
HAL Id: hal-00628991
https://hal.science/hal-00628991v1

Submitted on 4 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Usefulness of Similarity Based Projection Spaces
for Transfer Learning

Emilie Morvant, Amaury Habrard, Stéphane Ayache

To cite this version:
Emilie Morvant, Amaury Habrard, Stéphane Ayache. On the Usefulness of Similarity Based Projection
Spaces for Transfer Learning. First International Workshop on Similarity-Based Pattern Recognition,
Sep 2011, Venise, Italy. pp.1-16. �hal-00628991�

https://hal.science/hal-00628991v1
https://hal.archives-ouvertes.fr


On the Usefulness of Similarity based Projection
Spaces for Transfer Learning?

Emilie Morvant, Amaury Habrard, and Stéphane Ayache
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Abstract. Similarity functions are widely used in many machine learn-
ing or pattern recognition tasks. We consider here a recent framework
for binary classification, proposed by Balcan et al., allowing to learn
in a potentially non geometrical space based on good similarity func-
tions. This framework is a generalization of the notion of kernels used
in support vector machines in the sense that allows one to use similarity
functions that do not need to be positive semi-definite nor symmetric.
The similarities are then used to define an explicit projection space where
a linear classifier with good generalization properties can be learned. In
this paper, we propose to study experimentally the usefulness of similar-
ity based projection spaces for transfer learning issues. More precisely,
we consider the problem of domain adaptation where the distributions
generating learning data and test data are somewhat different. We stand
in the case where no information on the test labels is available. We show
that a simple renormalization of a good similarity function taking into
account the test data allows us to learn classifiers more performing on
the target distribution for difficult adaptation problems. Moreover, this
normalization always helps to improve the model when we try to regu-
larize the similarity based projection space in order to move closer the
two distributions. We provide experiments on a toy problem and on a
real image annotation task.

Keywords: Good Similarity Functions, Transfer Learning, Domain Adap-
tation, Image Classification

1 Introduction

Many machine learning or pattern recognition algorithms are based on similarity
functions. Among all of the existing methods, we can cite the famous k-nearest
neighbors, k-means or support vector machines (SVM). An important point is
to choose or adapt the similarity to the problem considered. For example, ap-
proaches dealing with numerical vectors are often based on the Mahalanobis
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distance [12, 15, 27] and many methods designed for structured data (strings,
trees or graphs) exploit the notion of edit distance [7, 14, 24]. For binary classifi-
cation with SVM classifiers, the similarity function must often be a valid kernel1

in order to define a potentially implicit projection space which is an Hilbert space
and where data can be more easily separated. In this case, the similarity function
must be symmetric and positive semi-definite (PSD), allowing one to define a
valid dot product in the implicit projection space. However, these constraints
may rule out some natural similarity functions. Recently, a framework proposed
by Balcan et al. [2, 3] considers a notion of good similarity function that over-
comes these limitations. Intuitively, this notion only requires that a sufficient
amount of examples are on average more similar to a set of reasonable points of
the same class than to reasonable points of the opposite class. Then, the simi-
larity can be used to build an explicit (potentially non geometrical) projection
space, corresponding to the vector of similarities to the reasonable examples.
In this similarity based projection space, a classifier with good generalization
capabilities can be learned.

This kind of result holds in a classical machine learning setting, where test
data are supposed to have been generated according to the same distribution
than the one used for generating labeled learning data. This assumption is in
fact very useful to obtain good generalization results, but is not always valid in
every application. For example, in an image classification task, if labeled data
consist of images extracted from the web and test data images extracted from
different videos, the various methods of data acquisition may imply that labeled
data are no longer representative of test data and thus of the underlying classi-
fication task. This kind of issue is a special case of transfer learning [22] called
domain adaptation (DA) [18, 23]. DA arises when learning and test data are
generated according to two different probability distributions: the first one gen-
erating learning data is often referred to as the source domain, while the second
one for test data corresponds to the target domain. According to the existing
theoretical frameworks of DA [4, 20] a classifier can perform well on the target
domain if its error relatively to the source distribution and the divergence be-
tween the source and target distributions are together low. One possible solution
to learn a performing classifier on the target domain is to find a projection space
in which the source and target distributions are close while keeping a low error
on the source domain. Many approaches have been proposed in the literature to
tackle this problem [9–11, 19].

In this paper, we consider the case where a learning algorithm is provided
with labeled data from the source domain and unlabeled data from the target
one. Our aim is to investigate the interest of the framework of Balcan et al. for
domain adaptation problems. More precisely, we propose to study how we can
use the lack of geometrical space of this framework to facilitate the adaptation.
We consider two aspects. First, the influence of a renormalization of the simi-
larity function according to the unlabeled source and target data. Second, the
addition of a regularization term to the optimization problem considered for

1 Nevertheless there exists some approaches allowing to use indefinite kernels [16].
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learning the classifier in order to select reasonable points that are relevant for
the adaptation. This approach can be seen as a feature selection for transfer
learning aiming at moving closer the two distributions. We show experimentally
that these two aspects can help to learn a better classifier for the target domain.
Our experiments are based on a synthetic toy problem and on a real image
annotation task.

The paper is organized as follows. We introduce some notations in Section 2.
Then we present the framework of good similarity functions of Balcan et al. in
Section 3. We next give a brief overview of domain adaptation in Section 4. We
present in Section 5 the approach considered and we describe our experimental
study in Section 6. We conclude in Section 7.

2 Notations

We denote by X ⊆ Rd the input space. We consider binary classification prob-
lems with Y = {−1, 1}, the label set. A learning task is modeled as a probability
distribution P over X × Y , D being the marginal distribution over X. For any
labeled sample S drawn from P , we denote by S|X the sample constituted of all
the instances of S without the labels. In a classical machine learning setting, the
objective is then to learn a classifier h : X → Y belonging to a class of hypoth-
esis H such that h has a low generalization error errP (h) over the distribution
P . The generalization error errP (h) corresponds to the probability that h can
commit an error according to the distribution P , which is defined as follows:

∀h ∈ H, errP (h) = E(x,y)∼PL(h(x), y)

where L corresponds to the loss function modeling the fact that h(x) 6= y. We
will see later that in a DA scenario, we consider two probability distributions
PS and PT corresponding respectively to a source domain and a target one.

We now give a definition about the notion of similarity functions.

Definition 1. A similarity function over X is any pairwise function

K : X ×X → [−1, 1].

K is symmetric if for any x,x′ ∈ X: K(x,x′) = K(x′,x).

A similarity function is a valid kernel function if it is positive semi-definite,
meaning that there exists a function φ from X to an implicit Hilbert space such
that K defines a valid dot product in this space, i.e. K(x, x′) = 〈φ(x), φ(x′)〉.
Using a valid kernel offers the possibility to learn a good classifier into a high
dimensional space where the data are supposed to be linearly separable. However,
the choice or the definition of a good kernel can be a tricky task in general. We
present in the next section a framework that proposes a rather intuitive notion
of good similarity function that gets rid of the constraints of a kernel.
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3 Learning with Good Similarity Functions

In this section, we present the class H of linear classifiers considered in this
paper. These classifiers are based on a notion of good similarity function for
a given classification task. A common general idea is that such a similarity
function is able to separate examples of the same class from examples of the
opposite class with a given confidence γ > 0. Given two labeled examples (x, y)
and (x′, y′) of X × Y , this idea can be formalized as follows: if y = y′ then
K(x,x′) > γ, otherwise we want K(x,x′) < −γ. This can be summarized by the
following formulation: yy′K(x,x′) > γ. The recent learning framework proposed
by Balcan et al. [2, 3], has generalized this idea by requiring the similarity to be
good over a set of reasonable points.

Definition 2 (Balcan et al. [2]). A similarity function K is an (ε,γ,τ)-good
similarity function for a learning problem P if there exists a (random) indi-
cator function R(x) defining a set of reasonable points such that the following
conditions hold:

(i) A 1− ε probability mass of examples (x, y) satisfy

E(x′,y′)∼P
[
yy′K(x,x′)|R(x′)

]
≥ γ, (1)

(ii) Prx′ [R(x′)] ≥ τ .

From this definition, a large proportion of examples must be on average more
similar, with respect to the margin γ, to random reasonable examples of the
same class than to random reasonable examples of the opposite class. Moreover,
at least a proportion τ of examples should be reasonable. Definition 2 includes
all valid kernels as well as some non-PSD non symmetric similarity functions [2,
3]. The authors have shown that this definition of good similarities allows also
to solve problems that can not be handled by classical kernels, which makes the
definition a strict generalization of kernels. According to the following theorem,
it provides sufficient conditions to learn a good linear classifier in an explicit
projection space defined by the reasonable points in the set R.

Theorem 1 (Balcan et al. [2]). Let K be an (ε,γ, τ )-good similarity func-
tion for a learning problem P . Let S = {x′1, . . . , x′d} be a sample of d =
2
τ

(
log( 2

δ ) + 8 log(2/δ)
γ2

)
landmarks (potentially unlabeled) drawn from P . Consider

the mapping φR : X → Rd defined as follows: φRi (x) = K(x, x′i), i ∈ {1, . . . , d}.
Then, with probability at least 1 − δ over the random sample R, the induced
distribution φR(P ) in Rd has a separator of error at most ε + δ relative to L1

margin at least γ/2.

Thus, with an (ε,γ,τ)-good similarity function for a given learning problem P
and enough (unlabeled) landmark examples, there exists with high probability a
low-error linear separator in the explicit φR-space, corresponding to the space of
the similarities to the d landmarks. The criterion given by Definition 2 requires
to minimize the number of margin violations which is a NP-hard problem gen-
erally difficult to approximate. The authors have then proposed to consider an
adaptation of Definition 2 with the hinge loss formalized as follows.
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Definition 3 (Balcan et al. [2]). A similarity function K is an (ε,γ, τ )-good
similarity function in hinge loss for a learning problem P if there exists a
(random) indicator function R(x) defining a (probabilistic) set of “reasonable
points” such that the following conditions hold:

(i) we have

E(x,y)∼P

[
[1− yg(x)/γ]+

]
≤ ε, (2)

where g(x) = E(x′,y′)∼P [y′K(x,x′)|R(x′)]
and [1− c]+ = max(0, 1− c) is the hinge loss,

(ii) Prx′ [R(x′)] ≥ τ .

Using the same φR-space than Theorem 1, the authors have proved a similar
theorem for this definition with the hinge loss. This leads to a natural two
step algorithm for learning this classifier: select a set of potential landmark
points and then learn a linear classifier in the projection space induced by these
points. Then, using du unlabeled examples for the landmark points and dl labeled
examples, this linear separator α ∈ Rdu can be found by solving a linear problem.
We give here the formulation based on the hinge loss presented in [2].

min
α

dl∑
i=1

1−
du∑
j=1

αjyiK(xi, x
′
j)


+

such that

du∑
j=1

|αj | ≤ 1/γ. (3)

In fact, we consider a similar formulation based on a 1-norm regularization,
weighted by a parameter λ related to the desired margin.

min
α

dl∑
i=1

1−
du∑
j=1

αjyiK(xi, x
′
j)


+

+ λ‖α‖1. (4)

In the following, a classifier learned in this framework is called a SF classifier.

4 Domain Adaptation

Domain adaptation (DA) [4, 20] arises when the learning data generation is some-
what different from the test data generation. The learning data, generally called
the source domain, is represented by a distribution PS over X × Y and the test
data, referred to the target domain, is modeled by a distribution PT . We denote
by DS and DT the respective marginal distributions over X.
A learning algorithm is generally provided with a Labeled Source sample LS =
{(xi, yi)}mi=1 drawn i.i.d. from PS , and a Target Sample which contains a large

set of unlabeled target instances TS = {xj}m
′

j=1 drawn i.i.d. from DT and some-
times a few labeled target data drawn from PT . The objective of a learning task
is then to find a good hypothesis with a low error according to target distribu-
tion PT . In this section, we provide a brief and non-exhaustive overview of some
existing DA approaches, note that some surveys can be found in [18, 23]
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The first theoretical analysis of the DA problem was proposed by Ben-David
et al. [4, 5]. The authors have provided an upper bound on the target domain
error errPT

that takes into account the source domain error errPS
(h) and the

divergence dH between the source and target marginal distributions:

∀h ∈ H, errPT
(h) ≤ errPS

(h) +
1

2
dH(DS , DT ) + ν. (5)

The last term corresponds to the optimal joint hypothesis over the two domains
ν = argminh∈H errPS

(h) + errPT
(h). It can be seen as a quality measure of H for

the DA problem considered. If this best hypothesis performs poorly, it appears
then difficult to obtain a good hypothesis for the target domain. This term is
then supposed to be small to ensure a successful adaptation.
The other crucial point is the divergence2 dH which is called theH-distance. This
result suggests that if the two distributions are close, then a low error classifier
over the source domain can be a good classifier for the target one. The intuition
behind this idea is given in Figure 1. The distance dH is actually related to H
by measuring a maximum variation divergence over the set of points on which
an hypothesis in H can commit errors:

dH(DS , DT ) = 2 sup
h∈H

∣∣PrDS
[I(h)]− PrDT

[I(h)]
∣∣

where x ∈ I(h) ⇔ h(x) = 1. An interesting point of this theory is that the
H-distance can be estimated from finite samples when the VC-dimension of H
is finite. Using a VC-dimension analysis, the authors show that the empirical
divergence converges to the true dH with the size of the samples. Let US be
a sample i.i.d. from DS and UT a sample i.i.d. from DT . Consider a labeled
sample US

⋃
UT where each instance of US is labeled as positive and each one

of UT as negative. The empirical divergence can then be directly estimated by
looking for the best classifier able to separate the two samples3 [4]:

d̂H(US , UT ) = 2

(
1−min

h∈H
ˆerr

US ,UT

(h)

)
, (6)

with ˆerr
US ,UT

(h)=
1

m

 ∑
x∈US∪UT ,
h(x)=−1

1x∈US
+
∑

x∈US∪UT ,
h(x)=1

1x∈UT

, where 1x∈US
=

{
1 if x ∈ US
0 otherwise.

Note that finding the optimal hyperplane is NP-hard in general. However, a
good estimation of d̂H allows us to have an insight of the distance between the
two distributions and thus of the difficulty of the DA problem for the class H.
We will use this principle to estimate the difficulty of the task considered in our
experimental part.

2 The authors consider actually the divergence over H∆H, the space of symmetric
difference hypothesis, see [4] for more details.

3 By considering the 0-1 loss, L01, defined as follows: L01(h, (x, y)) = 1 if h(x) 6= y
and 0 otherwise.
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Fig. 1. Intuition behind a successful domain adaptation. Source points are in (dark)
green (pos. +, neg. −), target points are in (light) orange. (a) The distance between
domains is high: the two samples are easily separable and the classifier learned from
source points performs badly on the target sample. (b) The distance between domains
is low: The classifier learned from source points performs well on the two domains.

Later, Mansour et al. [20] have proposed another discrepancy measure al-
lowing one to generalize the dH distance to other real valued loss functions.
Note that the bound presented in their work is a bit different from the one of
Ben-David et al.. Moreover, they have also provided an average analysis with in-
teresting Rademacher generalization bounds. These theoretical frameworks show
that for a good domain adaptation, the distance between distributions and the
source error must be low. According to [6], minimizing these two terms appears
even necessary in general.

One key point for DA approaches is thus to be able to move closer the distri-
butions while avoiding a dramatic increase of the error on the source domain. In
the literature, some methods have proposed to reweight the source instances in
order to get closer to the target distribution. They are often based on some as-
sumptions on the two distributions [8, 17, 19, 20, 26]. For example some of these
approaches rely on hypothesis like the covariate shift where the marginal dis-
tributions over X may be different for the two domains, but the conditional
distribution of Y given X are the same, i.e. PS(y|x) = PT (y|x) for every x ∈ X
and y ∈ Y but PS(x) 6= PT (x) for some x ∈ X [26]. Other works are based on
iterative self labeling approaches in order to move progressively from one domain
to the other one [10]. Another standpoint for moving closer the two distributions
is to find a relevant projection space where the two distributions are close. In
[9], the authors propose a structural correspondence learning approach to iden-
tify relevant features by looking for their correspondence in the two domains.
Another idea is to use an augmented feature space for both source and target
data and use the new input space obtained with classical machine learning al-
gorithms [11]. Some authors have also proposed to use spectral approaches to
build a new feature space [21].

The main underlying ideas among the different approaches presented in this
section is that a potential good adaptation needs to have the source and target
distributions close. One way to achieve this goal is to build a relevant feature
space by defining a new projection operator or by choosing relevant features. In
the next section, we study the usefulness of the framework of Balcan et al.. to
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deal with domain adaptation problems. More precisely, we propose to investigate
how the definition of the similarity function and the construction of the feature
space - i.e. the φ-space of similarities to a set of reasonable points - can help to
improve the performance of the classifier in a domain adaptation setting.

5 Modifying the Projection Space for Domain Adaptation

In this section, we present our two approaches for modifying the similarity based
projection space in order to facilitate the adaptation to the target distribution.
First, we present a simple way for renormalizing a similarity function according
to a sample of unlabeled instances. Second, we propose a regularization term
that tends to define a projection space where the source and target marginal
distributions tend to be closer.

5.1 A Normalization of a Similarity Function

For a particular DA task, we build a new similarity function KN by normalizing
a given similarity function K relatively to a sample N . Recall that, from Defi-
nition 2, a similarity must be good relatively to a set of reasonable points. We
propose actually to renormalize the set of similarities to these points. Since the
real set of reasonable points is unknown a priori, we consider a set of candidate
landmark points R′ and we apply a specific normalization for each instance of
x′j ∈ R′. The idea is to apply a scaling to mean zero and standard deviation
one for the similarities of the instances of N to x′. Our procedure is defined as
follows.

Definition 4. Let K be a similarity function which verifies the Definition 2.
Given a data set N = {xk}pk=1 and a set of (potential) reasonable points R′ =

{x′j}
du
j=1, a normalized similarity function, KN , is defined by:

∀x′j ∈ R′, KN (.,x′j) =



K(.,x′j)− µx′j

σx′j
if −1 ≤

K(.,x′j)−µ̂x′
j

σ̂x′
j

≤ 1,

−1 if −1 ≥
K(.,x′j)−µ̂x′

j

σ̂x′
j

,

1 if
K(.,x′j)−µ̂x′

j

σ̂x′
j

≥ 1,

(7)

where µ̂x′j
is the empirical mean of similarities to x′j over N :

∀x′j ∈ R′, µ̂x′j
=

1

|N |
∑

xk∈N
K(xk,x

′
j),

and σ̂x′j is the empirical unbiased estimate of the standard deviation:

∀x′j ∈ R′, σ̂x′j =

√
1

|N | − 1

∑
xk∈N

(
K(xk,x′j)− µ̂x′j

)2
.
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By construction, the similarity KN is then non symmetric and non PSD. In
the following, we will consider that a learning algorithm is provided with two
data sets: LS = {(xi, yi)}mi=1 constituted of labeled source domain data, and

TS = {xi}m
′

i=1 of unlabeled target domain data. According to the theoretical
result of domain adaptation of Ben-David et al.. recalled in Equation (5), the
learned classifier should also perform well on the source domain. We then propose
to define our normalized function, denoted by KST , with N = LS|X∪TS in order
to link the two domains by considering the information of both of them at the
same time, for avoiding an increasing of the source error. Our choice is clearly
heuristic and our aim is just to evaluate the interest of renormalizing a similarity
for domain adaptation problems. In order to study the potential of adaptation,
we will only consider candidate landmark points R′ from the source domain.

5.2 An Additional Regularization Term For Moving Closer the Two
Distributions

As a second contribution, we propose to add a regularization term to the opti-
mization Problem 4 proposed by Balcan et al.. The objective is to control the
selection of reasonable points leading to a projection space where the two distri-
butions are close. According to the empirical divergence dH given in Equation 6,
the source and the target domains are close if it is difficult to separate source
from target examples. Let two subsets US ⊆ LS and UT ⊆ TS of equal size,
our idea is then to build a set CST of pairs belonging to US × UT . And then,
for each pair (xs,xt) ∈ CST , we propose to regularize the learned classifier such
that the outputs of the classifier are close for the two instances xs and xt. For

any classifier h(·) =
∑|R|
i=1 αiK(·, x′i), this can be expressed as follows:

|h(xs)− h(xt)| =

∣∣∣∣∣∣
|R|∑
j=1

αjK(xs,x
′
j)−

|R|∑
j=1

αjK(xt,x
′
j)

∣∣∣∣∣∣
≤
|R|∑
j=1

∣∣αj(K(xs,x
′
j)−K(xt,x

′
j)
)∣∣ by using triangle inequality

=
∥∥(tφR(xs)− tφR(xt)) diag(α)

∥∥
1
. (8)

This leads us to propose a new regularization term which tends to select land-
marks with similarities close to both some source and target points, which allows
us to define a projection space where source and target examples are closer. Let
R be a set of du candidate landmark points, our global optimization problem is
then defined as follows:

min
α

dl∑
i=1

1−
du∑
j=1

αjyiK(xi, x
′
j)


+

+λ‖α‖1+C
∑

(xs,xt)∈CST

∥∥(tφR(xs)−tφR(xt)) diag(α)
∥∥
1

(9)
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The construction of CST is difficult since we have no information on the target
labels. In practice, we build the matching CST from US and UT by looking for
a bipartite matching minimizing the Euclidean distance in the φ-space defined
by the set of candidate landmarks. This can be done by solving the following
problem. Note that in the particular case of bipartite matching, this can be done
in polynomial time by linear programming for example.

min
βst

1≤s≤|US |
1≤t≤|UT |

∑
(xs,xt)∈US×UT

βst‖φR(xs)− φR(xt)‖22

s.t.: ∀(xs,xt) ∈ US × UT , βst ∈ {0, 1},
∀xs ∈ US ,

∑
xt∈UT

β(st) = 1,
∀xt ∈ UT ,

∑
xs∈US

β(st) ≤ 1.

Then CST corresponds to the pairs of US × UT such that βst = 1. The choice
of the points of US and UT is hard and in an ideal case, we would like to select
pairs of points of the same label. But since we suppose that no target label is
available, we select the sets US and UT randomly from the source and target
samples, from different draws, and we choose the best sets thanks to a reverse
validation procedure described in Appendix A.

6 Experiments

We now propose to evaluate the approaches presented in the previous section on
a synthetic toy problem and on a real image annotation task. For every problem,
we consider to have: a labeled source sample LS drawn from the source domain, a
set of potential landmark points R′ drawn from the marginal source distribution
over X and an unlabeled target sample TS drawn from the marginal target
distribution over X.
As a baseline, we choose a similarity based on a classical Gaussian kernel, which
is a good similarity function according to the framework of Balcan et al.:

K(x,x′) = exp

(
−‖x− x′‖22

D2

)
.

We then consider the normalized similarity KST which corresponds to the nor-
malization of K according to the instances of the source and target samples
LS|X ∪TS. For each of the two similarities K and KST , we compare the models
learned by solving Problem (4), corresponding to learning a classical SF-based
classifier, to those learned using our regularized formulation in Problem (9). We
tune the hyperparameters with a “reverse” validation procedure described in
Appendix A. Moreover, in order to evaluate if KST is a better similarity for the
target domain, we propose to study the (ε,γ,τ)-guarantees on the target sample
according to Definition 3. For this purpose, we estimate empirically ε as a func-
tion of γ from the target sample (we use here the real labels but only for this
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evaluation), i.e. for a given γ, ε̂ is the proportion of examples x ∈ TS verifying:

∑
x′j∈R′

yiy
′
jK(xi,x

′
j) < γ.

We also assess the distance d̂H between the two domains by learning a SF-based
classifier with K for separating source from target samples in the original space.
From Equation (6), a small value, near 0, indicates close domains while a larger
value, near 2, indicates a hard DA task.

6.1 Synthetic Toy Problem

As the source domain, we consider a classical binary problem with two inter-
twinning moons, each class corresponding to one moon (see Figure 3). We then
define 8 different target domains by rotating anticlockwise the source domain
according to 8 angles. The higher the angle is, the harder the task becomes. For
each domain, we generate 300 instances (150 of each class). Moreover, for study-
ing the influence of the pair set CST , we evaluate the obtained results when CST
corresponds to a set of “perfect pairs (xs,xt)” where xt is the obtained instance
after rotating xs. These results correspond to an upper bound for our methods.
Finally, in order to assess the generalization ability of our approach, we evaluate
each method on an independent test set of 1500 examples drawn from the target
domain (not provided to the algorithm). Each adaptation problem is repeated
10 times and the average accuracy obtained for each method is reported in Table
1. We can make the following remarks.

– Our new regularization term for minimizing distance between marginal dis-
tributions improves significantly the performances on the target domain.

– As long as the problem can be considered as an easy DA task, the normal-
ized similarity does not produce better models. However, when the difficulty
increases, using a normalized similarity improves the results.

– Regarding the bipartite matching influence, having perfect pairs leads to
the best results and is thus important for the adaption process, which is
expected. However, our reverse validation procedure helps us to keep correct
results when a set of perfect pairs can not be built.

Figure 2 shows the goodness guarantees of the similarities over each adaptation
task. A better similarity has a lower area under the curve, meaning a lower error
in average. The ε̂ rate is relatively high because we consider only landmarks from
the source sample in order to study our adaptation capability. We observe for
hardest problems (≥ 50◦) an improvement of the goodness with the normalized
similarity KST . For easier tasks, this improvement is not significant, justifying
the fact that the similarity K can lead to better classifiers. Our normalized
similarity seems thus relevant only for hard domain adaptation problems.
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(a) For a 20◦ task. (b) For a 30◦ task.

(c) For a 40◦ task. (d) For a 50◦ task.

(e) For a 60◦ task. (f) For a 70◦ task.

(g) For a 80◦ task. (h) For a 90◦ task.

Fig. 2. Goodness of the similarities over the target sample: ε̂ as a function of γ.
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Fig. 3. Left: A source sample. Right: A target sample with a 50◦ rotation.

Rotation 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

d̂H 0.58 1.16 1.31 1.34 1.34 1.32 1.33 1.31

SF without distance regularization

with K 88± 13 70± 20 59± 23 47± 17 34± 08 23± 01 21± 01 19± 01
with KST 79± 10 56± 15 56± 10 43± 09 41± 08 37± 10 36± 10 40± 09

SF with distance regularization

with K 98± 03 92± 07 83± 05 70± 09 54± 18 43± 24 38± 23 35± 19
with KST 93± 05 86± 08 72± 12 72± 013 69± 10 67± 12 63± 13 58± 09

SF with distance regularization and perfect matching

with K 99 ± 01 96 ± 01 86 ± 02 73± 11 65± 23 56± 29 47± 23 39± 19
with KST 97± 04 92± 06 83± 10 75 ± 12 73 ± 16 73 ± 02 69 ± 7 60 ± 11

Table 1. Average results in percentage of accuracy with standard deviation on the toy
problem target test sample for each method.

6.2 Image Classification

In this section, we experiment our approach on PascalVOC 2007 [13] and TrecVid
2007 [25] corpora. The PascalVOC benchmark is constituted of a set of 5000
training images and a set of 5000 test images. The TrecVid corpus is constituted
of images extracted from videos and can be seen also as an image corpus. The
goal is to identify visual objects and scenes in images and videos. We choose the
concepts that are shared between the two corpora: Boat, Bus, Car, TV/Monitor,
Person and Plane. We used visual features extracted as described in [1]. We
consider as the source domain, labeled images from the PascalVOC 2007 training
set. For each concept, we generated a source sample constituted of all the training
positive images and negatives images independently drawn such that the ratio
+/− is 1

3/ 2
3 . As the target domain, we use some images of the TrecVid corpus, we

built also a sample containing all the positive examples and drew some negative
samples in order to keep the same ration +/− of 1

3/ 2
3 . In these samples, the

number of positive examples may be low and we propose to use the F-measure4

to evaluate the learned models. The results are reported in Table 2. The different
nature and ways of acquisition of the images make the problem of adaptation
difficult. As an illustration, the empirical d̂H between the two domains is high for
every concept. In this context, for all the tasks, the normalized similarity with

4 The F-measure or the balanced F-score is the harmonic mean of precision and recall.
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(a) For concept Boat (b) For concept Plane.

Fig. 4. ε̂ on the target domain as a function of γ for 2 concepts.

Concept boat bus car monitor person plane Average

d̂H 1.93 1.95 1.85 1.86 1.78 1.86 1.86

SF without distance regularization

with K 0.0279 0.1806 0.5214 0.2477 0.4971 0.5522 0.3378
with KST 0.4731 0.4632 0.5316 0.3664 0.3776 0.5635 0.4626

SF with distance regularization

with K 0.2006 0.1739 0.5125 0.2744 0.5037 0.5192 0.3640
with KST 0.4857 0.4891 0.5452 0.3989 0.5353 0.6375 0.5153

Table 2. Results obtained on TrecVid target domain according to the F-measure.

distance regularization provides the best results. This is confirmed on Figure 4
where the evaluation of the goodness of the two similarities for two concepts is
provided: the normalized similarity is better for difficult tasks.

7 Conclusion

In this paper, we have proposed a preliminary study on the usefulness of the
framework of Balcan et al. [2, 3] for domain adaptation. We have proposed a
normalization of a similarity function according to a test sample based on the fact
that a similarity does not need to be PSD or symmetric. We have also proposed
a new regularization term that tends to define a projection space of reasonable
points where the source and target distributions of the examples are closer. We
have provided experiments on a toy problem and on a real image annotation task.
Our regularization term generally helps to improve the learned classifier and the
normalization proposed seems only relevant for difficult adaptation tasks.

As a future work, we will continue on the idea of normalizing a similarity
in order to adapt it to the target domain. Around this idea, many questions
remain open like the choice the landmark points, the influence of the test set
or avoiding overfitting. The use of some labeled target data may also help to
produce a better projection space. From a theoretical standpoint, a perspective
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would be to consider an extension of the framework of robustness of Xu and
Mannor [28] to domain adaptation.
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A Appendix

Given a classifier h, we define the reverse classifier hr as the classifier learned
from the target sample self labeled by h : {(x, sign(h(x)))}x∈TS . According to
the idea of Zhong et al. [10, 29], we evaluate hr on the source domain (see Fig. 5).
Given k-folds on the source labeled sample, we use k−1 folds as labeled examples
for solving Pb. (9) and we evaluate hr on the last kth fold. The final error corre-

sponds to the mean of the error over the k-folds: êrrS(hr) = 1
k

∑k
i=1 ˆerrLSi(h

r).
Among many classifiers h, the one with the lowest êrrS(hr) is chosen.
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Fig. 5. Reverse validation. Step 1: Learning h with Problem (9). 2: Auto-labeling the
target sample with h. 3: Learning hr on auto-labeled target sample by Problem (4). 4:
Evaluation of hr on LS (with a k-folds process) for validating h.


