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Évry, France

viet hai.ha@it-sudparis.eu and eric.renault@it-sudparis.eu

Abstract—Checkpointing Aided Parallel Execution (CAPE) is a
paradigm using checkpointing technique to distribute sequential
programs equipped with OpenMP directives in distributed sys-
tems. In its first prototype, the use of a complete checkpointer
strongly decreased global performance. This paper shows how
the performance of the CAPE paradigm have been improved
using discontinuous incremental checkpointing and provide an
in-depth analysis of this performance.

I. INTRODUCTION

The architecture of parallel machines has drastically chan-

ged over the past fifteen years, from mainframes that were

the typical solution for parallel computing at the beginning

of the 90’s to the clusters [1] at the end of the 90’s or more

recently to grids [2]. Available tools to develop applications

on top of these platforms also have evolved but differently.

As two main architectures have been identified for parallel

machines, shared-memory architectures on the one hand and

distributed-memory architecture on the other hand, specific

tools have been developed to cope with their specificities. One

is OpenMP [3], developed for shared-memory machines and

PVM, and the other is MPI [4], for distributed-memory sys-

tems. If the programming paradigm associated with OpenMP

is quite simple to handle by programmers for its similarities

with the more traditional sequential paradigm, the message-

passing paradigm associated with distributed-memory system

is more difficult to convince a large public to use it. As a result,

there have been several attempts to develop a compiler that

automatically generates a version of OpenMP programs that

is capable of running on a distributed-memory architecture.

They can be divided into two categories.

The first category consists in using a Single System Image

(SSI) in order to hide the distributed nature of the underlying

architecture to the parallel application [5]. An SSI aims at

providing an abstraction layer on top of a distributed system

so that users and applications can use resources as they were

parts of a single monolithic machine. Typically, this means

that the set of processors is seen as an SMP or a single

multicore processor; the set of available RAMs in each node

is seen as a single memory; and the set of file systems is

accessible as a single one. Several SSI are now available

and mature with different capabilities and targeting different

architectures. Some solutions for clusters are Genesis [6],

Millipede [7], Nomad [8] and Kerrighed [9]. A newer solution

for grids is XtreemOS [10], a derivative product from Ker-

righed. XtreemOS is still an ongoing work and also targeting

clouds [11]. The main advantage of using an SSI to run an

OpenMP program is that the program can run as is, with no

need to recompile if an executable file is already available.

The second category consists in using a parallel library and

translating OpenMP directives and memory updates to call to

the parallel library functions. Two solutions have emerged as

of today, one developed on top of MPI [12] and the other

one on top of Global Arrays [13]. The main criticism towards

solutions based on a parallel library is that they have lots of

difficulties to take into account all memory accesses. Typically,

when a memory location is accessed through a differentiation

or a set of differentiation, it is sometimes very difficult for the

compiler to identify the data type associated to the memory

area.

Apart from the above two categories, we have been develop-

ing CAPE (which stands for Checkpointing Aided Parallel Ex-

ecution) [14] [15], a method that uses checkpointing technique

to execute OpenMP programs on distributed architectures. The

first prototype of CAPE proved the feasibility of the approach

but the use of a complete checkpointer as the base tool strongly

decreased the global performance. This article aims at showing

how the performance of the CAPE paradigm have been

improved using the discontinuous incremental checkpointer

we developed and at providing an in-depth analysis of this

performance.

The article is organized as follows: section II presents the

principles inherent to CAPE. The next one focusses on the

discontinuous checkpointer and develops how these principles

have been modified to cope with incremental checkpoints. The

last section before the conclusion is dedicated to the in-depth

analysis of the performance measurements.

II. CAPE PRINCIPLES

CAPE, which stands for Checkpointing Aided Parallel Ex-

ecution, aims at automatically transforming a parallel shared-

memory program so that it can be executed on a distributed-

memory architecture. In the current implementation that we

developed, CAPE is able to handle OpenMP directives pro-

vided in a C programming language program. However, CAPE

is not language dependent and could be extended to any

programming language and/or parallel library or tool.



The basic idea of CAPE is that while many researches have

been conducted in order to develop checkpointing applications

to save the state of a program, CAPE makes use of checkpoints

in order to allow programs to run on a distributed-memory ar-

chitecture instead of a shared-memory architecture. The main

difference between these two architectures remains in the fact

that two segments out of three (both text and data segments

vs. the stack) are shared by the different threads belonging to

a single parallel process while the two processes belonging to

a single parallel application are executing in two completely

different memory address spaces. For both architectures, stacks

belonging to different threads are stored at different locations.

And as a thread should not access the private data of another

directly, there should be no portability problem from a shared-

memory architecture to a distributed-memory architecture. As

most programs executing on distributed-memory architectures

are SPMD, the text segment which is read-only by definition

is not changed during execution and is therefore consistent

among all the nodes. Thus, this segment involves no problem

either. The situation is different for the data segment which

memory locations may be accessed by any thread at any time.

In the scope of CAPE, the virtual address space is taken into

account as a whole and no difference is made among the

different segments.

# pragma omp parallel for

for ( A ; B ; C )

D

↓ automatically translated into ↓

parent = create ( original )

if ( ! parent )

exit

copy ( original, target )

for ( A ; B ; C )

parent = create ( beforei )

if ( parent )

ssh hostx restart ( beforei )

else

D

parent = create ( afteri )

if ( ! parent )

exit

diff ( beforei, afteri, deltai )

merge ( target, deltai )

exit

parent = create ( final )

if ( parent )

diff ( original, final, delta )

wait for ( target )

merge ( target, delta )

restart ( target )

Fig. 1. Template for OpenMP with complete checkpoints.

Figure 1 presents the effective transformation that is per-

formed on a code that specifies a parallel for that has all

loop iterations D satisfy Bernstein’s conditions using OpenMP

directives. The parent, i.e. the master node, is in charge of

managing the slaves only and does not execute any loop

iteration in the parallel part. However, this is not mandatory

and the master node could also take part in the execution of

one or more loop iterations. The translation is based on the

following functions:

• create creates a checkpoint and saves it in the file

provided as a parameter. The value returned by the

function is used to identify whether the function has

just created the checkpoint and returned, or the process

has been created after resuming the execution from the

checkpoint. This function is very similar to the fork

system call, except that create returns TRUE after

generating the checkpoint and FALSE after resuming the

execution from the checkpoint.

• copy copies a file into another one.

• diff saves into the last file provided as a parameter the

list of modifications that should be applied on the first

file to obtain the second one.

• merge applies the list of modifications saved in the

second file provided as a parameter to the checkpoint

file provided as the first parameter.

• wait_for returns after the file whose the name is

provided as a parameter is available.

• restart resumes the execution of the current process

from the checkpoint file provided as a parameter.

Note that the operation that consists in resuming the execution

of the checkpoints generated for each loop iteration, the line

in italic in Fig. 1, is executed on the master node but delegated

to an external process in charge of managing the distribution

of processes on a set of remote resources. BOINC [16], used

in the scope of the Seti@Home project, is probably one of the

most famous tool aiming at distributing works among a set

of computing resources. For an in-depth description of CAPE,

refer to [14] and [15].

III. DICKPT AND A NEW MODEL FOR CAPE

The performance analysis of the implementation of CAPE

based on a complete checkpointer showed that an important

part of the program execution is spent in creating checkpoints,

sending checkpoints over the network, computing the differ-

ence between two checkpoints, and injecting the previously

computed difference into a process [17]. An optimization

had been introduced by distributing the computation of the

differences between two checkpoints on the set of nodes and

then return to the master node the difference only instead of the

complete checkpoint, but performance results still remained

quite poor as at least one complete checkpoint had to be sent

over the network. It clearly appeared that the unique viable

solution consists in using incremental checkpoints only.

The main idea behind using incremental checkpoints is

twofold: first, this allows to transmit far less data over the



network; second, the time needed to deal with incremen-

tal checkpoints is more interesting. For example, instead

of creating a checkpoint and then compute the differences

between this new checkpoint and another one that serves as

a reference, it is now possible to directly generate the set of

differences as it is the checkpoint itself. Moreover, the use

of incremental checkpoints also allows to avoid the copy of

complete checkpoints that is time consuming.

Despite the availability of several incremental checkpoint-

ers, we decided to implement our own one in order to make

sure it perfectly matches our needs [18]. In fact, the imple-

mentation of CAPE based on incremental checkpoints requires

the ability to suspend and resume the checkpointer. Thus,

we developed DICKPT [18] (which stands for DIscontinuous

ChecKPoinTing) that allows to start and stop checkpointing

at any location in the program. It is based on a buffer and

a set of three primitives. The buffer aims at storing all the

modifications that occurred on the process since the last time

the checkpointer started or resumed its execution. These three

primitives behave as follows:

• start clears the buffer and then starts or resumes check-

pointing. Any modifications occurring on the process

after the call to start are reported in the buffer. A

call to start while the checkpointer is active results

in clearing the content of the buffer which is definitively

lost.

• stop stops checkpointing, i.e. any modifications that oc-

curs on the process after the call to stop is not reported

in the buffer. A call to stop while the checkpointer is

not active is just discarded.

• create saves the content of the buffer in the file

provided as a parameter. Several calls to create may

occur inside a start/stop pair. In this case, the buffer

containing the modifications that have been performed

on the process is reinitialized for each call. There are

two sub cases depending on the name of created files.

The first case occurs when the file name matches the one

of previous call. In this case the new file will be merged

with the existed file. In the other case, the new file will be

independently created. Function create may be called

while the checkpointer is active.

For the rest of the paper, the meaning of function create

is the one above.

Figure 2 presents the new version of the piece of code

that is substituted to an OpenMP parallel for construct. The

semantic associated to functions merge on this figure are

exactly the same as the one presented for Fig. 1. The other

functions are defined as follows:

• master returns TRUE when executing on the master

node and FALSE when executing on a slave.

• last_parallel returns TRUE when the current paral-

lel block is the last one of the entire program and FALSE

otherwise.

• send transfers the content of the file provided as the first

parameter to the node provided as the second parameter.

# pragma omp parallel for

for ( A ; B ; C )

D

↓ automatically translated into ↓

1 if ( master ( ) )

2 start ( )

3 for ( A ; B ; C )

4 create ( before )

5 send ( before, slavex )

6 create ( final )

7 stop ( )

8 wait for ( after )

9 inject ( after )

10 if ( ! last parallel ( ) )

11 merge ( final, after )

12 broadcast ( final )

13 else

14 receive ( before )

15 inject ( before )

16 start ( )

17 D

18 create ( afteri )

19 stop ( )

20 send ( afteri, master )

21 if ( ! last parallel ( ) )

22 receive ( final )

23 inject ( final )

24 else

25 exit

Fig. 2. Template for OpenMP with incremental checkpoints.

• broadcast sends a file to all the slaves. This function

can only be executed on the master node.

• receive waits for the file provided as a parameter to

be available.

• inject updates the current process with the information

provided in the checkpoint file provided as a parameter.

Note that this function does not update the instruction

pointer.

• wait_for waits and merges all the components of the

file provided as a parameter.

Two assumptions have been made to make the template

works. The first one is that the platform for the master node

and the slaves are homogeneous. This is easy to achieve,

especially today with the rapid growth of virtualization. The

second assumption states that no slave process has interactions

with its environment. This second assumption can easily be

handled by intercepting the calls to system calls and returning

the result of the execution of the system call on the master

node. In fact, if the master node is the only one to execute

system calls, it becomes easy to detect whether a system call

had already been executed and thus avoid its execution the



second time.

Apart from the use of incremental checkpoints instead of

complete checkpoints, one of the most noticeable improve-

ments between the original template and the one in Fig. 2 is

that the process is never restarted. Checkpoints, which are far

lighter than in the previous case, can only be used to inject

the differences into a process and cannot be used to restart

the process directly. Also note that this new template can be

applied several times one after another inside a single program,

or can be nested.

IV. PERFORMANCE EVALUATION

In order to validate our approach, some performance mea-

surements have been conducted on a Desktop Grid. This

testbed is composed of nodes including Intel(R) Core(TM)2

Duo E8400 CPUs running at 3 GHz and 2 GB RAM, operated

by Linux kernel 2.6.35 with Ubuntu 10.10 flavour, and con-

nected by a standard Ethernet. In order to avoid as much as

possible external influences, the entire system was dedicated

to the tests during performance measurements.

The program used for tests is a matrix-matrix product for

which the size varies from 3,000×3,000 to 12,000×12,000.

Matrices are supposed to be dense and no specific algorithm

has been implemented to take into account sparse matrices.

Each experiment has been performed at least 10 times and a

confidence interval of at least 90% has always been achieved

for the measures. Data reported here are the means of the

10 measures.

Size Sequential OpenMP

3,000 258.9 142.4
6,000 1,852.7 1,048.7
9,000 7,314.5 3,986.2

12,000 14,990.5 8,999.4

TABLE I
EXECUTION TIME (IN SECONDS) ON A SINGLE NODE.

The execution of both the sequential version and the

OpenMP version of the program on one of the nodes gives

the result provided in Table I. A single core was used for

the sequential execution of the program, while the OpenMP

program took benefits of the two cores. One can check that

results in the Table I are consistent as the execution time for

both sequential and OpenMP versions are directly proportional

to the cube of the matrix size. Typically, this means that

no important cache effects have polluted the performance

measurements, probably because almost all data were fitting

into memory. Moreover, the speed-up obtained by OpenMP is

1.8 for the first three matrix sizes and 1.65 for the fourth one,

which are expected values.

Figure 3 and 4 present the execution time in seconds of

the matrix-matrix program for various number of nodes and

matrix sizes. Note that, despite the fact that processors are dual

core, a single core was used during the experiments. Three

measures are represented each time: the left one is associated

with CAPE using complete checkpoints, the middle one is

also associated with CAPE but with incremental checkpoints,

and the right one is associated with MPI. The MPI program

has been developed for reference as exchanges to keep all

processes consistent between nodes are kept minimal.

For both figures, two series of graphs are provided. The

upper series is related to the master node, while the lower

series is associated with the slave nodes. Each series is

composed of four graphs:

• Init is the elapsed time between the beginning of the

program and the beginning of the parallel for loop in

the matrix-matrix product. On Fig. 2, these are all lines

before the first one.

• Before is the time spent to create and send the check-

points (lines 2 to 5) on the master. On slave nodes, this

includes receiving and updating the slave process using

the checkpoint (lines 14 and 15). For the specific case of

MPI, this is the time to send data to slave nodes.

• Final is the time to generate the last checkpoint on the

master node (lines 6 and line 7) and the time to do the

job on the slaves (line 16 and line 17).

• Update is the time to receive all updates from the slave

nodes and inject them in the master node (lines 8 and

line 9). On slave nodes, this is the time to generate the

incremental checkpoints and send them to the master

node (lines 18 to 20). For the specific case of MPI, this

is the time to send data to the master node.

Figure 3 presents the execution time for different number

of nodes. The size of matrices are 9,000×9,000. However,

similar trends are observed for the other matrix sizes. One

can remark that the 3-node case apart, the execution time

when using incremental checkpoints is always better than the

execution time when using complete checkpoints. The larger

the number of nodes, the smaller the execution time for both

CAPE using incremental checkpoints and MPI. Moreover, the

execution time for CAPE using incremental checkpoints is

getting closer and closer as the number of nodes is increasing.

The case for CAPE using complete checkpoints is different.

When few nodes are used for the computation (up to 11),

the execution time is decreasing as the number of nodes is

increasing and the value is quite similar to the other two cases

(CAPE using incremental checkpoints and MPI). However, for

larger number of nodes, the execution time for CAPE using

complete checkpoints is directly proportional to the number

of nodes. This is due to the time needed to generate the

checkpoints to be sent and the time to send these checkpoints

over the network (there is at least one complete checkpoint for

each slave node). This clearly justifies the use of incremental

checkpoints for CAPE.

At first, the performance for three nodes may look strange as

the execution time of the program with CAPE using complete

checkpoints is better than the execution time with CAPE using

incremental checkpoints. In fact, for small number of nodes,

the amount of data transmitted over the network between the

different nodes is almost the same for both complete and incre-



On the master node.

(a) Init (b) Before (c) Final (d) Update

On the slave nodes.

(e) Init (f) Before (g) Final (h) Update

Fig. 3. Execution time (in seconds) vs. number of nodes.

On the master node.

(a) Init (b) Before (c) Final (d) Update

On the slave nodes.

(e) Init (f) Before (g) Final (h) Update

Fig. 4. Execution time (in seconds) vs. problem size.

mental checkpoints as in the case of incremental checkpoints

slave nodes receive a big part of matrices. However, in the case

of incremental checkpoints, processes are monitored in order

to capture the memory pages that are accessed for writing.

The monitoring of the slave processes involves a computing

overhead that is reduced proportionally with the amount of

computation, and therefore with the number of nodes, when

a large number of nodes is used. Fortunately, this is not a

problem for CAPE. Processors with 4 and even 8 cores are

available on the market and, as a result, CAPE is targeting

architectures with a larger number of nodes.

Figure 4 presents the execution time for difference matrix

sizes. The number of nodes involved in the parallel machine

is 31. However, the remarks below would be the same with

other number of nodes. The figure clearly shows that the

execution time for CAPE using complete checkpoints is di-

rectly proportional to the square of the matrix size, while the

execution time for both CAPE using incremental checkpoints

and MPI is directly proportional to the matrix size. This is

due to the fact that the virtual address space of the processes

is mainly composed of the matrices, and that the complete

virtual address space is transmitted over the network for

complete checkpoints. However, for CAPE using incremental

checkpoints and MPI, the complete virtual address spaces are



not transmitted over the network and only the data that have

been updated during the computation of the matrix-matrix

product are considered. Moreover, one can remark that the

execution time for CAPE using incremental checkpoints and

MPI are usually very close. This in-depth analysis of the

performance results shows that globally the execution time for

CAPE using incremental checkpoints is only 10% higher than

the execution time for MPI, excepts for 3,000×3,000 matrices

where the ratio is 1.3.

Note that graphs (c) on Fig. 3 and 4 do not show any data for

CAPE with incremental checkpoints and MPI as the execution

time for both is too small to be represented.

Fig. 5. Speedup vs. number of nodes.

Figure 5 shows the speedup of CAPE using incremental

checkpoints for various number of nodes and matrix sizes.

The red line represents the theoretical maximum speedup.

The figure clearly shows that the solution is efficient with an

efficiency (the ratio of the speedup over the number of nodes)

in the range from 75% to 90%. Also, it highlights that the

larger the size of the matrices, the higher the speedup, which

was not the case with the complete checkpoint implementation.

V. CONCLUSION AND FUTURE WORKS

This article presented CAPE and more specifically the

modifications that have been applied on the template algorithm

to translate automatically parallel programs with OpenMP

directives into a parallel program targeted for distributed-

memory architectures together with the discontinuous incre-

mental checkpointer we developed. An in-depth performance

analysis is also provided that shows the legitimation of the

incremental checkpointing approach.

At present, CAPE has proven its efficiency for the gen-

eration of code satisfying the Bernstein’s conditions for

distributed-memory architecture. In the near future, we have

planed to go further the Bernstein’s conditions and take into

account shared variables.
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[17] Laura Mereuta and Éric Renault. Checkpointing Aided Parallel Exe-

cution Model and Analysis. High Performance Computation Conference
(HPCC), Houston, TX, LNCS 4782, pp. 707–717, September 2007.
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