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Abstract—Checkpointing is an important method for provid-
ing fault tolerance, load balancing, process migration, periodic
backup, and many other functions [9], [14]. It is also the basic tool
used in CAPE [1], [2], a paradigm which aims at distributing
the execution of a program on a distributed-memory environ-
ment. This paper presents the new approach to checkpointer
and the original optimization on checkpoint structure we have
implemented and evaluated to make incremental checkpointing
more efficient and more appropriate, especially for CAPE.

I. INTRODUCTION

As a critical component to ensure a program will terminate

its execution even in case of system or hardware failure,

many works have been done to develop checkpointing tech-

niques and different approaches have been used. The first

solution named complete checkpointing consists in saving

all the information related to the running process [4]–[7],

regardless these information have been modified from the

beginning of the execution or they can be retrieved easily

for example from a dynamic shared library. The alternative

to complete checkpoints are incremental checkpoints. In this

case, only the information that have been modified since the

beginning of the execution are effectively saved [8], [9]. The

identification of the memory areas that have to be saved may

either be provided by the developer of the application using

pragma directives and/or dedicated functions, or automatically

detected by the checkpointing tool itself. Both complete and

incremental solutions have advantages and drawbacks. The

main advantage of a complete checkpoint is the simplicity

to generate it, while the main advantage of an incremental

checkpoint is its size. An important drawback of incremental

checkpointing technique, as a consequence of the regular

monitoring of the process memory, is that the execution speed

may significantly decrease. Overcoming this disadvantage is

an important requirement to increase the performance of an

incremental checkpointer.

OpenMP (for Open Multi-Processing) [15] is a very simple

and powerful set of directives and functions to generate

parallel programs from C, C++ or Fortran codes. The main

limitation of OpenMP is that it is limited to shared-memory

architectures. Some attempts have tried to port OpenMP on

distributed memory architectures with various success. In order
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to achieve this goal, we have developed a new parallel comput-

ing paradigm called CAPE which aims at using checkpoints to

distribute the execution of a program on a distributed-memory

environment [1], [2]. However, both existing checkpointing

techniques cannot be used for an effective implementation.

In case of complete checkpointing that was used in the

first version of CAPE the very large generated checkpoints

decreased the global performance. Although the incremental

checkpointing technique can give smaller checkpoints, it has

not enough services for the requirements of the discontinu-

ously and alternatively checkpointing and recovering in CAPE.

As a result, in order to cope with both above requirements,

this article presents the new approach and the original opti-

mization we have developed and evaluated with very good first

results.

The article is organized as follows: after the related works,

Sec. III details our approach to generate discontinuous incre-

mental checkpoints and also provides an evaluation of this

approach; Sec. IV develops the data structure in checkpoint

files, discussing memory granularity, the different storage

format and arithmetics on checkpoints.

II. RELATED WORKS

A. Incremental checkpointing

An incremental checkpoint consists in a file that stores the

parts of the memory3 that have been updated since the begin-

ning of the execution of the program or the last checkpoint.

From a high-level point of view, this is performed by setting

access rights to read-only to all memory pages in order to

force the system to deliver a SIGSEGV signal the next time a

page is accessed for writing. Upon reception of the SIGSEGV

signal, a copy of the content of the page is stored and access

rights to the memory pages are restored to their initial values.

When a checkpoint is required, the content of all modified

pages are compared to their initial content and the difference

is stored in the checkpoint file.

In order to perform these operations, each process that may

be checkpointed has to be associated a monitor. Typically, this

monitor is in charge of starting the process which checkpoints

will be computed, catching the SIGSEGV signals, generating

3References to the memory are, unless otherwise specified, references to
the virtual memory and not the physical memory. In the same way, the paper
refers to virtual pages and virtual address spaces and not physical pages and
physical address spaces respectively.



the checkpoint files and waiting for the termination of the

process. However, this is not mandatory as a monitor may be

attached to any already running process.

Clearly, the speed of the monitored process decreases due

to the execution of the monitor. Even when writing a single

byte to a read-only memory region, a set of operations both

in the kernel and in the monitor is launched: the kernel issues

SIGSEGV; the monitor catches SIGSEGV, sets the access

write of the corresponding page to readwrite after reading

and saving its initial values. These operations increase the

total time to finish the initial writing operation. If parts of

the program contain a series of such operations, for example

in case of initializing a large memory area from a constant or

from values read in a database, this increase may become very

important. Column 5, row 3 of Table II on page 5 highlights a

case where the execution time is increased to nearly 10 times.

The main issue remains on how to avoid this decrease of speed

while ensuring the recovering later.

B. CAPE

CAPE [1], [2] stands for Checkpointing Aided Parallel

Execution. It consists in modifying a sequential program so

that instead of executing each part the one after the other

on a single machine, parts are distributed over a set of

machines to be executed in parallel. CAPE is not intended

to automatically detect which parts of the original code have

to be executed in parallel such parts are cited by programmers

while using pragma directives of OpenMP. CAPE only aims at

transforming a program so that it can be executed in parallel.

A typical example is the distribution of a for loop. If the

different iterations of a for loop are satisfying the Bernstein’s

conditions, i.e. any modified memory location is used only in

the iteration loop where it is modified, it becomes possible

to execute each loop iteration independently on different

machines, compute the list of memory locations that have

been modified in each iteration loop and include all these

modifications inside a single process that will behave as if

all iteration loops would have been executed locally.

While using ckpt [7], a complete checkpointer, CAPE has

been proved its feasibility. Fig. 2 presents the general template

for for loops in form for ( A; B; C ) D; when using the

C programming language.

In this template, commands create ( beforei ) and

diff ( beforei, afteri, deltai ) aim at extracting

deltai, the memory areas that have been updated on hostx,

after this host has finished its part of the loop. The use of

a complete checkpointer requires an extra time for rendering

this value and using an incremental checkpointer can avoid

it. Another extra time is caused by the commands merge (

target, delta ) and restart ( target ) which serve

to inject these delta into the memory of the initial host.

Ability to directly execute this activity and then allow the

process continue running can avoid this extra time. This

leads to the requirement of the capacity to take and inject

discontinuous incremental checkpoints in programs.

Fig. 1. Template of CAPE for for loops.

III. DISCONTINUOUS INCREMENTAL CHECKPOINTER

IMPLEMENTATION

A. Principle

Based on the incremental checkpointing approach, the main

idea for discontinuous incremental checkpointing is to add

information to indicate which sections should be checkpointed

by the monitor. This information is provided using pragma

directives and may be implemented using different mecha-

nisms like signals, breakpoints, etc. Three pragmas have been

defined:

• pragma dickpt start

• pragma dickpt stop

• pragma dickpt save < filename >

Their behavior is described in Table I. In this table, pages

refer to the pages of the virtual address space of the monitored

process.

Assume a program consists of segments ( A, B, C, D )

in which, only B and D need to be checkpointed and two

checkpoints are taken in B and one in D. Fig. 2 presents the

prototype of the changed program, i.e the directives have been

inserted to verify the above requirements.

B. Evaluation of performance

In order to highlight the impact of our new approach,

we have developed a new checkpointer named Dickpt and

measured its impact on a program computing the successive

elements of a Markov Chain, see Fig. 3. Two cases were tested.

The first one includes a directive to begin the checkpointing at

location 0 (line 10) and takes a checkpoint at location 1 (line

23), while the second one avoids the checkpoint at location

1 and begins checkpointing at location 1. For both cases, one

hundred state vectors are computed at location 3 (line 30)



TABLE I
PRAGMAS OF DISCONTINUOUS INCREMENTAL CHECKPOINTING TECHNIQUE.

Monitor
Pragma Process Checkpointing mode Recovering mode

start send ”start” set all pages to read-only status. find the next checkpoint:
to the monitor - if found:

+ inject checkpoint to the monitored process;
+ set all pages to read-only status;
+ if it is the last checkpoint:

change to checkpointing mode;
- else: notice error; stop process.

stop send ”stop” back all pages to their original status. back all pages to their original status.
to the monitor.

save < filename > send ”save” save the memory locations that have been modified notice error; stop process.
to the monitor. to the current checkpoint;

if < filename > contains previous checkpoint:
+ merge current checkpoint to < filename >;

else:
+ save current checkpoint to < filename >;

set all pages to read-only status.

A

# pragma dickpt start

B1

# pragma dickpt save <filename1>

B2

# pragma dickpt save <filename1>

# pragma dickpt stop

C

# pragma dickpt start

D

# pragma dickpt save <filename2>

# pragma dickpt stop

Fig. 2. Pseudo-code for discontinuous incremental checkpoints.

and one checkpoint is generated after each computation. The

testbed was composed of an Intel Core2 Duo E8400 running

at 3 GHz with 3 GB RAM and operated by Ubuntu 9.10

based on Linux kernel 2.6.31-21-generic. Table II presents the

performance evaluation for four vector sizes (N equals to 3320,

6640, 9960 and 13280 elements respectively). For each vector

size, performance are measured 30 times (mean values are

provided in the table). In order to avoid the pollution of disk

effects on measurements, all data (the virtual address space of

processes, checkpoints, etc.) are resident in RAM.

The first section of Table II presents the size of checkpoints

at location 1 (i.e. just after the initialization - as the case

of normal incremental checkpointer) and at location 2 (i.e.

just after the computation of a new vector). This difference

is the size of the transition matrix which is initialized at

the beginning of the program. These data show how much

disk space can be saved while abandoning the checkpoint at

location 1 and, in the same way, how faster the checkpoint

can be transfered over the network if necessary.

The second section of the table shows the time required to

run the program without saving checkpoints, while saving all

checkpoints and while saving location 2 checkpoints only. It

Fig. 3. Program computing the successive elements of a Markov Chain.

highlights the fact that the overhead involved by the generation

of location 2 checkpoints is very light (between 1.5% and

3.3% for 100 checkpoints, i.e. between 0.01% and 0.03%

per checkpoint) compared to the overhead involved by the

generation of both location 1 and location 2 checkpoints (the

total execution time is multiplied by 8.5).

The third section of table provides the execution time to

run the process restarting from loop iteration number 50.

Two cases are envisaged: the first one uses all checkpoints,

i.e. the program is restarted, suspended at the beginning of

function main, all checkpoints are injected in the process

and the execution resumes at loop iteration 50; the second

one uses location 2 checkpoints only, i.e. the program is

restarted, suspended after the initialization step, all location



2 checkpoints are injected in the process and the execution

resumes at loop iteration 50.

The performance measurements show that avoiding location

1 checkpoints is always beneficial.

C. Advantages and drawbacks

While comparing with the normal incremental checkpoint-

ing technique, our new approach has the strong and weak

points below:

• Performance: increase the speed of the program in

both periods of checkpointing and recovering; decrease

strongly the size of checkpoints.

• Flexibility: allows to select the segments to be check-

pointed in programs. The case of normal incremental

checkpointing is obtained by setting a pragma dickpt

start and a pragma dickpt stop as the first and the

last instruction respectively in the checkpointed program.

• More specifically for the case of CAPE: it can directly

extract and allows to inject the delta, thus increase the

performance of this paradigm.

• Change of the source code: in the role of a checkpointer,

it is the most important drawback. Users have to insert

the directives to indicate the regions being checkpointed.

However, when used in CAPE, this insertion is done by

the CAPE’s compiler. As a result, this drawback has no

impact for CAPE’s users.

• Fragmentation of checkpoints: checkpoints which are

not taken in a single block (surrounded by a pair of

pragma dickpt start and pragma dickpt stop)

can not be merged to an unique checkpoint. So, many

files are needed to contain the checkpoints of different

checkpointing blocks. This drawback is important when

checkpoints reference the same memory area.

IV. CHECKPOINT STRUCTURE OPTIMIZATION

The structure of a complete checkpoint is usually quite

straightforward. After some very specific data like the content

of registers and the size of the memory, the rest of a complete

checkpoint is usually composed of the content of all the

memory pages the one after the other one.

In the case of an incremental checkpoint, several cases

have to be envisaged. All solutions are storing the content

of registers. However, regarding the memory updates, the best

solution really depends upon the granularity of data, which

ranges from one byte to one page with the most interesting

case at one word.

Memory granularity

There are two main drawbacks when the granularity is the

page. The first one is that a complete page must be saved even

though a single byte in the page has been modified, which

is not really memory efficient. Considering the size of today

disks, this may not be a problem unless a very large number

of checkpoints have to be generated. The problem may have

a more important impact if for examples these checkpoints

have to be sent over the network, especially with a limited

bandwidth. The second main drawback is that it provides no

information on which bytes in the page have been modified

effectively. The latter drawback definitively forbids any merge

operation of successive incremental checkpoints.

Setting the granularity of the checkpoint to a single byte

solves the memory inefficiency problem of the page granular-

ity. However, it leads to other subtle problems, like for example

the reference to memory locations that do not exist in the

virtual address space of the process. Let < a, b, c, d > be four

bytes stored at a memory location and representing a pointer

in memory. After a first checkpoint, this memory location

may contain < a, b′, c, d >. After a second checkpoint, the

same memory location may contain < a, b, c′, d >. If, for

any reasons, it is required to merge the two checkpoints (and

this is typically the case with CAPE), the result becomes

< a, b′, c′, d > which may not be part of the virtual address

space of the process.

Setting the granularity of the checkpoint to a word (i.e.

four bytes) is the best compromise as it solves the problem of

memory space efficiency and does not introduce any pointer

problem as described above. This solution is not the perfect

solution. However, problems involved by setting the granular-

ity of the checkpoint to a word has no significant impact on

the execution of the program.

Finally, one can note that setting the granularity of the

checkpoint to the entire virtual address space turns an incre-

mental checkpointer into a complete checkpointer.

Incremental checkpoint content

Apart from the specific values also stored in complete

checkpoints, an incremental checkpoint should be composed

of the list of memory locations that have been modified since

the beginning of the execution of the program, or since the

previous checkpoint, and the last value for each of these

specific memory locations. The simplest structure to store

such a list is to save the one after the other one both the

addresses and their associated value. However, since the spatial

locality of data in most programs implies that a modification

at a memory location increases the probability for adjacent

memory locations to be modified, this way of storing data is

not necessarily efficient.

Thus, in order to take advantage of the spatial locality of

updates and therefore reduce the size of checkpoints, several

alternative methods for storing memory updates have been

identified:

• Single data. This case occurs when a single memory loca-

tion has been updated. In this case, the only information

to store are the basic address of the memory location

and the content at the memory location. Data to store all

information into the checkpoint are:

< addr, value >

• Several successive data. This case occurs when more than

one consecutive memory locations have been updated.

For example, this is encountered when the content of an

array has been modified. The best way to store all the

information in this case is:



TABLE II
PERFORMANCE EVALUATION.

Matrix size
3320 6640 9960 13280

Checkpoint size (in MB)
... at location 1 42.192 168.741 379.648 674.912
... at location 2 0.013 0.026 0.038 0.051

Total execution time (in seconds)
... without generating checkpoints 11.34 41.30 108.27 168.69
... generating all checkpoints 13.10 58.14 393.60 1433.72
... generating location 2 checkpoints only 11.71 42.16 109.96 171.70

Execution time restarting after loop iteration #50 (in seconds)
... using location 1 and location 2 checkpoints 6.41 23.14 59.56 93.91
... using location 2 checkpoints only 6.09 21.84 56.64 88.71

< addr, size, [value...] >

• Many data. This occurs when lots of non-successive

memory locations have been updated on a single page. In

this case, instead of storing a large number of Single data

and Several successive data elements, it is more efficient

to store the address of the page, the list of memory

locations on the page that have been modified and for

each modified memory location the associated value. The

efficiency of this solution resides in the mapping, i.e.

the list of memory locations on the page. As this is a

binary information for each data in the page, it can be

represented using a single bit per memory location. For

example, for a 4-kB page, the size of the map is 1024 bits

(or 128 bytes) with a granularity set a word.

< addr,map, [value...] >

• Entire page. This occurs when all memory locations on

a memory page have been modified. This case is quite

common when a new page is added to the virtual address

space of a process. The best way to store the complete

content of a page is:

< addr, [value...] >

No size need to be provided in this case as it is implicitly

known.

Table III compares the amount of memory needed to store

updated data for all cases presented above. The size of a

memory page is assumed to be 4 kB. Let a chunk be a set

of contiguous memory locations that have been updated. Let

c be the number of chunks in a memory page, let si be the

number of elements in chunk i and let u be the number of

updates in the memory page. By definition,

c
∑

i=1

si = u.

TABLE III
AMOUNT OF MEMORY TO STORE UPDATES.

Amount of memory
Method for a single chunk for a page

Single data (SD) 8 8× u

Several successive data (SSD) 8 + 4× s 8× c+ 4× u

Many data (MD) 132 + 4× u 132 + 4× u

Entire page (EP) 4100 4100

Fig. 4 shows a comparison of the amount of memory needed

to store all updates in a 4-kB page as a function of the number

of updated memory locations in the page. SD, MD and EP

only depend upon the number of updated memory locations

while SSD also depends on the distribution of the updated

memory locations. As a result, Fig. 4 shows both the best

case (SSDmin) that is when all updated memory locations are

in a single chunk, and the worst case (SSDmax) that is the

case when updated memory locations are distributed in the

configuration that requires the maximum number of chunks.

For 4-kB memory pages and 4-byte words, this maximum is

given by:
{

⌊u/2⌋ if 0 < u ≤ 682
1024− u if 682 < u ≤ 1024

One can note that when two successive memory locations

have to be stored, the amount of memory needed to store the

information for both Single data and Several successive data

cases is the same.

Fig. 4. Amount of memory to store updates.

The most efficient solution, i.e. the one that reduces the

most the memory usage, is identified this way. For each page,

first the Many data representation is built. It requires at most

4228 bytes; second, a combination of Single data and Several

successive data methods is built, having Single data chosen for

isolated data and Several successive data chosen when at least

two consecutive memory locations have been updated; third,



the shortest representation between both computed is stored.

Note that the Entire page method is left to the storage of new

pages.

Fig. 5. Trade-off between SSD and MD.

From the expressions provided in Table III one can demon-

strate that the Several successive data method is always

the most interesting solution when the number of updates

is smaller than 34. Then, there is a trade-off between the

Several successive data method and the Many data method that

depends on the number of chunks. Fig. 5 is a magnification

of Fig. 4 for a number of updates in the range from 0 to 50.

Identifying the method

Considering that more than one method is used to store

memory updates, it is important to identify which one was

used when restoring the content of the checkpoint. A simple

solution would have consisted in adding an extra integer

or even a character before any data description or set of

data description. However, in order to keep the size of the

checkpoint as small as possible, it has been decided to add no

extra byte to the checkpoint.

Instead, considering that all methods require an address

as the first field and that these addresses are necessarily

aligned on a boundary of a word, i.e. these addresses are

necessarily a multiple of 4 or the last two digits of their

binary representation are necessarily 00, it is possible to use

this ”free” space to store which method was used to store the

data. In our current implementation, 00 is associated to Single

data, 01 to Several successive data, 10 to Many data and 11

to Entire page. When restoring the content of a checkpoint,

these two bits are reset to 00 after the storage method has been

identified and before the address is effectively used.

V. CONCLUSION AND FUTURE WORKS

For the development of our distributed implementation

of OpenMP using the CAPE paradigm, an efficient incre-

mental checkpointer is required. This article presented our

new approach of discontinuous incremental checkpointer. The

initial implementation of this approach, Dickpt, has proved

its efficiency in terms of size - the decrease of amount of

memory required to store the checkpoints - and time to

generate the checkpoints, to restart from a checkpoint or to

send the checkpoint over the network. This approach led to

very lightweight checkpoints, the size being in the order of

very few kB while the size of the virtual address space of the

process is in the order of tens or hundreds of MB. However,

by the significantly changes due to the possibility and the

nature of the checkpointer, new paradigms may be developed

for CAPE and we are investigating in this way.

Apart from processor registers, the current implementation

of our incremental checkpointer does not save system infor-

mation about the process, like open file descriptors, sockets,

POSIX semaphore or shared memory, etc. Somehow, this is

not a real drawback as if such declarations are set outside

of checkpointed segments, they could be re-executed in case

of restoration. However, in the near future, these system data

will be included and the overhead involved by the inclusion

of each of them will be studied. In fine, we would like this

incremental checkpointer to be completely customizable so

that users would be able to store only relevant information.
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