
HAL Id: hal-00629027
https://hal.science/hal-00629027

Submitted on 4 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Performance of CAPE using Discontinuous
Incremental Checkpointing

Viet Hai Ha, Eric Renault

To cite this version:
Viet Hai Ha, Eric Renault. Improving Performance of CAPE using Discontinuous Incremental Check-
pointing. HPCC-2011 - International Conferences on High Performance Computing and Communica-
tions, Sep 2011, Banff, Canada. �hal-00629027�

https://hal.science/hal-00629027
https://hal.archives-ouvertes.fr

Improving Performance of CAPE using

Discontinuous Incremental Checkpointing

Viet Hai Ha and Éric Renault

Institut Télécom – Télécom SudParis

Samovar UMR INT-CNRS 5157

Évry, France

viet hai.ha@it-sudparis.eu and eric.renault@it-sudparis.eu

Abstract—Originally, OpenMP was designed to develop par-
allel applications on shared-memory architectures. One of the
advantages that made the success of OpenMP is the simplicity
of the associated programming model. Checkpointing Aided
Parallel Execution (CAPE) is a paradigm that uses check-
pointing techniques to run parallel programs on distributed-
memory architectures. In order to show its effectiveness, it has
been used to develop a compiler to run OpenMP programs
on distributed-memory architectures. The first prototype we
developed proved the feasibility of the paradigm but the use of
complete checkpoints led to poor performance. This was mainly
due to the large amount of data to transfer and process. This
paper presents the new prototype we developed for CAPE based
on the discontinuous incremental checkpointing technique and
an analysis its performance.

I. INTRODUCTION

There has been an extensive developement of parallel archi-

tecture systems for the last three decades, with the appearance

of new concepts like clusters, grids and more recently, mul-

ticore processors and clouds. Tools to develop applications

on top of these platforms also have evolved but differently.

Setting aside objects such as threads and processes, MPI which

was designed for distributed-memory systems and OpenMP for

shared-memory architectures are the most common standards

for parallel programming today. From the programmer’s point

of view, OpenMP is simpler than MPI as only a set of OpenMP

directives need to be inserted to convert a sequential program

into a parallel one. OpenMP also provides efficient mecha-

nisms for data sharing and thread synchronization. Its main

weakness (from a distributed-memory programer’s point of

view) is the limitation to shared-memory infrastructures. As a

result, OpenMP is convenient for multicore and multiprocessor

machines, but for the other systems such as grids, clusters and

clouds, a transformation is required. CAPE, our paradigm, may

be used to implement this transformation.

This article aims at showing how the performance of the

CAPE (Checkpointing Aided Parallel Excecution) paradigm

has been improved using discontinuous incremental check-

pointing and providing an analysis of these performances.

The article is organized as follows: the next two sections

present how OpenMP has been ported on different distributed

architectures and the principles associated with checkpointing

respectively. Sec. IV presents the principles inherent to CAPE

and the next section develops how these principles have been

modified to cope with discontinuous incremental checkpoints.

The last section before the conclusion is dedicated to the

analysis of some performance measurements.

II. OPENMP ON DISTRIBUTED MEMORY ARCHITECTURES

There have been several attemps to make OpenMP programs

running on a distributed-memory architecture [1]. They can be

divided into two categories.

The first category consists in using a Single System Image

(SSI) in order to hide to the parallel application the distributed

nature of the underlying architecture [2]. An SSI aims at pro-

viding an abstract layer on top of a distributed system so that

users and applications can use resources as if they were parts

of a single monolithical machine. Typically, this means that

the set of processors is seen as an SMP or a single multicore

processor; the set of RAMs available in each node is seen

as a single memory; and the set of filesystems are accessible

as a single one. Several SSIs are now available and mature

with different capabilities and targetting different architectures.

Some solutions for clusters are Genesis [3], Millipede [4],

Nomad [5] and Kerrighed [6]. More recently, XtreemOS [7],

a solution for grid has been developped. XtreemOS is derivated

from Kerrighed and still an ongoing work now also targetting

clouds [8]. The main advantage of using an SSI to run an

OpenMP program is that the program can run as is, with no

need to recompile if an executable file is already available.

The second category consists in using a parallel library and

translating OpenMP directives and memory updates to calls

to the parallel library functions. Two solutions have emerged

as of today, one developed on top of MPI [9] and the other

one on top of Global Arrays [10]. The main criticism towards

solutions based on a parallel library is that they have lots of

difficulties to take into account all memory accesses. Typically,

when a memory location is accessed through a dereferentiation

or a set of dereferentiations, it is sometimes very difficult

for the compiler to identify the data type associated with the

memory area.

III. CHECKPOINTING

A. Principles and tools

When running, a process may crash at two different levels:

hardware or software. Software problems are usually due to

a bad use of the language that had not been detected at

compilation time. Hardware problems occur when one of the

critical components of the machine fails. If software problems

can be tracked using some tools and corrected before a large

and long-time running program is started, it is more difficult

to track and avoid potential hardware problems. As a result,

in order to avoid loosing the result of several hours, days

or even weeks of computations, i.e. to insert fault tolerance

into computing systems, some systems include a mechanism

to regularly save the state of processes, called a checkpoint, so

as to be able to resume their execution from the last checkpoint

in case of any problem instead of restarting from the beginning

of the execution. Typically, a checkpoint consists in saving a

snapshot containing the application state, i.e. all the data that

will be necessary to restart the process from this state.

The checkpoint may be performed at different levels in

the system. User-level checkpointing requires no support from

the kernel and is usually performed by the process itself.

Kernel-level checkpointing requires the kernel to extract all the

information about the process so that they can be saved on the

disk. Both methods have advantages and drawbacks. The main

advantage for user-level checkpointing is that quite portable

from one system to another without the need of intervention

the kernel. The main advantage of kernel-level checkpointing

is that all data related to all processes are accessible. Moreover,

there exists some hybrid mechanisms where kernel data are

accessible from user space. This is the case of checkpointing

tools using the /proc pseudo-filesystem under Unix.

There are two main categories of checkpointing techniques.

Complete checkpointing aims at storing all the information

related to the process, including the virtual address space, state

registers, and sometimes extra information from the kernel like

the list of open file descriptor. Incremental checkpointing [11]

aims at only storing the parts of the memory1 that have been

updated since the beginning of the execution of the program

or the last checkpoint. From a high-level point of view, this is

perfomed by setting access rights to read-only to all memory

pages in order to force the system to deliver a SIGSEGV

signal the first time a page is accessed for writing. Upon

reception of the SIGSEGV signal, a copy of the content of

the page is stored and access rights to the memory pages are

restored to their initial values. When a checkpoint is required,

the content of all modified pages are compared to their initial

content and the difference is stored in the checkpoint file. In

order to perform these operations, each process that may be

checkpointed has to be associated a monitor. Typically, this

monitor is in charge of starting the process which checkpoints

will be computed, catching the SIGSEGV signales, generating

the checkpoint files and waiting for the terminaison of the

process.

Various tools have been developed to checkpoint appli-

cations. Some examples are : Libckpt [12], a transparent

incremental checkpointing tool running at the user-level;

1References to the memory are, unless otherwise specified, references to
the virtual memory and not the physical memory. In the same way, the paper
refers to virtual pages and virtual address spaces and not physical pages and
physical address spaces respectively.

TICK [13], a transparent incremental checkpointing tool too

but running at the kernel-level; DMTCP [14] takes into ac-

count the specificities of parallel applications including multi-

threaded ones and is running at the user level; and CLIP [15]

have been designed to take into account the specific case of

message-passing libraries.

IV. CAPE PRINCIPLES

CAPE, which stands for Checkpointing Aided Parallel Ex-

ecution, aims at automatically transforming a parallel shared-

memory program so that it can be executed on a distributed-

memory architecure. In the current implementation we devel-

oped, CAPE is able to handle OpenMP directives provided

in a C programming language program. However, CAPE

is not language dependent and could be extended to any

programming language and/or parallel library or tool.

The basic idea of CAPE is that while many researches

have been conducted in order to develop checkpointing ap-

plications to save the state of a parallel program, CAPE

makes use of checkpoints in order to allow programs to run

on a distributed-memory architecture instead of a shared-

memory architecture. The main difference between these two

architectures remains in the fact that two segments out of three

(both text and data segments vs. the stack) are shared by the

different threads belonging to a single parallel process while

the two processes belonging to a single parallel application are

executing in two completely different memory address spaces.

For both architectures, stacks belonging to different threads

are stored at different locations. And as a thread should not

access the private data of another directly, there should be no

portability problem from a shared-memory architecture to a

distributed-memory architecture. As most programs executing

on distributed-memory architectures are SPMD, the text seg-

ment which is read-only by definition is not changed during

execution and is therefore consistent among all the nodes.

Thus, this segment involves no problem either. The situation

is different for the data segment which memory locations may

be accessed by any thread at any time. In the scope of CAPE,

the virtual address space is taken into account as a whole and

no difference is made among the different segments.

Fig. 1. The basic steps when execution OpenMP programs with CAPE.

Figure 1 presents the main steps that are involved during

the execution of a program using CAPE. Assume a program

is composed of three parts. The first and the last parts are

composed of a single thread, i.e. they are to be executed

sequentially. However, the second part is a parallel part that

shall be executed using three threads. The execution is as

follows:

1) The program starts using a single thread. Let the node

on which this part is executed be the master node.

2) After the execution of the sequential part, a checkpoint

is generated and sent to three slave nodes.

3) On each slave node, one thread of the parallel part is

executed.

4) After threads have finished their execution on slave

nodes, each slave node generates a new checkpoint and

computes the difference from the original checkpoint

that was previously received on the node, i.e. any

memory locations that have been updated is reported.

5) Each slave node sends back the difference to the master

node.

6) After all differences from all slave nodes have been

received, they are injected in the target process, i.e. the

original process that executed the first sequential part.

7) The target process can resume the second sequential part

of the program as if the part that have been executed

remotely in parallel had been executed locally.

pragma omp parallel sections

{
pragma omp section

P1

pragma omp section

P2

}

↓ automatically translated into ↓

parent = create (original)

if (parent)

copy (original, target)

ssh host1 restart (original)

P1

parent = create (after1)

if (parent)

diff (original, after1, delta1)

wait for (delta2)

merge (target, delta2)

merge (target, delta1)

restart (target)

else

P2

parent = create (after2)

if (parent)

diff (original, after2, delta2)

exit

Fig. 2. Template for OpenMP with complete checkpoints.

Figure 2 presents the effective transformation that is per-

formed on a code that specifies parallel regions using OpenMP

directives. This transformation uses two parallel sections for

the example. However, it can be generalized to an as-large-as-

possible set of sections [16] and to loops [17]. In the present

example, the parent, i.e. the master node, is in charge of both

managing the slave and executing one thread in the parallel

part. However, this is not mandatory. Assumes that P1 and P2

satify Bernstein’s conditions. The translation is based on the

following functions:

• create create a checkpoint and saves it in the file

provided as a parameter. The value returned by the

function is used to identify whether the function has

just created the checkpoint and returned, or the process

has been created after resuming the execution from the

checkpoint. This function is very similar to the fork

system call, except that create returns TRUE after

generating the checkpoint and FALSE after resuming the

execution from the checkpoint.

• copy copies a file into another one.

• diff saves into the last file provided as a parameter the

list of modifications that should be applied on the first

file to obtain the second one.

• merge applies the list of modifications saved in the

second file provided as a parameter to the checkpoint

file provided as the first parameter.

• wait_for returns after the file which name is provided

as a parameter is available.

• restart resumes the execution of the current process

from the checkpoint file provided as a parameter.

Note that the operation that consists in resuming the execution

of the first checkpoint generated in this example, the line in

italic in Fig. 2, is executed on the master node but delegated

to an external process in charge of managing the distribution

of processes on a set of remote resources. BOINC [18], used

in the scope of the Seti@Home project, is probably one of the

most famous tool aiming at distributing works among a set

of computing resources. For an in-depth description of CAPE,

refer to [16] and [17].

V. NEW MODEL OF CAPE BASED ON DISCONTINUOUS

INCREMENTAL CHECKPOINTS

The performance analysis of the implementation of CAPE

based on a complete checkpointer showed that the larger part

of the program execution is spent in creating checkpoints,

sending checkpoints over the network, computing the differ-

ence between two checkpoints, and injecting the previously

computed difference into a process [19]. An optimization

had been introduced by distributing the computation of the

differences between two checkpoints on the set of nodes and

then return to the master node the difference only instead of the

complete checkpoint, but performance results still remained

quite poor as at least one complete checkpoint had to be sent

over the network. It clearly appeared that the unique viable

solution consists in using incremental checkpoints only.

The main idea behind using incremental checkpoints is

twofold: first, this allows to transmit far less data over the

network; second, the time needed to deal with incremen-

tal checkpoints is more interesting. For example, instead

of creating a checkpoint and then compute the differences

between this new checkpoint and another one that serves as

a reference, it is now possible to directly generate the set of

differences as it is the checkpoint itself. Moreover, the use

of incremental checkpoints also allows to avoid the copy of

complete checkpoints that was time consuming. Beside it,

to avoid as much as possible the effect of checkpointer on

the execution’s speed of process [20], only some sections

of program have to be checkpoited. This is the reason for

the developping our discontinuous incremental checkpointing

technique with the two additional functions are start and

stop. In this technique, the checkpointing is not continuously

executed from the begin of program but only in the scope of

pairs start and stop. In each such as pair, many demands

of creating incremental checkpoints can be made by using

create function. However, we believe it might be possible

to implement CAPE using incremental checkpoints on top of

any checkpointing tool.

pragma omp parallel sections

{
pragma omp section

P1

pragma omp section

P2

pragma omp section

}

↓ automatically translated into ↓

if (master ())

start ()

P1

create (delta1)

stop ()

wait for (delta2)

inject (delta2)

if (! last parallel ())

send (delta1, slave)

else

start ()

P2

create (delta2)

stop ()

send (delta2, master)

if (! last parallel ())

receive (delta1)

inject (delta1)

else

exit

Fig. 3. Template for OpenMP with discontinuous incremental checkpoints.

Figure 3 presents the new version of the piece of code that is

substituted to an OpenMP parallel-sections construct. Beside

the start, stop and create functions of checkpointer, the

other new and changed functions are:

• master returns TRUE when executing on the master

node and FALSE when executing on a slave.

• last_parallel returns TRUE is the current parallel

block is the last one of the entire program and FALSE

otherwise.

• send transfers the content of the file provided as the first

parameter to the node provided as the second parameter.

• receive waits for the file provided as a parameter to

be available.

• inject updates the current process with the information

provided in the checkpoint file provided as a parameter.

Note that this function does not update the instruction

pointer.

In this prototype, the first change is the execution sequential

sections of program on all nodes of systems. This change aim

for avoiding the sending large size complete checkpoints to

resum program on slave nodes. The resume of program on

master node is also removed by using the inject function.

Finally, the deltas now can be created directly by using the

new create function, that comsumes less time and memory

space than by using the complete checkpoint version of both

create and diff functions.

It is important to note that the template presented in Fig. 3

can be applied several times the one after the other one

inside a single program, or can be nested. Also note that the

same mechanism may be applied to for loops to generate a

distributed-memory version of the program.

VI. PERFORMANCE EVALUATION

In order to validate our approach, some performance mea-

surements have been conducted on a Desktop Grid. This

testbed is composed of nodes including Intel(R) Core(TM)2

Duo E8400 CPUs running at 3 GHz and 2 GB RAM, and

operated by Linux kernel 2.6.35 with Ubuntu 10.10 flavor and

connected by a standard Ethernet network.

The program used for tests is a matrix-matrix product for

which the size varies from 3,000×3,000 to 12,000×12,000.

Matrices are supposed to be dense with integers and no

specific algorithm has been implemented to take into account

sparse matrices. Each experiment has been performed at least

10 times and a confidence interval of at least 90% has always

been achieved for the measures. Data reported here are the

means of the 10 measures.

Size Sequential OpenMP

3,000 258.9 142.4
6,000 1,852.7 1,048.7
9,000 7,314.5 3,986.2

12,000 14,990.5 8,999.4

TABLE I
EXECUTION TIME (IN SECONDS) ON A SINGLE NODE.

The execution of both the sequential version and the

OpenMP version of the program on one of the nodes gives

the result provided in Table I. A single core was used for

the sequential execution of the program, while the OpenMP

program took benefits of the two cores. One can check that

results in the Table I are consistent as the execution time for

both sequential and OpenMP versions are directly proportional

to the cube of the matrix size. Typically, this means that

no important cache effects have polluted the performance

measurements, probably because almost all data were fitting

into memory. Moreover, the speedup obtained by OpenMP is

1.8 for the first three matrix sizes and 1.65 for the fourth one,

which are expected values.

Figure 4 and 5 present the execution time in seconds of

the matrix-matrix program for various number of nodes and

matrix sizes. Note that, despite the fact that processors are dual

core, a single core was used during the experiments. Three

measures are represented each time: the left one is associated

with CAPE using complete checkpoints, the middle one is

also associated with CAPE but with incremental checkpoints,

and the right one is associated with MPI. The MPI program

has been developed for reference as exchanges to keep all

processes consistent between nodes are kept minimal.

Fig. 4. Execution time (in seconds) vs. number of nodes.

Figure 4 presents the execution time for different number

of nodes. The size of matrices are 12,000×12,000. However,

similar trends are observed for the other matrix sizes. One

can remark that the 3-node case apart, the execution time

when using incremental checkpoints is always better than the

execution time using complete checkpoints. The larger the

number of nodes, the smaller the execution time for both

CAPE using incremental checkpoints and MPI. Moreover, the

execution time for CAPE using incremental checkpoints is

getting closer and closer as the number of nodes is increasing.

The case for CAPE using complete checkpoints is different.

When few nodes are used for the computation (up to 11),

the execution time is decreasing as the number of nodes is

increasing and the value is quite similar to the other two cases

(CAPE using incremental checkpoints and MPI). However, for

larger number of nodes, the execution time for CAPE using

complete checkpoints is directly proportional to the number

of nodes. This is due to the amount of data that is transmitted

over the network which is getting very important (there is

at least one complete checkpoint for each slave node) even

though the amount of data that are effectively interesting for

each slave node is reduced. This clearly justifies the use of

incremental checkpoints for CAPE.

At first, the performance for three nodes may look strange as

the execution time of the program with CAPE using complete

checkpoints is better than the execution time with CAPE using

incremental checkpoints. In fact, for small number of nodes,

the amount of data transmitted over the network between the

different nodes is almost the same for both complete and incre-

mental checkpoints as in the case of incremental checkpoints

slave nodes receive a big part of matrices. However, in the case

of incremental checkpoints, processes are monitored in order

to capture the memory pages that are accessed for writing.

The monitoring of the slave processes involves a computing

overhead that is reduced proportionally with the amount of

compution, and therefore with the number of nodes, when

a large number of nodes is used. Fortunately, this is not a

problem for CAPE. Processors with 4 and even 8 cores are

available on the market and, as a result, CAPE is targeting

architectures with a larger number of nodes.

Fig. 5. Execution time (in seconds) vs. problem size.

Figure 5 presents the execution time for difference matrix

sizes. The number of nodes involved in the parallel ma-

chine is 31. However, the remarks below would be the same

with other number of nodes. The figure clearly shows that

the execution time for CAPE using complete checkpoints

is directly proportional to the square of the matrix size,

while the execution time for both CAPE using incremental

checkpoints and MPI is directly proportional to the matrix

size. This is due to the fact that the virtual address space

of the processes is mainly composed of the matrices, and

that the complete virtual address space is transmitted over

the network for complete checkpoints. However, for CAPE

using incremental checkpoints and MPI, the complete virtual

address spaces are not transmitted over the network and only

the data that have been updated during the computation of

the matrix-matric product are considered. Moreover, one can

remark that the execution time for CAPE using incremental

checkpoints and MPI are very close. An in-depth analysis

of the performance results shows that the execution time for

CAPE using incremental checkpoints is only 10% higher than

the execution time for MPI, except for 3,000×3,000 matrices

where the ratio is 1.3 .

Fig. 6. Speedup vs. number of nodes.

Figure 6 shows the speedup of CAPE using incremental

checkpoints for various number of nodes and matrix sizes.

The red line represents the theoretical maximum speedup.

The figure clearly shows that the solution is efficient with an

efficiency (the ratio of the speedup over the number of nodes)

in the range from 75% to 90%. Also, it highlights that the

larger the size of the matrices, the higher the speedup, which

was not the case with the complete checkpoint implementation.

VII. CONCLUSION AND FUTURE WORKS

This article presented CAPE and more specifically the

modifications that have been applied on the template algorithm

to translate automatically parallel programs with OpenMP

directives into a parallel program targeted for distributed-

memory architectures. Some performance analysis are also

provided, proving the legitimity of the incremental checkpoint-

ing approach.

At present, CAPE has proven its efficiency for the gen-

eration of code satisfying the Bernstein’s conditions for

distributed-memory architecture. In the near future, we have

planed to go further the Bernstein’s conditions and take into

account shared variables.

REFERENCES

[1] John H. Merlin. Distributed OpenMP: extensions to OpenMP for SMP

clusters. Proceedings of the Second European Workshop on OpenMP
(EWOMP’00), Edinburgh, UK, September 2000.

[2] Sven Karlsson, Sung-Woo Lee, Mats Brorsson, Sahni Sartaj, Viktor K.
Prasanna and Shukla Uday. A fully compliant OpenMP implementation

on software distributed shared memory. Proceedings of the Interna-
tional Conference on High Performance Computing, Bangalore, India,
LNCS 2552, pp. 195–206, December 2002.

[3] Andrzej M. Goscinski, Michael Hobbs and Jack Silcock. GENESIS: an

efficient, transparent and easy to use cluster operating system. Journal of
Parallel Computing, 28(4):557–606, April 2002.

[4] Roy Friedman, Maxim Goldin, Ayal Itzkovitz and Assaf Schuster. MILLI-

PEDE: Easy parallel programming in available distributed environments.
Journal of Software Practice and Experience, 27(8):929–965, 1997.

[5] Eduardo Pinheiro and Ricardo Bianchini. Nomad: A scalable operating

system for clusters of uni and multiprocessors. Proceedings of the
1st IEEE International Workshop on Cluster Computing, Melbourne,
Australia, pp. 247–254, December 1999.

[6] Christine Morin, Renaud Lottiaux, Geoffroy Valle, Pascal Gallard, Gal
Utard, R. Badrinath and Louis Rilling. Kerrighed: A Single System

Image Clustet Operating System for High Performance Computing. Euro-
Par 2003 Parallel Processing, Klagenfurt, Austria, LNCS 2790, pp. 1291–
1294, August 2003.

[7] Christine Morin. XtreemOS: a Grid Operating System Making your

Computer Ready for Participating in Virtual Organizations. Proceedings
of the IEEE International Symposium on Object/component/service-
oriented Real-time distributed Computing (ISORC), Santorini Island,
Greece, Invited talk, May 2007.

[8] Contrail: Open Computing Infrastructure for Elastic Services. Web Site.
http://contrail-project.eu/

[9] Ayon Basumallik and Rudolf Eigenmann. Towards automatic translation

of OpenMP to MPI. Proceedings of the 19th annual international confer-
ence on Supercomputing, Cambridge, MA, pp. 189–198, 2005.

[10] Lei Huang and Barbara Chapman and Zhenying Liu. Towards a more

efficient implementation of OpenMP for clusters via translation to global

arrays. Journal of Parallel Computing, 31(10–12):1114–1139, October–
December 2005.

[11] S. YI, J. Heo, Y. Cho, J. Hong, J. Choi and G. Jeon. Ickpt: An Efficient

Incremental Checkpointing Using Page Writing Fault - Focusing on the

Implementation in Linux Kernel. Proceedings of the ISCA 19th Inter-
national Conference on Computers and Their Applications (CATA04),
Seattle, WA, pp. 209-212, March 2004.

[12] James S. Plank, Micah Beck, Gerry Kingsley and Kai Li. Libckpt: Trans-

parent Checkpointing under Unix. Proceedings of the Usenix Winter 1995
Technical Conference, New Orleans, LA, pp. 213–223, January 1995.

[13] Roberto Gioiosa, Jose Carlos Sancho, Song Jiang and Fabrizio Petrini.
Transparent, Incremental Checkpointing at Kernel Level: a Foundation

for Fault Tolerance for Parallel Computers. Proceedings of the 2005
ACM/IEEE Conference on Supercomputing, Seattle, WA, p. 9, Novem-
ber 2005.

[14] Jason Ansel, Kapil Arya, and Gene Cooperman. DMTCP: Transparent

Checkpointing for Cluster Computations and the Desktop. Proceedings
of the 23rd IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS’09), Rome, Italy, pp. 1–12, May 2009.

[15] Yuqun Chen, James S. Plank and Kai Li. CLIP: a checkpointing tool for

message-passing parallel programs. Proceedings of the 1997 ACM/IEEE
Conference on Supercomputing, New York, NY, p. 33, November 1997.

[16] Éric Renault. Distributed Implementation of OpenMP Based on Check-

pointing Aided Parallel Execution. International Workshop on OpenMP
(IWOMP), Beijing, China, LNCS 4935, pp. 183–193, June 2007.

[17] Éric Renault. Parallelization of For Loops Using Checkpointing Tech-

niques. Proceedings of the 2005 International Conference on Parallel
Processing Workshops, Oslo, Norway, pp. 313–319, June 2005.

[18] David P. Anderson. BOINC: A System for Public-Resource Computing

and Storage. Proceedings of 5th IEEE/ACM International Workshop on
Grid Computing, Pittsburg, PA, pp. 4–10, November 2004.

[19] Laura Mereuta and Éric Renault. Checkpointing Aided Parallel Exe-

cution Model and Analysis. High Performance Computation Conference
(HPCC), Houston, TX, LNCS 4782, pp. 707–717, September 2007.

[20] Viet Hai Ha and Éric Renault. Discontinuous Incremental: A New

Approach Towards Extremely Lightweight Checkpoints. Proceedings of
the International Symposium on Computer Networks and Distributed
Systems (CNDS), Tehran, Iran, February 2011.

