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Abstract: Today, maintenance strategies and their analyses remain a worrying problem for 

companies. Socio economic stakes depending on competitiveness of each strategy are even more 

linked to activity and quality of maintenance interventions. A series of specific events can 

eventually warn the expert of an imminent breakdown. Our study aims at understanding such 

“signature” thanks to hidden Markov models. On that purpose, two methods for damage level 

estimation of maintained system are proposed to expert. The first one consists in using a non 

parametric and semi-parametric degradation laws (which will be used as references). The second 

one consists in using a markovian approach. All proposals are illustrated on two studies 

corresponding to two real industrial situations (continuous system for food processing and 

moulded products in aluminum alloys for the automotive industry). 
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1 INTRODUCTION 

Industrial processes need to be maintained to prevent breakdown. Some years ago, maintenance activities were 
only deployed to repair process after the problem occurs. Nowadays, in an international market context, 
companies need to improve their productivity. In this context, maintenance strategies are included in reliability 
engineering. This field includes technological aspects, personal organisation, logistic… Different kinds of 
maintenance policy can be applied: preventive or corrective according to manager strategies.  

In case of preventive maintenance, different strategies should be used like planned preventive maintenance or 
condition-based maintenance. Planned actions would be program using feedback from experience which used 
statistical frequencies of defaults. Condition-based maintenance could use specific features extracted from the 
process like vibration sensors, oil analysers… Then according to these indicators, maintenance actions can be 
performed. In many cases, defaults are preceded by specific series of events. Black smoke behind a car informs 
that engine could stop. Dark clouds indicate it will rain… Events which precede default could inform about 
imminence of it.  

Valdez-Florez et al., [44] survey researches on model optimization for repair, replacement, and inspection of 
systems subject to stochastic deterioration. Simeu-Abazi et al., [41] adopted a modular modelling approach, 
based on a cellular decomposition of the system. They use stochastic Petri nets and Markov chains to implement 
various maintenance strategies in complex production workshops. A parametric decision framework (multi-



 2

threshold policy) is proposed to choose sequentially the best maintenance actions and to schedule future 
inspections, using on-line monitoring information on the system deterioration level [17], [25]. Deterioration of 
technical systems can often be classified into discrete states, and transitions between these states can be 
modelled using a Markov process. Instead of using an exponential distribution, it may be more realistic to 
assume that a general probability distribution describes staying time in one of these states [49]. Soro et al., [42] 
proposed a model for evaluating availability, production rate and reliability function of multi-state degraded 
systems subject to minimal repairs and imperfect preventive maintenance. System status is considered to degrade 
with its use. These degradations may decrease system efficiency. It is assumed that the system can consecutively 
degrade into several discrete states, which are characterized by different performance rates, ranging from perfect 
functioning towards complete failure. Nevertheless, global performances are difficult to be controlled because 
system environment changes. Functioning modes are dependent on product flows, and ageing of components 
modifies continuously system characteristics. Thus today, most maintenance strategies are not well adapted to 
these requirements because purely reactive (fixing or replacing equipment after it fails) or time-scheduled [48]. 
As in these studies, we show that a degradation level of a process can be proposed to the expert (maintenance 
manager), from series of “field” events. In this study, we try to learn, without "a priori", this default signature. 
The originality of our work, is to use the maintenance activities as indicators (Fig. 1 and Fig. 2). Works presented 
in this paper take part of condition monitoring systems. Using observations provided by the process, we try to 
generate an availability indicator which can be used by maintenance manager to plan actions dynamically (Fig. 1 
and Fig. 2). According to system availability, preventive maintenance could be scheduled to prevent uncontrolled 
stops of system. 

 

Fig. 1 Work goals 

 

Hidden Markov Models (HMM) have been used, with success, to model sequences of events like, for 
example, in speech recognition. To improve results of these methods, model parameters should be adjusted to 
match event characteristics (states, topology …). In this study, we use the same strategy to learn events which 
can be observed on an industrial process. Model topology is configured to provide an availability explanation to 
our model. When system is started, model will indicate a high level of availability. When system is stopped by 
defaults, model will be in the “off” state (red state: it is too late to prevent default). Our new estimator is 
compared with "classical" degradation laws. These degradation laws are used as references.  

In the next part, we introduce maintenance strategies and our works are located in this context. In part 3, we 
recall some "classical" reliabilities laws. We give more details for Kaplan-Meier law and Cox model, which have 
been implemented. In part 4, our strategy to use HMM for availability indicator implementation is presented. In 
the last part, we compare results of "classical" degradation laws with our HMM availability indicator on two 
studies: a continuous food process and an aluminum alloys process for the automotive industry. 
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2 MAINTENANCE POLICIES 

Maintenance strategy is a part of reliability engineering. Reliability is the ability of a system to perform its goals 
or functions. This can include technology, strategy, finance and humans [18]. Others explanations of 
maintenance should be find in [24] and [43]. In an international market context, maintenance strategies need to 
be improved with production tools being even more complex. Between the 40's, maintenance has grown between 
corrective actions towards predictive system which try to prevent failures [36].  

Maintenance is defined by norm N. F. E. N. 13-306 [1]. It can be detailed as a list of actions which enables to a 
system or a service to perform its goals. In [39] authors split maintenance into two kinds of activities: technical 
activities and management activities. More details can be found in [50]. 

Fig. 2. shows different kinds of maintenance policies. This figure shows two keywords of maintenance 
definition: preventive and corrective. A review of different maintenance strategies can be found in [10] and [22]. 
In some specific cases, maintenance policy could be imposed, like it is the case for nuclear plant in France. 

 

 

Fig. 2 Maintenance policies 

 

We do not give details about corrective maintenance. The aim of the proposed method is to prevent failure to 
occur. It could be used to adjust preventive maintenance. This kind of maintenance can be applied by different 
ways and it is composed of: 

- various tasks on systems, monitoring, calibration, … It also includes lubrication and oil changes in order 
to reduce friction, wear, prevent galling and save energy. 

- Auto-maintenance tasks by the operator. This kind of actions is included in Total Productive Maintenance 
(TPM) where machine operator performs much, and sometimes all, of routine maintenance tasks. 

- Planned maintenance which is scheduled according to time or cycle. Visual inspection can be made or 
subsystems can be dismantled to inspect themes with accuracy. Tasks like calibration, cleaning, 
lubrication … can be planned according to lifetime duration of parts. 

- Systematic replacement based on time or cycles. This supposes an accurate counter of time or cycles and 
correct information about component lifetime. These parts should be systematically replaced.  
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- Condition-based maintenance uses particular information provided by sensors with, if necessary, specific 
signal processing. In this case, failure can be detected before it occurs using feedback from experience. 

The replacement of components for which failure is thought to be imminent, can be performed when the 
component is strongly damaged according to different use criteria, or when it has reached a critical condition. 
The success of this approach depends on the ability to predict the remaining life of the component and when to 
perform the replacement [9], [14]. 

3 RELIABILITY STUDY OF MAINTAIN PROCESS 

Reliability is often used by maintenance expert. In this section, some usual lifetime laws are presented. These 
laws can be used as well for medical studies as for industrial context. Main properties of these laws (probability 
density, reliability functions, failure rate) are defined and applied in reliability applications [27], [12]. 
Commonly, parametric models and nonparametric models based on proportional risk are used [11]. Different 
classical laws of degradations exist: exponential law, normal law (Laplace-Gauss), Log-normal law (or Galton 
law), Weibull. We do not present these laws in this paper. 

Efficient maintenance is related to a pertinent estimation of components lifetime. This estimation is based on 
experience feedback. Lifetime study of each system can be split into two options which need a great analysis of 
this experience feedback:  

- System reliability is its ability to perform what it has to do in its usual conditions during a given time [3], 
[2]. Reliability expert try to plan new maintenance strategy using reliability evolution.  

- Durability is the ability for a system to perform its goals, given using and maintaining conditions, until a 
limit state is reached [1]. Durability expert tasks should consist in estimation of remaining lifetime of 
working systems. This kind of study needs to take into account using conditions, parts replacement, to 
estimate system lifetime.  

3.1 Kaplan-Meier law 

The Kaplan-Meier method, used in cross-disciplinary field ([16], [19]) provides an estimation of survival 

functions, with not necessarily regular time intervals, instead of actuarial tables
1
. Survival curves can be used to 

analyse evolution of populations over the time. These techniques (also called product limit estimators) are used 

for analysis of survival data, whether for persons (e.g. cancer) or products (wear tools resistance). The first type 

of information is called "event data", while the second is called "censored data". 

S(t) is the survival function. According to datas (y1,…yn), we can provide unbiased empirical Kaplan-Meier 

estimator: 

{ }1,..., ,
( )

1

i

i

n in
i n y t

n i
S t

n i

δ

≠
∈ ≤

− 
=  − + 

Π                               (1) 

Where δi = 1 if yi is an uncensored data (0 if censored data). Lo [34] and Bitouzé [13] propose a definition of this 

estimator for a measure of concentration of according S(t) to real distribution, in a non-asymptotic context. 

3.2 Cox model  

Cox regression model is an useful method to study impact of variables on survival time of a process [32], of 

patients [15] (medical study)... It is applied to survival data, i.e., time variables, censored variables and 

                                                           
1 These methods combine observations by random or predefined intervals. It enables to estimate and to obtain a hazard rate representation. 
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explanatory variables. This model is based on a maximum likelihood estimation, developed by [23]. Principle of 

Cox model is to link event happening to explanatory variables. For example, in medical field, we try to assess 

impact of a pre-treatment on the healing time of a patient. Cox model can be compared with classical regression 

models: events (modelled by date) should be linked with explanatory variables. Specificity of this approach is its 

ability to assess relationship between hazard and explanatory variables without assumptions on the shape of 

baseline hazard function. It contains real parameters and unknown functions (hence appearance of semi-

parametric methods that take into account this double aspect). It is based on the proportional hazards assumption 

(instantaneous risk of event happening can be written as the product of a function that depends on time and a 

function that depends only on specimen features). It can be applied to any situation where event duration is 

studied. Cox is based on the assumption of proportional hazards. In proportional hazard models, the 

instantaneous risk is written: 

0
0

1
( | , ) lim ( | , ) ( ) ( )

dt
h t z P t T t t T t Z z t f z

t
βθ α

→
= < ≤ + ∆ > = =

∆
                   (2) 

With: 
1( ,... )TpZ Z Z= : a vector of covariates, 0α : basis risk, unknown, independent of Z, β : the regression 

parameter, unknown, ( )f zβ : relative risk, independent of time. 

For example: risk ratio for two individuals is independent of time. Regressors 1,... pZ Z , quantitative or 

qualitative are called prognostic factors (age, sex, treatment, ...). In the Cox model, the instantaneous risk for an 

individual i is written: 

0 1 ,1 , 0( | ) ( )exp( ..., ) ( )exp( )T

i i p i p ih t Z t Z Z t Zα β β α β= + =                    (3) 

0( )tα  is any function which depends only on time (basis risk is unknown and independent of iZ ), and 1β , 

2β ,… pβ  are constants with: 0( )tα , 1( ,... )Tpβ β β=  is the unknown regression parameter. 

With: ,1 ,( ,... )i i i pZ Z Z= : a vector components. 0S  is the basic survival function associated with 0α . In this case, 

we have the following relationship: [ ]0( | ) ( ) exp( )T

i iS t Z S t Zβ= . This provides an estimate of S  knowing β  

the estimation vector. To estimate the components of the vector β  from an ordered sample ( (1) ( ),... ny y ), we 

calculate the partial likelihood function of Cox (if no censored data):  
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Note: 

- exp(βi) relative rate of subjects for which Xj=1 compared to those for which Xj = 0,  

- exp(βi) >1: harmful effect ; exp(βi) =1: no effect ; exp(βi) <1: positive effect. 

 

4. MODELS OF RELIABILITY BASED ON MAINTENANCE  

Failure of equipment can be characterized by a rate (λ) known as failure rate. This rate is also called the failure 
rate, hazard rate or mortality rate. It is defined as the conditional probability that equipment fails between time t 

and t + ∆t knowing that it has survived to time t. It can also be defined as components proportion that has 
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survived until time t. It also represents happening failure rate [5], [29]. Variable "time" could be considered as a 

unit of use. Indeed, in case of some devices, distance travelled, rounds number, requests number... could be 

considered as “time”. 

0

1 ( ) ( )
( ) lim

( )t

R t R t t
t

t R t
λ

∆ →

 − + ∆
=  ∆ 

                              (5) 

With: 

- R(t): number of components that have survived until time t, 

- R(t+∆t): number of components that have survived until time t+∆t. 

This law is based on the fact that evolution of intensity function λ(t) is determined by efficiency of maintenance 
operations. In practice, a maintenance activity is labelled: 

- Minimal, if system state after repair is As Bad As Old: ABAO (λ(t) = λt; ∀t≥0), (Fig. 3), 

- Perfect, if maintenance returns the system As Good As New: AGAN  

( )
tt Nt Tλ λ
−

= −                                         (6) 

with TNt- the left limit of stochastic process N(t)), (Fig. 3). This kind of problem, firstly studied by [28], 

has been the subject of many developments including several variants, [26], [37], [38], 

- Imperfect (Proportional Age Reducing model). In this kind of works, Doyen et al., [26] propose different 

alternatives to build stochastic models of the process of failures and repairs of various systems. A virtual 

age model is characterized by a sequence of positive random variables { }
0i i

A A
≥

= (ages staff) as 

0 0A = . These models are based on assumption that after lot of maintenance, system behaves as a new 

system that would operate for a period iA  without fail. iA is virtual age of the system. 

1 1( | ,..., , ) ( | , )i i i i i iP X x X X A P Y A x Y A A+ > = > + >                      (7) 

Y is a random variable equally distributed as X1. 

From this relationship, model intensity can de written as: 

( , ) ( )
t tt N NN A t T Aλ λ
− −

= − +                                   (8) 

t is actual age of the system and virtual age, ( )
t tN NV t t T A
− −

= − +  is related to maintenance 

interventions. If we compare equations (6), (7) and (8), we find that ABAO model corresponds to 

i iA T=  and AGAN model corresponds to 0iA = . Baxter et al., [8] propose a simple model to 

characterize actual age. They assume that effect of the n
th
 maintenance is to reduce the virtual age just 

before failure, 1i iA X− +  by a proportional amount of time elapsed since previous maintenance i iB X , 

with [ ]0,1iB ∈  (equation (9)). 

1 (1 )i i i iA A B X−= + −                                      (9) 

In this relationship, we can deduce easily the recurrence relation: 
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1

(1 )
i

i j j

j

A B X
=

= −∑                                      (10) 

Related density function on this model is: 

1

( , ) (1 )
t

t

N

t N j j

j

N B t T B Xλ λ
−

−
=

 
= − + − 

 
∑                           (11) 

The most simple model of Kijima [33] is obtained assuming that efficiency of maintenance Bi is 

deterministic, constant and equal to ρ, called improvement factor. Taking into account this assumption, 
the intensity function becomes: 

( )
tt Nt Tλ λ ρ
−

= −                                     (12) 

Depending on value of ρ, we can model any kind of maintenance: 

- 1ρ = : maintenance is perfect (AGAN), 

- ] [0,1ρ ∈ : maintenance is effective, 

- 0ρ = : maintenance is minimal (ABAO), 

- 0ρ < : maintenance is harmful. 

 

Fig. 3 Intensity functions for ABAO and AGAN maintenance [6] 

5 DECISION SUPPORT BASED ON HIDDEN MARKOV MODELS 

Stochastic models are representations of dynamic systems based on probabilities. Stochastic processes were 
firstly developped in the early 20th century by a Russian mathematician, Andrei Andreyevich Markov. His 
statistical study of language has led to the markovian hypothesis, which can be summarized as follows: "Future 
evolution of a system only depends on its present state". This hypothesis implies that current state of a system 
contains all information provided by its past. Therefore, it is a very important assumption. In practice, this 
condition is rarely satisfied. However, approximation by Markovian models could provide good modelling 
results (Hopp [30] proposes a maintenance model under Markovian deterioration is developed in which 
maintenance and replacement actions are permitted and states are completely observable). Meier-Hirmer [35] 
proposes a model used for the maintenance of railway tracks. In this paper, semi-regeneration properties at the 
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inspection times and associated Markov renewal techniques are used in order to compute the long-term mean 
costs. 

Risk analysis of dynamical systems by classical markovian approaches considers only two states (On / Failure 
(Stop)). Between perfect working condition and complete failure state, industrial systems generally have a large 
set of degraded states in which system continues to provide service, even if it does not produce fully. "These 
degraded statements need to be taken into account to properly assess service level of industrial systems and this 
is especially true with regard to production systems [31]". 

Hypothesis: events preceding a crash are often recurrent. Specific series of events should inform about the next 
failure. Some examples can illustrate this hypothesis. 

- In mechanical systems, noises, vibrations precede failure. Loss of performances reflects failures or 
technical defaults, 

- In computers, suspect pointer movements, loss of performances, application malfunctions like web 
browser may reflect virus presence on computer … 

Our approach tries to understand “this signature” using HMM. Hidden process will match system state (or 
subsystem state) and observations will be observable part of processes (Fig. 4). Our works (Vrignat et al., 2010 
([47])) show that it is possible to model degradation levels of a "continuous" process. Hidden process will fit to 
system or subsystem states (Run, Degradation level 1, ..., Degradation level N, failure) and observations will be 
information which can be collected on the system (Fig. 4). 

 

Fig. 4 Visible and hidden layers (system states) 

 

5.1 HMM Approach 

The aim of this paper is not to present exhaustively Hidden Markov Model. For readers interested in more 

details, we recommend to read papers [40] (which is already a good tutorial) and [4] which presents HMM 

general problems. In this paper, we use the same notation for models. A model ( , , )A Bλ = Π  is described by three 

matrices: 

- { }
1

( ) ; 1
N

ij j i ij

j

A a P S S a
=

= = =∑  corresponding to transition probabilities between hidden states, 

- { }
1

( ) ( ) ; ( ) 1
N

i T T i i j

j

B b o P o S b o
=

= = =∑   corresponding to probabilities of observations considering 

states, 

- { }
1

( ) ; 1
N

i i i
i

P Sπ π
=

Π = = =∑   corresponding to initial state probabilities. 
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Learning a hidden Markov model consist in estimating the parameter vector λ on the basis of a set of observation 
sequences. The learning algorithm most commonly used is the Baum-Welch algorithm [7]. This algorithm is 

derived from the EM algorithm (Expectation-Maximization). The Baum-Welch algorithm solves the problem of 

learning with the criterion of Maximum Likelihood. For a sequence of observations o , this criterion is to find 

the HMM λ* which has the highest probability of generating the sequence o  that is to say, maximizing 
P(O=o|λ). The Baum-Welch algorithm is a procedure which iteratively re-estimate matrices A, B and Π  from an 
initial HMM. The Baum-Welch algorithm provides a local optimum of the likelihood function. By applying this 

learning with different initial models, it is possible to obtain either a global optimum or a near optimal model for 

the considered criterion. 

Among all the criteria used for learning an HMM, the criterion of segmental K-means is different from others. 

For this criterion, we seek to maximize the probability P(O,S=Q*|λ), with Q* corresponding to the sequence of 

hidden states that most likely generates the sequence as calculated by the Viterbi algorithm [45]. The segmental 

k-means algorithm can adjust the model parameters iteratively from an initial model. Just as the Baum-Welch 

algorithm, this algorithm could provide a local optimum result.  

The two previous modes of learning have properties to preserve initial structure of models. When initial model 

probability is zero then the corresponding probability is zero in the learnt model. It is however important to note 

that a non-zero probability in the initial model may become zero in the learnt model. This phenomenon often 

occurs when certain symbols are not observable in learning sequences. A single occurrence of a “missing” 

symbol in a new sequence will cause non-recognition by the HMM: probability will be zero. To handle this 

problem, we introduce a smoothing step after the learning step. For each probability, not forced to zero by the 

model structure an epsilon is added. Constraints of stochastic matrices are obtained by normalizing sums to 1. 

This smoothing introduces a distortion of optimal learnt model. We therefore distinguish, in the following, non-

smoothed and smoothed learning. 

Once the model is characterized either by the Baum-Welch algorithm or the segmental k-means algorithm, with 

or without smoothing, we seek to estimate, the most likely sequence of statements on new observations 

sequences. 

For the learning’s with the Baum-Welch algorithm, we estimate most probable states at a given time using 

Forward variables [40]. Let αt (j) be the probability of generating the observation sequence O = {o1, o2,…,ot} and 

being in state qt at time t, that is to say: 1 2( ) ( , ... , )t t t jj P o o o Q sα λ= = . The most probable state at time t is 

defined by ( )1..kj= targmax α j . 

For learnings with the segmental k-means, we consider the most probable state at a given time using the latest 

state of the optimal path given by Viterbi algorithm [45]. Considering the previous notation, the most probable 

state is defined by: ( ) ( )1 1, 1 1 1
1, 1

... ... /...t t t t j tq
t

δ j = max P Q = q ,Q = q ,Q = S ,o , ,o λ,q − −
−

. 

5.2 Choice of topology 

Before describing results of our tests, we need to argue the choice of topologies: How many significant and 
interpretable levels of vigilance can be chosen? In several fields, customs and practices use four vigilance levels: 

- prevention policy of flood risk [20], anti-terrorist security plan [21], deterioration and maintenance 
models for components in hydropower plants [49], … 

For example, for flood risk [20], four vigilance levels are used: 

- Green: no particular vigilance is required, 
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- Yellow: be attentive if practising activities exposed to meteorological risk, keep informed about weather 
development, 

- Orange: be very vigilant; dangerous meteorological phenomena have been forecast, 

- Red: Absolute vigilance is required; dangerous and exceptionally intense meteorological phenomena 
have been forecast. 

Only three states model cannot be used. Which sense can be given at the median state? Glass is half full or half 

empty? We used an oriented topology (Fig. 5) which does not enable to jump one state from right to left (from 

high level of availability to lower). We need to go through all states (S2 and S3) to go from S4 state (system OK) 

to S1 state (System stopped). Symbols used are explained in introduction of Section 6. So we need at least four 

observations to go from S4 to S1. These are the minimum number of events to detect failure. We keep in mind, 

the sense we wanted to give to different states: S4 "everything is going well, " S3 "it can go, " S2 "things are 

bad, beware, " S1 "too late". With more states, we reduce sensitivity of our indicator. Then we choose a four 

states model. Training of our HMM model (Fig. 5) consists in estimating model parameters with a set of 

observations sequences. 

 

Fig. 5 Oriented topology with 4 states 

6 CASE STUDIES 

6.1 Industrial baker 

In this part, we present a continuous process of bread production (Fig. 6). Industrial partner, which provide us 
these data, chose this part of the process because it was the most sensitive part of this production line. This plant 
works during all year without interruption with teams organized in shift work. For each team, there are available 
and informed databases in accordance with operational maintenance activities describes for the organization of 
the continuous process (Table 1). All details and simulations are presented in [46]. 

 

Fig. 6 Bakery continuous process 
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Entire production line can be stopped by a failure occurring on one of the subsystems of the line. Such 
situations could involve a loss of several production hours (some hundred kg of bakery products). To prevent 
such cases, preventive maintenance is scheduled. We have access to about two years of recording - from January 
2005 to March 2007 - which represent about a thousand of events (Table 1). Model was trained using the “2005-
2006” recording database (611 production records) while data of the year 2007 are used for our different tests. 

The chosen sample time was the day (according to internal maintenance policy). To complete the data, a “Not” 

code stacking interventions was added when maintenance department was not requested (Fig. 7 (b)). Fig. 7 (a) 

lists different events that could be observed on recordings. Each of them is explained in the table. Some events 

can be grouped: maintenance actions (Pro-Adj, Pre, Pre-visit, Dis and Mak); observing actions (Obs, Ano, Sec); 

repairing action (Rep which means system is stopped); no action (Not). 

Table 1 Example of logging events 

 

 

Table 2 is a sample of information collected during maintenance activities on the selected period (full 

uncensored data). From these data, we conducted a descriptive statistical study on subsystem. Definitions of 

headers of Table 2 are: CASE: repair situations, D_Not: production date OK, D_Rep: onset date of “Repair” 

situation, J_Rep: situation between two repairs (day), T_xxx (time spent in the activity in minutes) with xxx: 

Rep, Pro_Adj, Ano, Obs, Pre, Sec, Dis, Mak, Pre-visit, J_Not: time spent in Nothing (day), Time: month in year 

(month). 

Table 2 Review of information related to maintenance activities in database 

 

In our study of the system (sections 6.3 and 6.4), we consider situations where the volumetric balance was being 

repaired (no censure is adopted in data processing). After a descriptive analysis of the volumetric balance 

lifetimes, we will study the nonparametric and semi-parametric estimates of its reliability. Only operating 

periods were taken into account to study balance lifetime. Average duration between two “Repair” situations 

(system being stopped) estimated on database is 5.38 days. It includes, between two “Repair” situations, all other 

possible operational maintenance activities respecting internal symbolic coding. (Pro_Adj, Ano, Obs, Pre, Sec … 

(Fig. 7(a)). 
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Fig. 7 (a): Symbolic coding of observations. (b): coding principle of observations sequence with “Not” insertion 

In order to provide a daily evaluation by our indicator, we insert a specific symbol Not (Nothing to report) every 

day when no event is recorded (Fig. 7 (b)). If more than one symbol is observed during a day, it means that 

estimated state can change several times in the same day and consequently it increases sensibility of our 

indicator. 

6.2 Foundry: new approach including Total Productive Maintenance framework 

Fig. 8 shows this new approach including TPM activities. 

 

 

Fig. 8 Approach including TPM 

 

The French industrial group is specialized in moulded products in aluminium alloys. Studied process, is a part of 

aluminium spares parts manufacturing (Fig. 9 (a) and (b)). 
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Fig. 9 Process description 

 

The process involves filling piece with low pressure system. Operating principle of low pressure machine is 

based on four main elements:  

- airtight oven to be under pressure, 

- supply system between oven and mould, 

- system controlling and supporting mould elements, 

- mould. 

Metal casting principle under low pressure consists in applying low pressure from 0.2 to 2 bar in airtight oven. 

This pressure can pull the liquid metal up to the mould. Liquid metal gets into link tubes before filling mould. 

Metal pressure extracts air out of the mould. Main advantage of low pressure process is that the filling method, 

which in a slow and down to up process, preserves alloy quality. Solidification naturally spreads from cold spots 

to hot zones. When the part is solidified, pressure is released from the oven and metal which remained liquid 

returns in the oven, thus separating part from supply system. This process is maintained by a maintenance 

service and by delegation of small tasks performed by operators according to TPM framework. This system 

works during all day teams organized in shift work. Our first task was to create database from all operator 

actions which were recorded on paper.  

Table 3 Database samples 

 

 

These datas, collected over six months, represent 2218 production records (Table 3). New codification is 

represented in Fig. 10 (a). Table 3 is a sample of informations collected during maintenance activities on the 

selected period (full uncensored data). From these datas, we conducted a descriptive statistical study. Definitions 
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of Table 4 headers are: CASE: repair situations, D_Not: production date OK, D_Rep: onset date of a “Repair” 

situation, J_Rep: situation between two repairs (day), T_xxx (time spent in the activity in minutes) with xxx: 

Rep, LC, CL,…No, Time: month in year (month). 

Table 4 Review of informations relating to maintenance activities in the database 

 

 

In our study of lifetime system (sections 6.3 and 6.4), we consider situations where low pressure press was 

repaired (data are not censored). After a descriptive analysis of low pressure press lifetimes, we will study 

nonparametric and semi-parametric estimations of its reliability. Only operating periods were taken into account 

to study low pressure press. Average duration between two “Repair” situations (system is stopped) calculated on 

database is 3.05 days. It includes, between two “Repair” situations all other possible activities of operational 

maintenance respecting internal symbolic coding (LC, CL, BLC …, (Fig. 10 (a)).  

Like to the first process, symbol “Not” (Nothing to report) and No (No production) are inserted at least each 

eight hours when no event is recorded (Fig. 10 (b)). This sampling provides to estimate changes at least every 

eight hours or more times if more symbols are observed. 

 

Fig. 10 (a): Symbolic coding of observations. (b): coding principle of observations sequence with “Not” and “no” insertion  

6.3 Kaplan-Meier law applied on systems 

Fig. 11 gives cumulative survival function with a confidence coefficient interval set at 95%. With this approach, 

the expert has evidence which indicates that degradation of system is fast (Fig. 11). For bakery continuous 

process studied, we find that after four days without breakdown, failure rate is up to 50% (median estimation 

Fig. 11 (a)).  
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In the case of low pressure press, we see that after two days without breakdown, failure rate is up to 53% chance 

(median estimation Fig. 11 (b)). Low pressure press process deteriorates faster than bakery continuous process 

previously studied.  

 

Fig. 11 Survival Functions by Kaplan-Meier 

6.4 Cox law applied on systems 

Proposed values in column "value" are numerical estimations of Cox model parameters. 2

rP χ>  is a p-value for 

testing the null hypothesis H0 (parameter = 0). If this p-value is smaller than 0.05 (less than 1 in 20 chance of 

being wrong), then parameter will be significantly different from 0. This test ( 2

r
P χ> ) is the threshold to reject 

the null hypothesis H0.  

This value is defined in one hand by the Wald statistic (computed for each variable) and on the other hand by the 

critical value of Khi². Values exp(βi) are placed in column "Report risk, Report risk lower bound and Upper 

bound”. Table 5 (a) shows that only variable T_SEC has an impact on survival time of process (time between 

two situations of repair). Coefficient exp(βi), for the Report risk Upper bound (95%) is the only one <1 

associated with term ( 2

r
P χ> ) < 0,0001. We can conclude that more time spent in maintenance activity linked to 

security (SEC Code) will be "significant" for longer survival time. 

According to values exp(βi)  of Table 5 (b), there is no event (maintenance activities) that affects survival 
time of system. Unlike study on volumetric balance, the expert does not have additional elements to help him.  

Table 5 Regression coefficients of the proportional hazards: Cox model 
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Fig. 12 describes cumulative survival function which takes into account explanatory variables. We can show that 

results of Cox tests provide more pessimistic values than survival function of Kaplan-Meier tests. 

 

 

Fig. 12 Survival function estimator by Cox 

 

Table 6 gives an overview of failure rate evolution according to time. From this first approach, the expert can 

adjust its level of vigilance and decide whether or not maintenance actions based on its return from experience 

and probability of failure between the last repair situations. Volumetric balance deteriorates slowly than BP 

Wheel. 

Table 6 Failure probability for the two industrial systems 

 
 
6.5 First conclusion 

We show that Kaplan-Meier model and Cox model (two nonparametric and semi-parametric statistical models) 

can provide help to the expert with a lot of elements. Without “a priori” information on the shape of the survival 

function, we first estimated the nonparametric model of Kaplan-Meier. Then, to introduce exogenous variables 

into the model, we studied a semi-parametric model: Cox. These tests show that, into two industrial case studies 

conducted, these systems needed to be "highly maintained". 

However, models of Kaplan-Meier and Cox propose to the expert only two levels to define the system state (Fig. 

13). There is no possible additional state and the main indicator is time that happens outside of any possible 

correlations. 



 17

We show, in case of volumetric balance, that a correlation between time spent in the activity "SEC" and survival 

time of the process exists. For the volumetric balance, with planning of maintenance activities being carried out 

by the day, help is provided to the expert for scheduling dynamically maintenance activities. 

In case of BP Wheel, unscheduled interventions come "on the fly" through introduction of TPM. An operator can 

decide to perform tasks for which he is in charge. 

Several problems arise: 

- Is it possible to add intermediate states between “Stop” and ”OK” (Fig. 13)? 

- Is it then possible to prevent failure? 

- How to choose the good frequency, the good sampling of collected information to estimate level of 

process degradation? 

- Could all the collected information define a possible hidden state on the process? 

We present in section 6.6, details of our approach using HMM. We will answer to issues outlined above. The 

two industrial cases, already presented, will support our various tests. 

 

 

Fig. 13 Models of Kaplan-Meier and Cox associated with two states system 

 

6.6 Hidden Markov Models applied on systems 

Fig. 14 shows organization of the various tests adopted with four different algorithms. Sampling selected for the 

volumetric balance is the day (daily insertion of observations). Sampling selected for the BP Wheel is eight 

hours (shift work). 

 

 

Fig. 14 Methods adopted for different tests 
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Our goal is to provide a S2 state which has a “high sense” for preventive maintenance (do not detect default, 

neither too late nor too early which could provide unnecessary or earlier interventions). Fig. 15 (a) and (b) shows 

that HMM can provide this kind of detection for S2 state if tools used are correctly chosen. In this figure 

(Prediction with Forward Variables Smoothed Probability Model / Baum-Welch algorithm), we show, for 

example, that our approach is efficient considering daily inclusion. S2 state is “on” only 2 days before default 

occurs. In the same context, with Viterbi algorithm smoothed, we can see that S2 state is on too early. This 

cannot provide correct clues for optimal planning of maintenance operations. Table 7 and Table 8 summarize 

results of tests with both algorithms used. In case of volumetric balance, after 3 days, failure is detected in 85.7% 

of cases (Table 7 (a)). This statistical information, being only one alone indicator, it can not meet requirements 

of the expert. 

 

 

Fig. 15 Sample tests 

Table 7 Failure probability for S2 state “on” - Volumetric balance (2007 database) 
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Table 8 Failure probability for S2 state “on” - BP Wheel (2008 database) 

 
 

Explanation of Table 7 and Table 8: Proposed model always provides S1 state when a default occurs, but it is too 

late, because default occurs … So to evaluate our method, we sum up occurrences of “S2 state at x days” before 

default occurs. For example, in Table 8 with forward variables at +2 days, 71,4% mean that the probability that a 

default occurs in two days is 71,4%. This supposes that “S2 state” always precedes “S1 state”. 

In one hand, we show with these tables that learning with segmental k-means algorithm and testing with Viterbi 

algorithm, is not efficient to give good failure prediction (in both cases of volumetric balance and BP Wheel). S2 

state is detected too early which cannot provide our goal. 

On the other hand, Forward variables with Baum-Welch algorithm provide good results for default predictions. 

We can provide efficient predictions for S2 state, under statistical information (5.38 days). Fig. 16 (a) and (b) 

show additional information that is available to the expert. Once the S2 state is detected, the expert should react. 

 

 

Fig. 16 Triggering of “S2 state” 

7 CONCLUSION AND FUTURE WORKS 

In this paper, after an overview of different maintenance approaches, we presented a nonparametric and semi-

parametric evaluation of system state: Kaplan-Meier and Cox. Our approach based on HMM was then 

developed. Tests of these different methods were performed onto two real situations: volumetric balance and BP 

Wheel. Our approach shows that all results provided by this study could provide some help to expert decisions. 

Results show that our "decision support" provides a good estimation of repair probability when events 

(observations) are available.  

Without events (observations) HMM method is less useful, then nonparametric and semi parametric laws could 

be used on foreground (Fig. 17). We also show that the expert with such a tool can try to qualify maintenance 

activities. Tests were carried out offline, so we cannot assess the effects of scheduling dynamically maintenance 
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activities. We will soon sign a contract with the foundry industrial group, for the On line implementation of 

these methods. Before considering implementation in real-time situation, we will explore possibilities of process 

simulation for which we could apply dynamic scheduling of maintenance.  

Initial analysis of events provided by manufacturers, allowed them to consolidate their knowledge onto effects of 

specific maintenance activities (indicator can provide, in some cases, information about maintenance activities 

"quality"). For example, is a maintenance activity efficient or not or neutral for the system? 

In future works, we wish to evaluate performances of the method on simulated data and perfectly controlled. 

This assessment will better evaluate performances of this availability indicator. The authors would like to thank 

the anonymous reviewers for their helpful comments and advices which contribute much to the improvements of 

this paper. 

 

 

Fig. 17 Kaplan-Meier & Cox vs HMM 
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