[Success] ≥ λ1-1 i=0 (1 - 2k |V | -i) • λ3-1 i=λ2 (1 - 2k |V | -i
) . . .

λ |Sc | -1 i=λ |Sc |-1 (1 - 2k |V | -i) (3) ≥ λ1-1 i=0 (|V | -i -2k |V | -i) • λ3-1 i=λ2 (|V | -i -2k |V | -i) . . . λ |Sc | -1 i=λ |Sc |-1 (|V | -i -2k |V | -i) (4)
≥

λ |Sc | -1 i=0 (|V | -i -2k |V | -i) = |V | -2k |V | . . . |V | -2k -2k |V | -2k . . . |V | -(λ |Sc| -1) -2k ((((((((|V | -(λ |Sc| -1) (5)
≥

λ |Sc | -1 i=2k |V | -i -2k 2k-1 i=0 |V | -i ≥ 1 |V | 2k = (|V | 2k) -1 (6)
Then according to Theorem 2, we know that a single run of the Colored Contraction Algorithm fails to find an optimal colored-cut with probability at most (1 -(|V | 2k) -1). One can then amplify the probability of success simply by repeatedly running the algorithm, with independent random choices, and taking the best colored-cut found. It is known that the function (1 -n -1) n converges monotonically from 1 4 up to 1 e as n increases from 2 [START_REF] Kleinberg | Algorithm Design[END_REF]. Thus, if we run the algorithm |V | 2k times, then the probability that we fail to find an optimal colored-cut in any run is at most (1 Proof. In the following, for ease, given a binary tree T = (V, E) and a vertex v ∈ V , let us denote by v L (resp. v R) the left (resp. right) child of v and by ζ v the cluster of v i.e. the set of all leaves belonging to the subtree rooted in v. Moreover, for ease, ϑ T will denote the root of the tree T . Given a gene tree forest F = {T 1 = (V 1 , E 1), T 2 = (V 2 , E 2), . . .} built on Λ, considering the definition of the Minimum Duplication Bipartite problem, one wants to define a bipartition (Λ 1 , Λ 2) of Λ = Ti∈F V i inducing the minimum number of pre-duplications. In T i , a node v of V i is a duplication with respect to (Λ

-(|V | 2k) -1) |V | 2k ≤ 1 e . As
1 , Λ 2), if ∃v ∈ {v L , v R }, such that (Λ 1 ζ v = ∅) ∧ (Λ 2 ζ v = ∅) is true.
In other words, v is a duplication if for one of its children -say v -ζ v contains two leaves not belonging to the same part of the bipartition (Λ 1 , Λ 2). Given F and a set of colors C, we define the following colored hypergraph G F = (V, E) associated to F. Let V = Λ = T ∈F ζ ϑ T and there are two hyperedges, for any node v k of the tree T i ,

α i k = {ζ v L k : |ζ v L k | ≥ 2} and β i k = {ζ v R k : |ζ v R k | ≥ 2} colored with color col(α i k) = col(β i k) = c i k ∈ C in E.
An illustration of such construction is provided in Fig. 4. Then in G F , a colored-cut of size k corresponds to a bipartition of the set Λ inducing k duplications. Indeed, if the hyperedge α i k (resp. β i k) belongs to the cut-set, then it induces a duplication for the corresponding vertex v k in T i since there exist at least two leaves in

ζ v L k (resp. ζ v R k) belonging to different parts of the bipartition (Λ 1 , Λ 2).
Thus, if one can find a minimum colored-cut in such hypergraphs, then one would be able to solve in polynomial time the Minimum Duplication Bipartite problem. Just consider the Colored Contraction Algorithm presented previously in this section. From any colored hypergraph G F = (V, E), one may build a colored graph G = (V, E) where any hyperedge e = {v i1 , v i2 . . . v ik } colored with color c = col(e) has been replaced by a path v i1 , v i2 . . . v ik colored with c in E (i.e. E = {(v ik , v ik+1) : v ik ∈ e, e ∈ E}). Notice that an edge e ∈ E colored with c is cut if and only if an hyperedge colored c of G F is cut. Once this colored graph has been obtained, one may apply the Colored Contraction Algorithm which will produce a minimum colored-cut of G which also induces a minimum colored cut in G F . Since this algorithm has a complexity exponential in the maximum multiplicity of any color of the considered graph, when the size of each hyperedge is bounded, so does the multiplicity of any color since the maximal size of an hyperedge corresponds to the maximal depth of the input gene trees: leading to a randomized polynomial solution for the Minimum Duplication Bipartite problem.

Conclusion

In this paper we have investigated the complexity of two variants of the Minimum Duplication problem. We have proved that the Minimum Duplication problem is APX-hard, even when the input consists of five uniquely leaf-labelled gene trees. Then, we have shown that the Minimum Duplication Bipartite problem can be solved efficiently by a randomized algorithm when the input gene trees have bounded depth.

A natural open problem is the complexity of the Minimum Duplication Bipartite problem when the gene trees have unbounded depth. Furthermore, it would be interesting to deepen the analysis on the complexity of the Minimum Duplication problem, when the input consists of less than five uniquely leaflabelled gene trees.

5 Appendix -Detailed proof of APX-hardness

Extra notations

Given a binary tree T = (V, E), with leaves labelled by Λ and Λ ⊆ Λ, we define the restriction of T to Λ , denoted T |Λ , as the subtree obtained from T by retaining only leaves with a label belonging to Λ and by contracting all the internal vertices of degree 2. For ease, we will note lca T (u, v) the lowest common ancestor of two nodes u and v in a tree T .

For ease, in the following, we will consider that n = |V G | and m = |E G |. Let us define the following ordered sequences of labels:

-L f = f n+1 , f 1 n , . . . , f q n , f n , . . . f 1 1 , . . . , f q 1 , f 1 ; -L * f = f 1 n , . . . , f q n , . . . , f 1 1 , . . . , f q 1 ; -L f = f n+1 , f n , . . . , f 1 . -L i f = f 1 i , .
. . , f q i , with 1 ≤ i ≤ n. Moreover, let P x be the set of internal vertices in T x , 1 ≤ x ≤ 4, belonging to the path from the root of T x to the parent p x n+1 of f n+1 . We define the spine of any gene tree T x , 1 ≤ x ≤ 4, as P x \ {p x n+1 }. Recall that given a gene tree T and a species tree S, a vertex v of T is duplicated with respect to S if M(v) = M(v) where v is a descendant of v in T (i.e. v belongs to T v).

Preliminary properties

Let us introduce some fundamental properties that will be used in the rest of this appendix. Property 3. Let T = (V T , E T) be a gene tree and S = (V S , E S) be a species tree. Let v be a vertex of V T such that v has at least one child v , which is not a leaf. If there exists a vertex w of V S such that (a)

ζ v \ ζ v ⊆ ζ w , (b) ζ w ⊇ ζ v and (c) ζ w ∩ ζ v = ∅, then v is duplicated.

Missing proofs

First of all, let us prove that, by construction, all the gene trees T 1 , . . . , T 5 are uniquely leaf-labelled.

Lemma 2. The trees T 1 , . . . , T 5 are uniquely leaf-labelled trees.

Proof. It is easy to see that T 5 is uniquely leaf-labelled by construction. Indeed, each of the three comb graphs C(L f), C(M 1), C(M 2) used to build T 5 is uniquely leaf-labelled. Moreover, the trees C(L f), C(M 1), C(M 2) have pairwise disjoint sets of leaves. Now consider the gene trees T 1 , T 2 , T 3 and T 4 . First, remark that any tree T v with v ∈ V G is uniquely leaf-labelled and so do the trees T 1 ex and T 2 ex . Then, one has only to pay attention to their relative placement in the gene trees. More precisely, by construction, one has to be sure that a tree T v where v ∈ V G is incident to edges e x = (v, v), e y = (v, v) and e z = (v, v) does not belong to the same gene tree than none of {T v , T v , T v } and none of {T 1 ex , T 2 ex , T 1 ey , T 2 ey , T 1 ez , T 2 ez }. This is indeed true since all those trees are associated to the gene trees considering their corresponding color in the 4-coloring of G. One has also to be sure that the trees T 1 ex and T 2 ex do not belong to the same gene tree (which is the case by construction). Fig. 6. Illustration of Lemma 3 when for each

f z i ∈ L i f , lca S (f i , f z i) > lca S (f i+1 , f z i).
Let us now prove that only canonical solutions are of interest. Remind that a canonical solution (i.e. a species tree S) is a copy of T 5 where extra leaves of L = {l 1

x , l 2

x : ∀e x ∈ E G } are each inserted either in C(M 1) or C(M 2). More formally, a species tree S is canonical if and only if S|(M 1 ∪M 2 ∪L f) is isomorphic to T 5 and any label in ζ S \ ζ T5 belongs to ζ v where v is the other child of the parent of f 1 in S.

First, let us consider the following order induced by the lca mapping M. Consider three vertices v, v , v of a tree T and the following ordering of their lowest common ancestors: we write lca T (v, v) > lca T (v , v) when the depth of the lca of v , v is greater than the one of v, v . We will moreover note lca T (v, v) ≥ lca T (v , v) or lca T (v , v) ≥ lca T (v, v) when the depth of the lca of v, v and the lca of v , v is equal. Lemma 3. Let S be a solution of Min-5-Dup for the instance F = {T 1 , . . . , T 5 }. Then, either d(F, S) ≥ 6n + 3m + 1 or all the vertices on the spines of the gene trees T 1 , T 2 , T 3 , T 4 are duplicated.

Proof. Consider any species tree S and two leaves f i , f i+1 of T 5 , for a given 1 ≤ i < n + 1. Let w j i (resp. w j i+1) be the parent of f i (resp. f i+1) in the gene tree T j , with j ∈ {1, 2, 3, 4}. Let x i (resp. x i+1) denote the parent in T 5 of f i (resp. f i+1). Moreover, let y 1 (resp. y 2) be the vertices in S mapped, according to the lca mapping M, with x i (resp.

x i+1) -i.e. M(x i) = y 1 (resp. M(x i+1) = y 2).
In what follows, we consider a label f z i , with 1 ≤ z ≤ q, and prove that, considering the previously mentioned mapping, either all the internal vertices on the path from x i to x i+1 in T 5 are duplicated (hence d(F, S) ≥ q = 6n + 3m + 1) or all the internal vertices on the path from w j i (included) to w j i+1 (not included) are duplicated in T j , 1 ≤ j ≤ 4. To do so, we will consider a case by case analysis based on the possible mappings of f i , f i+1 and f z i in S. Assume that for each

f z i ∈ L i f , lca S (f i , f z i) ≥ lca S (f i+1 , f z i). Notice that there exists two possible cases: lca S (f i , f z i) > lca S (f i+1 , f z i), for each f z i , or
there exists at least one

f z i such that lca S (f i , f z i) > lca S (f i+1 , f i). If lca S (f i , f z i) > lca S (f i+1 , f z i),
for each f z i , then Property 3 applies to each internal vertex between x i , x i+1 . Indeed for each internal vertex between x i , x i+1 , there exists a vertex between lca S (f i , f z i) and lca S (f i+1 , f z i) such that Property 3 applies, as the cluster of each of the latter vertices does not contain f i (see Figure 6). Hence d(F, S) ≥ q = 6n + 3m + 1. Now assume that for some f i z , lca S (f i , f z i) > lca S (f i+1 , f i). Let us consider the leaves in ζ w x i \ζ w x i+1 and let S x i be the set of internal vertices of T x between w x i+1 and w x i . Property 3 applies to the vertex w x i , as lca S (f i+1 , f i) contains f i , f i+1 but not f z i , which is contained in both ζ w x i+1 and ζ w x i . Hence w x i is duplicated. Now, consider the lowest vertex s x i ∈ S x i not duplicated and denote by t x i its child which is not on the spine of T x , 1 ≤ x ≤ 4. Let z 1 be the vertex of S where s x i is mapped (i.e. M(s x i) = z 1), and notice that z 1 ≥ lca S (f z i , f i). Since s x i is not duplicated, then the cluster of one of the children of z 1 contains ζ t x i , while the other contains {f z i , f i , f i+1 }, for each 1 ≤ z ≤ q. But then, since m 1

x , m 2 x ∈ ζ s x i , it follows that for each internal node between x i , x i+1 , there exists a vertex between lca T (f i , f z i) and z 1 such that Property 3 applies, as the cluster of each of the latter vertices does not contain m 2

x , while the cluster of each vertex between x i and x i+1 contains a label m 2 x . Hence d(F, S) ≥ 6n + 3m + 1. Now, let us consider the case lca S (f i , f z i) < lca S (f i+1 , f z i). It follows by Property 3 that the internal vertices of S x i and w x i are all mapped in a vertex z 1 , hence inducing a duplication in w x i . Indeed,

ζ w x i = ζ s x i \ {f i }, while lca T (f i , f z i) contains f i , but not f i+1 .
Now consider the lowest vertex s x i ∈ S x i that is not duplicated. Then the cluster of one of the children of z 1 (the vertex where s x i and w x i are mapped) contains ζ s x i , while the other contains {f z i , f i , f i+1 }, for each 1 ≤ z ≤ q. Since m 2 x ∈ ζ s x i , it follows that for each internal node between x i , x i+1 , there exists a vertex between lca S (f i , f z i) and z 1 such that Property 3 applies, as the cluster of each of the latter vertices does not contain m 2

x , while the cluster of each vertex between x i and x i+1 contains m 2

x . Hence d(F, S) ≥ 6n + 3m + 1. Since we have shown that for each pair of leaves f i , f i+1 , either d(F, S) ≥ 6n + 3m + 1, or all the internal nodes between w x i (included) and w x i+1 (not included) are duplicated, it follows that we have proved the lemma.

While in the previous lemma we have focused on the duplications induced on vertices of the spine of the gene trees T 1 , . . . , T 4 , in what follows, we will focus on the duplications induced in the subtrees representing the vertices and edges (i.e. T v , T x e). Proof. It follows from Property 1 that the root of at least one of T 1 ex , T 2 ex is duplicated with respect to S since both T 1 ex , T 2 ex are labelled by the same set of leaves and they are not isomorphic. Now, let us prove the second part of the lemma. We have shown that any species tree induces a duplication in the root of at least one of T 1 ex , T 2 ex . Let us consider a species tree S. If S induces a duplication in the roots of both T 1 ex and T 2 ex , then the lemma holds. Hence assume that S induces a duplication in exactly one of T 1 ex , T 2 ex , w.l.o.g. T 1 ex . Thus, assume that S does not induce a duplication in the root of T 2 ex . Let us define L x = {m 1

x , m 2 x , l 1 x , l 2 x } and consider the following restrictions of T vi and T vj : T vi |L x , T vj |L x . The roots of both T vi |L x and T vj |L x induce the following bipartitions B(v i) = ({m 1

x , l 1 x }; {m 2 x }) and B(v j) = ({m 1 x , l 2 x }; {m 2 x }). Let v be the vertex of S, which is the lowest common ancestor of {m 2

x , l 1 x , l 2 x }. Since we have assumed that the root of T 2 ex is not duplicated, it follows that the subtree rooted at v restricted to {m 2

x , l 1 x , l 2 x } must induce the bipartition ({m 2

x , l 1 x }; {l 2 x }). Now assume that both the root of T vi and the root of T vj are mapped to v and consider where the leaf m 1

x is possibly placed in a the subtree rooted in v. If m 1

x is clustered with l 2 x , then the root of T vj is duplicated, as bipartition B(v j) = ({m 1

x , l 2 x }; {m 2 x }). If m 1

x is clustered with l 1 x and m 2 x , then the root of T vi is duplicated, as bipartition B(v i) = ({m 1

x , l 1 x }; {m 2 x }). Assume now that the root of T vi or the root of T vj , w.l.o.g. ϑ Tv i , is not mapped to v. Then, both the root of T vi and at least one of its children are mapped to an ancestor of v. Let y be the ancestor of v to which ϑ Tv i is mapped. The clusters of both children of y contain a leaf of ζ ϑ Tv i

. More precisely, the cluster of the child z of y that is on the path from v to y will contain the leaf set {m 1

x , l 1 x , m 2 x }, as so does the ζ v . Hence, one of the children of ϑ Tv i , w.l.o.g. ϑ L T (Vi) , has a cluster not included in ζ z but sharing some elements with ζ z . This implies that ϑ L T (Vi) is mapped in y, thus a duplication occurs in the root of T vi . Let us now consider canonical solution and prove the following lemma. Proof. Let S be a solution of Min-5-Dup over instance T 1 , . . . , T 5 . If S induces at least 6n + 3m + 1 duplications, since a canonical solution induces at most 5n + 3m + p duplications, where p ≤ n, it follows that for any canonical solution S * that satisfies properties (1) and (2) of the lemma, d(F, S *) ≤ d(F, S). Indeed in a canonical solution S * , there are 5n + 2m duplications on the spines of the gene trees T 1 , T 2 , T 3 , T 4 , plus m duplications in the root of either T 1 ex or T 2 ex , for any e x ∈ E G and p duplications in the roots of any subtree T vi , for any v i ∈ V G .

Hence, assume that S induces less than 6n+3m+1 duplications. By Lemma 3, it follows that S induces a duplication in all the the vertices on the spine of each gene tree T i , 1 ≤ i ≤ 4. Now, consider the set R of clusters associated with the roots of subtrees T 1 ex , T 2 ex , T vi , T vj and define two subsets of R as follows: Saf e(S) = {x ∈ R : x is not duplicated in S}, Dup(S) = R \ Saf e(S). Now let us compute a canonical solution S * . First, starting from Saf e(S) and Dup(S), let us compute two sets Saf e(S *) and Dup(S *) as follows. Notice that by Lemma 4, at least one of the roots of T 1 ex , T 2 ex is duplicated. We assume w.l.o.g. that if the cluster of ϑ Tv i (resp. of ϑ Tv j) is in Dup(S), then the cluster of ϑ T 1 ex (resp. of ϑ T 2 ex) is in Dup(S). Notice that, if the clusters of both ϑ T 1 ex , ϑ T 2 ex are in Dup(S), then we can assign one of these two clusters to Saf e(S) and eventually one of ϑ Tv i , ϑ Tv j to Dup(S), without improving the size of Dup(S). Now, define Saf e(S *) = Saf e(S) and Dup(S *) = Dup(S).

Let S be a tree isomorphic to T 5 . Then starting from S we construct a solution S * of Min-5-Dup as follows. Let us consider the subtree of S having as leaf set M 1 ∪ M 2 . Let r be the root of this subtree, and let r i , 1 ≤ i ≤ 2, be the root of C(M i) in S .

First, let us assign the elements of L = l 1 1 , l x (resp. l 2 x) to L 1 . If the cluster of ϑ Tv i belongs to Saf e(S *), then assign l 1

x , l 1 y , l 1 z to L 1 where v i is incident to the edges e x , e y and e z . All the other leaves in L are assigned to L 2 . Then a subtree C(L 1) is inserted in the edge {r , r 1 }. The subtree C(M 2) is substituted with a subtree C(M 2 ∪ L 2), where the order on M 2 ∪ L 2 is induced by the order on the corresponding edges and that l 1

x < m 2

x . Now, we claim that the tree S * induces at most Dup(S *) duplications, for the trees T 1 ex , T 2 ex , T vi , T vj . Indeed, assume that T 1 ex is in Saf e(S *). Then, since at most one of l 1

x , l 2

x is assigned to L 1 , at least one of l 1 x and l 2

x is assigned to L 2 . It follows that the root of T 1 ex is not duplicated (a similar proof holds for T 2 ex). Now consider a subtree T vi in Saf e(S *). As l 1

x , m 1 x are assigned to L 1 , and as m 2

x is assigned to L 2 , it follows that the root of T vi is not duplicated. Since the other vertices are arranged following the order on L, it follows that no duplication is induced in any internal vertex of T vi . Now consider a subtree T vi in Dup(S *). By construction, the subtrees of T vi |M 1 and T vi |M 2 do not have duplications. Furthermore, as all the leaves l 1

x , l 1 y , l 1 z (related to v i) are assigned to L 2 , it follows that also the vertices in the restriction T vi |{l 1

x , l 1 y , l 1 z } are not duplicated. Finally, the vertex of T vi associated with clusters {m 1

x , m 1 y , m 1 z , l 1 x , l 1 y , l 1 z } is mapped to r , hence it is not duplicated as its children are not mapped to r . Now, consider the other vertices of T 1 , T 2 , T 3 , T 4 not yet considered. Since by construction, the only other vertices of T 1 , T 2 , T 3 , T 4 that are duplicated with respect to S * are those vertices in the spines of the gene trees T 1 , T 2 , T 3 , T 4 , the correctness of the lemma follows.

We are now ready to prove the main lemma; that is that our reduction is an L-reduction. Proof. Given a cover V G of G = (V G , E G), define a solution S to Min-5-Dup as follows. The construction follows that of Lemma 5, by assigning T vi to Saf e(S) if v i / ∈ V . Let us consider a species tree S inducing at most 5n + 3m + p duplications. By Lemma 5, it follows that starting from S, we can compute in polynomial time a canonical solution S * of Min-5-Dup over instance F = {T 1 , . . . , T 5 }, inducing 5n + 3m + p duplications, with p ≤ p. Since S * is a canonical solution, we can assume that there exists exactly p duplications induced by S * in the subtrees {T vi : v i ∈ V G }. By Lemma 5, for each edge {v i , v j } ∈ E G , at least one of the subtrees from {T vi , T vj } has a duplication in its root. Hence, the set of vertices V ⊆ V corresponding to those trees in {T vi : v i ∈ V G } having a duplication in their root forms a cover of G. Since |V | = p ≤ p, it follows that the lemma holds.

Fig. 2 .

 2 Fig. 2. The trees T v , T 1 ex and T 2 ex for v ∈ V G incident to the edges e x , e y and e z .

Fig. 3 .

 3 Fig. 3. Gene trees T 1 to T 5 obtained from the cubic graph G where L* f = f 1 |V G | , . . . , f q |V G | , . . . , f 1 1 , . . . , f q 1 and ∀1 ≤ i ≤ 4, λ(v i) = i.

Fig. 4 .

 4 Fig. 4. Illustration of the construction of G F and G given F = (T 1 , T 2). Considering the minimum colored-cut {1, 2, 3, 4, 5}, {6, 7, 8, 9} of size 1, the only induced duplication is represented as a star on T 1 .

Property 1 .

 1 Let T , T be two gene trees labelled by the same sets of leaves Λ.Consider the bipartitions b1 = (ζ ϑ L T , ζ ϑ R T), b 2 = (ζ ϑ L T , ζ ϑ R T) of Λ.Then either b 1 and b 2 are identical or any species tree S induces at least one duplication in the root of one of {T, T }. Property 2. Let T be a gene tree and S be a species tree labelled by the same sets of leaves Λ. Then either T and S are isomorphic or d(T, S) ≥ 1.Proof. Let us prove this lemma by induction. By hypothesis, let T and S be two trees not isomorphic. If both T and S have depth 2, it is easy to check that d(T, S) ≥ 1. Assume now that T and S have depth larger than 2. Then at least one of the following statements holds: (a) T |ζ ϑ L T and S|ζ ϑ L S are not isomorphic or (b) T |ζ ϑ R T and S|ζ ϑ L S are not isomorphic or (c) T |ζ ϑ R T and S|ζ ϑ L S are not isomorphic or (d) T |ζ ϑ R T and S|ζ ϑ R S are not isomorphic. Then, by induction, d(T, S) ≥ 1.

Fig. 5 .

 5 Fig. 5. Illustration of Property 3 where (a) ζ v \ ζ v ⊆ ζ w , (b) ζ w ⊇ ζ v and (c) ζ w ∩ ζ v = ∅.

Lemma 4 .

 4 Let S be a solution of Min-5-Dup over instance F = {T 1 , . . . , T 5 } and let T 1 ex , T 2 ex , T vi , T vj be four subtrees of T 1 , . . . , T 4 , s.t. e x = (v i , v j) ∈ E G . Then (1) the root of at least one of T 1 ex , T 2 ex is duplicated with respect to S; (2) the roots of at least two of T 1 ex , T 2 ex , T vi , T vj are duplicated with respect to S.

Lemma 5 .

 5 Let S be a solution of Min-5-Dup over instance F = {T 1 , . . . , T 5 }. Then, we can compute in polynomial time a canonical solution S * of Min-5-Dup over instance F, such that d(F, S *) ≤ d(F, S), and such that for each e x = (v i , v j) ∈ E G and the corresponding subtrees T 1 ex , T 2 ex , T vi , T vj of T 1 , T 2 , T 3 , T 4 : (1) the root of exactly one of T 1 ex , T 2 ex is duplicated with respect to S * ; (2) the root of at least one of T vi , T vj is duplicated with respect to S * .

Lemma 6 .

 6 Let G = (V G , E G) be an instance of MVCC and let F = {T 1 , . . . , T 5 } be the corresponding instance of Min-5-Dup. Then, starting from a cover V G of G, we can compute in polynomial time a solution of Min-5-Dup over instance F = {T 1 , . . . , T 5 } such that d(F, S) ≤ 5n + 3m + |V G |. Moreover, starting from a solution S to Min-5-Dup over instance F = {T 1 , . . . , T 5 } such that d(F, S) ≤ 5n + 3m + p, we can compute in polynomial time a cover of G of size at most p.

 2 1 , l 1 2 , l 2 2 , . . . l 1 |E G | , l 2 |E G | to two sets L 1 , L 2 as follows. If the cluster of ϑ T 1 ex (resp. ϑ T 2 ex) belongs to Saf e(S *), then assign the leaves l 1