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Abstract The proximal method is a standard regularization approach in optimiza-

tion. Practical implementations of this algorithm require (i) an algorithm to compute

the proximal point, (ii) a rule to stop this algorithm, (iii) an update formula for the

proximal parameter. In this work we focus on (ii), when smoothness is present – so

that Newton-like methods can be used for (i): we aim at giving adequate stopping rules

to reach overall efficiency of the method.

Roughly speaking, usual rules consist in stopping inner iterations when the current

iterate is close to the proximal point. By contrast, we use the standard paradigm of

numerical optimization: the basis for our stopping test is a “sufficient” decrease of the

objective function, namely a fraction of the ideal decrease. We establish convergence of

the algorithm thus obtained and we illustrate it on some ill-conditioned functions. The

experiments show that combining a standard smooth optimization algorithm with the

proposed inexact proximal scheme improves numerical behaviour for those problems.
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1 Introduction, motivations, ideas

1.1 Proximal regularization, inner iterations

We consider the minimization problem

inf f = inf
x∈Rn

f(x) , (1.1)

where f : R
n → R is continuously differentiable. In this standard situation of opti-

mization, Newton-like algorithms (as e.g. quasi-Newton [DS83] or generalized Newton

[QS93]) are suitable to solve efficiently problem (1.1); but in case of ill-conditioning,

such methods may run into difficulties, and then call for regularization.
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A possible approach in this situation is the proximal algorithm, whose idea is to

solve at each iteration k

inf
y∈Rn

f̃k(y) := f(y) +
1

2tk
‖y − xk‖2 (1.2)

and obtain the associated proximal point

pk := argmin
y∈Rn

f̃k(y) .

Here tk > 0 is a regularization parameter varying with k; ‖ · ‖ is the Euclidean norm

associated to some inner product 〈·, ·〉 in R
n. When f is moreover convex, the proximal

point is well-defined for any xk.

Originally presented in [BKL66, Chap. 5] for a quadratic objective f , this proximal

algorithm consists in solving (1.1) via the iteration xk+1 = pk. Naturally, the proximal

point is easily computed when f is quadratic convex: it is the unique solution of a linear

system, well-conditioned by construction; see [MR09] among others for a motivation.

In the general convex case [Mar70,Roc76], however, pk cannot be computed explicitly:

a subalgorithm is needed to solve (1.2), generating iterates yℓ supposed to converge

to pk. In the smooth case, some variant of Newton is advocated for this; the above-

mentioned difficulties should no longer occur, to the extent that f̃k in (1.2) is now

well-conditioned. Nevertheless, the question then arises of the internal stopping test :

for which ℓ can we set xk+1 = yℓ in order to proceed with the outer iteration?

Several papers consider this question of inner stopping criteria for proximal meth-

ods, in various contexts:

– smooth optimization (see [HZ08] which in turn points to many references),

– nonsmooth optimization (see in particular [CL93,LS97])

– operator theory (see an overview in the introduction of [SS01]).

The seminal work of T. Rocakfellar [Roc76] also considered approximations of

proximal points. Following this paper, most of the existing stopping tests directly force

yℓ to be close to pk: some parameter εk tending to 0 is explicitly used at each outer

iteration and an asymptotic property of the type ‖yℓ − pk‖ = O(εk) is enforced. In

fact, assume f to be convex; then f̃k in (1.1) is strongly convex and we can write for

each y

f̃k(y) > f̃k(pk) > f̃k(y) + 〈∇f̃k(y), pk − y〉 +
1

2tk
‖pk − y‖2 .

This opens the way to computable bounds on ‖y − pk‖, and thus to a control of the

error within εk. For example, the above inequality yields ‖pk − y‖ 6 2tk‖∇f̃k(y)‖; the

inner algorithm can therefore be stopped when 2tk‖∇f̃k(yℓ)‖ 6 εk.

This type of approach, however, is not fully constructive: explicit rules for the

management of (εk) should be given which, for overall efficiency, should be given “on

line”. In other words, the outer parameter εk should not be fixed beforehand at each k

but should depend on the inner iterate yℓ.

1.2 Decreasing the true objective value

Admittedly, the property xk+1 − pk → 0 is desirable to preserve the spirit of the

proximal algorithm. Nevertheless, keeping in mind that our objective is to solve (1.1),
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the property xk+1 ≃ pk appears as secondary: what is important and relevant is to

decrease the actual objective function f . Stopping tests forcing f(xk) − f(xk+1) to be

large are therefore more attractive; they are based on the observation that

f(xk) − f(pk) >
1

2tk
‖pk − xk‖2 (1.3)

because the proximal point improves the objective function f̃k. By continuity, iter-

ates yℓ produced by a subalgorithm solving (1.2) will eventually satisfy relaxed versions

of (1.3).

An immediate idea is to stop the subalgorithm and set xk+1 = yℓ when

f(xk) − f(yℓ) >
m1

2tk
‖yℓ − xk‖2 , (1.4)

0 < m1 < 1 being a fixed tolerance; say m1 = 0.1. As explained for example in [CL93],

this is the approach used by bundle methods for a convex nonsmooth function f .

However, the descent test (1.4) is suitable only in this particular situation, where yℓ is

generated by a very special cutting-plane algorithm. In general, both sides of (1.4) are

not “homogeneous”, that is, not expressed in the same units: the righthand side does

not measure differences of objective function.

To obviate this inconsistency, we consider the optimality condition of (1.2)

xk − pk

tk
= ∇f(pk). (1.5)

It allows us to replace ‖pk − xk‖2 in (1.3) by tk‖∇f(pk)‖ ‖pk − xk‖. Reproducing the

above reasoning, we may replace (1.4) by

f(xk) − f(yℓ) >
m1

2
‖∇f(yℓ)‖ ‖xk − yℓ‖, (1.6)

which at least is homogeneous. It is of course satisfied by yℓ = pk: any algorithm to

solve (1.2) will eventually pass this test.

Indeed, (1.6) makes good sense; it is strongly related to standard techniques of nu-

merical optimization. First, it looks like the well-accepted Armijo rule [Arm66] of stan-

dard line-searches. Second, consider the Levenberg-Marquardt technique for smooth

minimization (which goes back to [Lev44] and [Mar63]): at the kth iteration, it solves

a problem of the form

min
y

fk(y) +
1

2tk
‖y − xk‖2 , (1.7)

where fk is a suitable (quadratic) approximation of f near xk; depending on the test

f(xk) − f(y) > m1〈∇f(xk), y − xk〉 , (1.8)

xk is then moved to y (and/or tk is updated). We now observe that an iteration of

Levenberg-Marquard is just the first inner iteration of the subalgorithm solving (1.2)

when the same quadratic approximation fk is used in both cases. Then (1.8) is not

much different from (1.6). Up to this difference, we can therefore say that our pro-

posal generalizes Levenberg-Marquardt by allowing several iterations before moving

the iterate xk and/or updating the regularization coefficient tk.
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In addition, Levenberg-Marquardt is just a variant of trust region (see the excellent

review [Mor83]); in fact, (1.7) amounts to solving



min fk(y)

‖y − xk‖ 6 ∆xk

for a suitable trust-region size ∆xk. The above discussion therefore applies to trust

region as well: our approach brings it more flexibility, allowing independent updates of

xk, ∆xk, fk.

Our proposal could even be made more similar to the classical ones if (1.6) would

be replaced by

f(xk) − f(yℓ) > m1〈g, yℓ − xk〉 ,

with g = ∇f(xk) or g = −∇f(yℓ). This is dangerous for a nonconvex f , though: it

does not imply f(xk) − f(yℓ) > 0.

1.3 Eliminating small moves

The descent property (1.6) is not sufficient; in particular, it does not guarantee the

property yℓ 6= xk. As in standard line-searches, a second test is needed, forcing yℓ

to be “substantially different” from xk. Giving a precise meaning to the expression

“substantially different” is not straightforward, though: pk itself may be close to xk (if

tk is small). As a result, the design of a second test is no longer so clear.

Continuing the comparison with classical methods, the second test could be

8

<

:

〈∇f̃(yℓ), yℓ − xk〉 > m2〈∇f(xk), yℓ − xk〉 (Wolfe [Wol69])

or

f(xk) − f(yℓ) 6 m2〈∇f(xk), yℓ − xk〉 (Goldstein-Price [GP67])

for some m2 ∈ ]m1, 1[. None of the above tests seems adapted to the present situation,

though. In fact, they assume an angle condition between ∇f(xk) and the “direction”

yℓ−xk: in fact 〈∇f(xk), yℓ−xk〉 must be “substantially negative” – a rather irrelevant

condition in the nonconvex case, when yℓ is the proximal point.

Another natural possibility would be to require a substantial decrease of ∇f̃ with

respect to its initial value ∇f(xk), namely

‖xk − yℓ − tk∇f(yℓ)‖ 6 m2tk‖∇f(xk)‖

for some m2 ∈ ]0, 1[. We have not seriously studied this possibility, neither theoretically

nor numerically.

Actually, we do not propose here any novel idea concerning the second test. In

fact, m2 ∈ ]0, 1[ being another fixed tolerance, we complete (1.6) with the following

relaxation of (1.5):

‖xk − yℓ − tk∇f(yℓ)‖ 6 m2 max{tk‖∇f(yℓ)‖, ‖xk − yℓ‖} ; (1.9)

it is obviously satisfied by yℓ = pk, but not by yℓ = xk unless ∇f(xk) = 0. Condition

(1.9) has already been studied in the literature of inexact proximal methods. It was

first introduced by [SS99] in the general context of proximal algorithm for variational

inequalities. This latter paper initiated a number of works on inexact proximal methods;

among them, we point out [SS01] and [HS05]. In the latter, (1.9) appears explicitly
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(with tk = 1) in the context of smooth convex optimization. Connections with the

above-mentioned references will become clear in section 2.

In this paper, we thus study an inexact proximal algorithm for smooth optimization

whose internal iterations are stopped when both (1.6) and (1.9) hold. The k-th iteration

of our inexact proximal algorithm

1. generates a sequence yℓ to solve (1.2) (by some Newton-like algorithm),

2. stops this inner iteration when both (1.6) and (1.9) hold,

3. and then proceeds to the next iteration with xk+1 = yℓ.

We therefore have at each iteration

m1

2
‖gk+1‖ ‖∆xk‖ 6 fk − fk+1 , (1.10)

‖∆xk + tkgk+1‖ 6 m2 max{tk‖gk+1‖, ‖∆xk‖} , (1.11)

with the notation

fk := f(xk) , gk := ∇f(xk) , ∆xk := xk+1 − xk .

In the next sections, we will prove convergence of the method (section 2) and illustrate

it on some test-problems from the CUTEr library (section 3). Before this, we finish

this introductive section by observing that the descent test (1.10) plays a minor role

in the convex case; a result essentially given in [HS05].

Proposition 1.1 Assume f is convex. If m2
1/4 + m2

2 6 1, then (1.11) implies (1.10).

Besides, the proximal point satisfies not only (1.3) but even

f(xk) − f(pk) >
1

tk
‖pk − xk‖2 , (1.12)

so that the algorithm is still valid with 0 < m1 < 2 in (1.10).

Proof Using the notation

µ := max{tk‖gk+1‖, ‖∆xk‖} and ν := min{tk‖gk+1‖, ‖∆xk‖},

observe that

µ2 + ν2 = ‖tkgk+1‖2 + ‖∆xk‖2 and µν = ‖tkgk+1‖ ‖∆xk‖ .

Then square (1.11) and expand the lefthand side:

‖∆xk‖2 + 2tk〈∆xk, gk+1〉 + ‖tkgk+1‖2
6 m2

2 µ2.

Therefore we have

−2tk〈∆xk, gk+1〉 > ‖∆xk‖2 + ‖tkgk+1‖2 − m2
2 µ2

=
`

1 − m2
2

´

µ2 + ν2

> 2
q

1 − m2
2

µ ν,

where the last line comes from the expansion of
“

q

1 − m2
2

µ − ν
”2

> 0.
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Now use the subgradient inequality at xk+1:

f(xk) − f(xk+1) > −〈∆xk, gk+1〉 >

q

1 − m2
2
‖gk+1‖ ‖∆xk‖

which yields (1.10) under the stated condition on m1 and m2.

Besides, f̃ is now strongly convex, so we can write

1

2tk
‖xk − pk‖2

6 f̃(xk) − f̃(pk) = f(xk) − f(pk) − 1

2tk
‖xk − pk‖2 ,

which is (1.12). Therefore, in (1.3), (1.6), (1.10), we can eliminate the factor 1/2, or

take m1 < 2. ⊓⊔

2 Convergence analysis

In this section, we develop the convergence analysis of inexact proximal algorithms sat-

isfying (1.10) and (1.11). The convergence results lie in Theorem 2.5 and Theorem 2.7

below, which deal respectively with the two possible cases: either (xk) has some cluster

point, or ‖xk‖ → +∞. The second case calls for convexity of f .

We start with the following obvious lemma, to get rid of the trivial case and assume

in the rest of this section that (fk) is bounded below.

Lemma 2.1 If (1.10) holds then the sequence (fk) is decreasing. If, moreover (fk) is

not bounded from below, then limk→+∞ fk = inf f = −∞.

We now go through some technicalities to establish the key lemma 2.4.

Lemma 2.2 Let 0 < m < 1, and set γ =
p

2(1 + m2)/(1 − m2) > 1. Then for all

u, v ∈ R
n such that

‖u + v‖ 6 m ‖v‖, (2.1)

we have ‖u‖ 6 γ‖v‖ and ‖v‖ 6 γ‖u‖.

Proof Square (2.1) and expand the lefthand side to get

‖u‖2 + 2〈u, v〉 + ‖v‖2
6 m2‖v‖2.

Note also that −2〈u, v〉 6 ε‖u‖2 + ‖v‖2/ε, for all ε > 0. Adding the two inequalities

gives

(1 − ε)‖u‖2
6

“

m2 − 1 +
1

ε

”

‖v‖2. (2.2)

Take ε = 1/2 in (2.2) to get 1/2‖u‖2
6 (m2 + 1)‖v‖2; that is,

‖u‖ 6

q

2(m2 + 1) ‖v‖ 6 γ ‖v‖.

Take now ε = 2/(1−m2) in (2.2) to get −(1+m2)/(1−m2)‖u‖2
6 −(1−m2)/2‖v‖2;

in other words,

2(1 + m2)

(1 − m2)2
‖u‖2

> ‖v‖2 ,

which is just the second claimed inequality. ⊓⊔
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Lemma 2.3 Let tk vary in a positive interval:

0 < tmin 6 tk 6 tmax < +∞. (2.3)

Then (1.11) implies the existence of positive α, β such that, for all k,

1

α
‖gk+1‖ 6 ‖∆xk‖ 6 β‖gk+1‖. (2.4)

Proof Take γ of Lemma 2.2 with m = m2. At iteration k, (1.11) means

either ‖∆xk + tkgk+1‖ 6 m2tk‖gk+1‖, (2.5)

or ‖∆xk + tkgk+1‖ 6 m2‖∆ xk‖. (2.6)

If (2.5) holds [resp. (2.6) holds], we apply Lemma 2.2 with u = ∆xk and v = tkgk+1

[resp. u = tkgk+1 and v = ∆xk]. In both cases, we obtain

‖∆xk‖ 6 γtk‖gk+1‖ and tk‖gk+1‖ 6 γ‖∆xk‖.

This finally gives (2.4) with α = γ/tmin and β = γ tmax. ⊓⊔

Lemma 2.4 Let (1.10) and (1.11) hold, and make assumption (2.3). Then we have

for all k

f0 − fk >
m1

2α

k−1
X

i=0

‖gi+1‖2, (2.7)

f0 − fk > m1β
k−1
X

i=0

‖∆xi‖2. (2.8)

It follows that, if (fk) is bounded from below, then the two series

X

k

‖gk‖2 and
X

k

‖∆xk‖2

are convergent.

Proof The descent property (1.10) implies that for all i = 0, . . . , k

fi − fi+1 >
m1

2
‖gi+1‖ ‖∆xi‖.

Summing these inequalities gives

f0 − fk >
m1

2

k−1
X

i=0

‖gi+1‖ ‖∆xi‖

which, using the two inequalities of Lemma 2.3, yields both (2.7) and (2.8). The rest

follows directly. ⊓⊔

Theorem 2.5 (Convergence, bounded case) Let (1.10) and (1.11) hold, and make

assumption (2.3). If (xk) has some cluster point x̄, then the whole sequence (fk) con-

verges to f(x̄); and continuous differentiability of f implies that x̄ is stationary. In

particular, if f is inf-compact, then (fk) converges to some stationary value (which is

minimal if f is convex), while any cluster point of (xk) is stationary.
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Proof Let x̄ be a cluster point of (xk). The first statement comes from monotonicity

of the sequence (fk) (Lemma 2.1). If (xk′) is a subsequence converging to x̄, ‖gk′‖ → 0

(Lemma 2.4) and therefore ∇f(x̄) = 0 by continuity of ∇f . The rest follows because

x̄ is arbitrary, and certainly exists if f is inf-compact. ⊓⊔

Note that convergence of an inexact proximal method satisfying just (1.11) is estab-

lished in [HS05, Theorem 1] for a smooth convex function. When there exists a cluster

point to the sequence of iterates, the above result shows that convexity can be replaced

by the descent-test (1.10).

The case where no cluster point exists is more delicate, since no stationary point

shows up. The only relevant property for (xk) is then to be a minimizing sequence; but

establishing such a property is hopeless without convexity. Besides, to have ∇f(xk) →
0 is not enough for (xk) to be a minimizing sequence: some additional property is

required, for example the following one, due to M.J. Todd.

Lemma 2.6 ([Tod89, Prop. 2.2]) Let f : R
n → R be convex (and continuously dif-

ferentiable). If a sequence (xk) of points in R
n satisfies the following four properties:

(fk) is a decreasing sequence (bounded from below), gk → 0, ‖xk‖ → ∞ and

lim inf
k→∞

‖gk‖ ‖xk‖ < ∞,

then the whole sequence (fk) converges to inf f .

Now, when f is convex, Proposition 1.1 gives that (1.10) is superfluous. So we have

the general convergence result involving only (1.11).

Theorem 2.7 Let (1.11) hold and make assumption (2.3). If f is convex (and con-

tinuously differentiable) then limk→+∞ fk = inf f .

Proof First, in view Lemma 2.1, the we have only to consider the case when (fk)k is

bounded below. Second, in view of Theorem 2.5, we have only to consider the case

‖xk‖ → +∞. To use Lemma 2.6, we look for an estimation of ‖xk‖ ‖gk‖. Using first

the norm ‖ · ‖1, we write

‖xk‖1 =

‚

‚

‚

‚

‚

x0 +

k−1
X

i=0

∆xi

‚

‚

‚

‚

‚

1

6

k−1
X

i=0

‖∆xi‖1 + ‖x0‖1 .

The Cauchy-Schwarz inequality in R
k gives

k−1
X

i=0

‖∆xi‖1 6
√

k

v

u

u

t

k−1
X

i=0

‖∆xi‖1
2 ,

so we get for all k

‖xk‖1 6
√

k

v

u

u

t

k−1
X

i=0

‖∆xi‖1
2 + ‖x0‖1 . (2.9)

Now we combine the property ‖z‖1 6
√

n‖z‖ with (2.8) to obtain

f0 − fk >
m1β

n

k−1
X

i=0

‖∆xi‖2
1 .
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Since f is bounded below, this yields that the series
P ‖∆xi‖2

1 converges. Use this

property in (2.9): for some M > 0,

‖xk‖ 6 ‖xk‖1 6 M
√

k + ‖x0‖1 ,

and then

‖xk‖ ‖gk‖ 6 M
√

k‖gk‖ + ‖x0‖1 ‖gk‖ . (2.10)

Now we claim that lim inf
√

k‖gk‖ = 0. If it were not the case, we would have a

κ > 0 such that
√

k‖gk‖ > κ for all k. This would contradict Lemma 2.4 showing that

the serie
P ‖gk‖2 converges (since the serie

P

1/k diverges).

Together with (2.10), this implies lim inf ‖xk‖ ‖gk‖ = 0. We also know that (fk) is

decreasing (Lemma 2.1), (gk) tends to 0 by (2.7) and ‖xk‖ tends to +∞ by assumption;

each assumption of Lemma 2.6 is therefore satisfied. ⊓⊔

The conclusion of this section is that the two tests (1.10) and (1.11) are consistent as

stopping conditions for inner minimization in inexact proximal algorithms for smooth

minimization. We illustrate their reliability in the next section.

3 Numerical illustrations

This section presents numerical illustrations of the proximal scheme using the two inner

stopping rules (1.6) and (1.9), applied to smooth optimization. We consider some test-

problems from the CUTEr library [BCGT95], with smooth objective function and no

constraint, for which classical minimization algorithms run into numerical difficulties

because of some degeneracy (for example, the objective function may have a degenerate

Hessian at some iteration).

In addition to the inner stopping rule, implementing the proximal algorithm re-

quires an algorithm to solve the inner problem and an updating method for the proxi-

mal parameter. These two ingredients are described in the next two subsections.

3.1 Solving the internal problem

Among the various possibilities to minimize smooth functions, Newton-like methods

(quasi-Newton, exact or truncated Newton) are known to be most efficient in general.

The choice of a particular one depends on the available information about the objective

function: we consider here problems where the gradient is available under an analytic

form and we use a quasi-Newton method. More precisely, we use the software m1qn3
1

implementing a limited-memory BFGS update with Wolfe line-search [GL89].

Recall that this update consists in “simulating” the BFGS formula, without storing

any n×n matrix. Specifically, let yℓ be the current iterate aimed at solving (1.2). Using

the notation g := ∇f , the gradient of f̃k at yℓ is g̃ℓ
k = gℓ +(yℓ−xk)/tk. The algorithm

stores m differences of points and of gradients

ηi := yi − yi−1

γi
k := g̃i

k − g̃i−1

k

ff

i = ℓ, ℓ − 1, . . . , ℓ − m + 1 . (3.1)

1 http://www-rocq.inria.fr/∼gilbert/modulopt
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Appropriate formulae [Noc80] then allow the computation of the search-direction dℓ =

−Hℓgℓ, where Hℓ results from m BFGS updates of some “initial” matrix – which is

actually re-computed at each iteration ℓ. All of our experiments use m = 20, so that

m1qn3 needs to store 40 vectors of dimension n to run.

In our implementation, each new prox computation is warm-restarted, using the

pairs (ηi, γi) from the previous cycle. In fact, observe from (3.1) that

γi
k = gi − gi−1 +

yi − yi−1

tk

does not depend on the prox center xk. On the other hand, when tk is changed to tk+1,

no ηi is changed, while the differences of gradients are changed to

γi
k+1 = γi

k +
“ 1

tk+1

− 1

tk

”

ηi . (3.2)

Easy updates of the working arrays of m1qn3 thus allow the use of old pairs to restart

the next internal algorithm, thereby ensuring persistence of available information.

3.2 Updating the proximal parameter

The prox parameter tk is delicate to tune and serious studies on this question seem to

be lacking in the literature. We have conducted some experiments with the updating

rule of [LS97], they were not too convincing (note also that this rule needs convexity

of f). Here we propose for simplicity to start with a fixed value t0 = 104, and then to

use a rough heuristic, based on how easily (1.2) can be solved:

1. If the number ℓk of internal iterations needed to reach (1.6) and (1.9) exceeds some

threshold ℓ̄, more regularization seems to be needed: we decrease tk.

2. By contrast, if ℓk is lower than some ℓ, we increase tk to make (1.2) closer to (1.1).

3. In between (ℓ 6 ℓ 6 ℓ̄), we leave tk as it is.

Besides, m1qn3 may fail to solving (1.2) for some reason:

– No descent can be obtained at the current iteration ℓ.

– Some scalar product 〈γi
k, ηi〉 is not positive. Recall that the property 〈γi

k, ηi〉 > 0

is crucial for BFGS updates and is guaranteed by Wolfe’s line-search; however,

observe on (3.2) that tk+1 > tk may result in some negative 〈γi
k+1, ηi〉.

– The number of inner iterations reaches a maximal number allowed (fixed at 1500).

In these pathological cases, we decrease tk as well; but we keep the same xk, since

otherwise the theory of Section 2 would not apply ((1.10), (1.11) need not hold).

Figure 3.1 summarizes our implementation; here are some comments.

– We fix m1 = 0.1 in (1.6) and m2 = 0.9 in (1.9); these rather extreme values aim at

a quick exit of the inner algorithm.

– The overall stopping test is

‖∇f(xk)‖ 6 ε with ε = 10−6 . (3.3)

– Note that m1qn3 may terminate with an optimal yℓ; then (1.6) and (1.9) have to

be satisfied.

– The bounds on internal iterations are ℓ = 0.03n and ℓ̄ = 0.07n.

– The initial prox parameter is t0 = 104. To increase [decrease] tk, we multiply

[divide] it by ρ = 5.
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Update x and test ℓ

Decrease t

Update {γi}

‖∇f(x)‖ 6 ε? End
yes

Increase t

Test exit from m1qn3

(1.6), (1.9) satisfied

m1qn3 Test (1.6), (1.9)
y = x

abnormal

Initialization of m1qn3

ℓ > ℓ̄ℓ < ℓ

Initialize x

Fig. 3.1 Flow-chart of the inexact proximal algorithm

3.3 Comparative results

Our experiments illustrate the plain use of m1qn3 and its embedding within our prox-

imal mechanism, on a collection of unconstrained optimization problems from the

CUTEr library.

name n # prox #sim
djtl 2 7 3202

brownden 4 2 40
tointgor 50 5 207
sensors 100 3 73
ncb20 210 9 347

bdqrtic 1000 2 50
cragglvy 2000 5 248
freuroth 5000 3 93
broynd7d 5000 5 1732
sinquad 5000 2 43

schmvett 5000 11 349

Table 3.1 CUTEr test-problems for which quasi-Newton fails

Table 3.1 reports the results of the inexact proximal algorithm on a serie of in-

stances where the pure m1qn3 fails to reaching (3.3). More precisely, for 27 instances of

CUTEr, the line-search fails to obtain a descent step at some iteration. Among these 27

instances, the 11 instances of Table 3.1 are solved by our proximal scheme (using fixed
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parameters). Note also that most of the other instances are solved by our algorithm

with ad hoc tunings of parameters.

The last two columns of Table 3.1 give the number of external iterations (# prox)

and the total number of f, g computations (called # sim, as each such computation usu-

ally corresponds to the simulation of some physical system; note that m1qn3 computes

systematically ∇f̃ together with f̃).

name n # prox #sim # sim QN
sparsine 1000 3 3175 3090
sparsine 2000 7 7639 7649

nondquar 1000 7 469 654
nondquar 500 12 558 544
eigenals 420 7 401 262
eigenbls 420 109 6473 4256
eigencls 462 7 1801 1717
ncb20 510 4 421 383

Table 3.2 Proximal and pure quasi-Newton on the instances of [HZ08]

We have also used the instances selected by [HZ08]; Table 3.2 shows the results.

These problems can be solved by the plain version of m1qn3, so Table 3.2 reports also

# sim for QN in its last column. For homogeneity with [HZ08], the stopping test is now

‖∇f(xk)‖∞ 6 10−6.

This table suggests that the pure and proximal versions have roughly similar be-

haviours on these problems. Note, however, that adjusting the various parameters

appearing in our implementation (t0, ρ, ℓ, ℓ̄) may entail different results. For example,

taking t0 = 106 on eigenals [resp. t0 = 108 on eigenbls] reduces # sim from 401 to

311 [resp. from 6473 to 4267].

To close this section, we mention that our results in Table 3.2 are consistently better

than those of [HZ08]; but this is normal: the latter uses conjugate gradient, known to

be much less efficient than quasi-Newton.

4 Conclusions, perspectives

The contribution of this paper is a proposal to stop the inner iterations in a proximal

algorithm, based on the decrease of the true objective function. We use the two tests

(1.6) and (1.9), prove their consistency and illustrate them on standard problems.

Our experiments indicate a capacity of the proximal mechanism to improve a quasi-

Newton algorithm: it permits to solve degenerate problems on which a direct use of

the algorithm fails (Table 3.1), while there is no significant slow-down for problems on

which the algorithm succeeds (Table 3.2).

These observations, however, should not be over-interpreted.

– First of all, our experiments involve relatively few instances of CUTEr, neglect-

ing many others where a mere quasi-Newton implementation behaves correctly.

Introducing a proximal term would be pointless, then.

– It should be kept in mind that the proximal algorithm is motivated by reliability;

it is by no means aimed at being brilliant. For example, finite convergence for a

quadratic f seems hard to reach.
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– Actually, a proximal algorithm without a convincing rule to monitor tk can hardly

be called stable. Ours (section 3.2) is far from that; definite conclusions cannot be

drawn until this question is fixed.

– Our crude use of m1qn3 as a black box for the inner iterations might be subject to

improvements. A relevant question is indeed: can one taylor Newton-like methods

to take advantage of the special structure in (1.2) and of its iterative nature?

This question is close to: can one devise a finitely convergent proximal algorithm

to minimize a convex quadratic function? These sorts of questions might be of

interest for future research.

In our opinion, the descent test (1.6) is well motivated; recall in particular some

positive aspects mentioned in section 1.2. By contrast, the motivation for (1.9) does

not seem to be as strong, in a context of descent iteration. By requiring a “small” ∇f̃k ,

it somehow goes against our initial motivation, which was to overlook closedness to

the proximal point. Thus, the second test might perhaps be improved, to adequately

complement the descent property. The fact that (1.9) implies (1.6) in the convex case

might indicate that it is too stringent.
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