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ABSTRACT 2. THE MODIFIED CRITERION

When seeking a sparse representation of a signal on a redundant Bal. Preliminary remarks
sis, one might want to convey available a priori information on the .. . n .
. S . iven an observatioh € R"™ one seeks a sparse representation of
observations to the optimization criterion. If one observes a sum . f th | f A with
harmonic signals in noise, taking into account the structure of each n terms 0 t. € columnsy, Ot an x m matrix A, wit L m .>>
L RO . - n. ProvidedA is a full row-rank matrix, there are an infinity of
individual harmonic signal definitely improves the efficiency of an ;
. . .- representations such thath = Ax and to select a sparse one, one
estimator of the fundamental frequencies. More or less efficient or . ;
. .. -solves the quadratic program :
elegant solutions to these problems have been proposed, modifying
the penalty term in a sparse representation criterion is one of them.
We show how to translate prior information by modifying the pe-
nalization term of the usudh — ¢; regularized criterion, we indi- . y
cate how to tune the corresponding hyper-parameters by forming théhere||z||, denotes thé, norm of avector, ||z, = 327" |z5[°] /"
dual of these modified criterion and we evaluate the associated pefr p > 1. This criterion known as LASSO [3] in statistics, Basis
formance on the sum of harmonics examp|e_ Pursuit Den0|5|ng [4] n apphed mathema“cs, was introduced si-
) ) multaneously to the Signal Processing community as the Global
_ Index Terms— Sparse representations, structured sparsity, dupatched Filter (GMF) [5, 6]. In (1), théx-part is clearly linked to
ality, harmonic signals, fundamental frequencies estimation. the Maximum Likelihood criterion in the Gaussian noise case and
the ¢1-penalty term together with the hyper-paramédieallows to
monitor the sparsity of the representation, i.e. the number of non
zero components in the optimal The Lagrangian dual of (1) [7, 6]

) ) ) _ has a nice physical interpretation
Sparse representation approaches enjoy considerable popularity in

signal and image processing. The approach consists in decomposing min ||Az|3 subjectto||A” (Az — b)|jee < h (2)

a signal into a small number of components chosen from a user- *

designed over-complete set of vectors. It is either used to obtain which lead to the name GMF and permits to tunie a justified way

simple and sparse approximate model of a complex signal for dédy establishing a link with the Generalized Likelihood Ratio Test

noising, compression or coding purposes in audio or video signd/GLRT) [8]. For the atoms, i.e. the columiag of A, to play an

processing, or to solve linear inverse problems for which one knowglentical role, it already follows from (2) that they need to have the

that the solution is indeed sparse. Identification or parameter estimaamelz-norm. In the sequel they are assumed to be normed to one.

tion problems can often be cast into the second set of applications

together with direction of arrivals estimation, source separation and 2. Non-overlapping groups

many other problems. In statistics, this technique has been devel- o ) ) ]

oped independently to select variables in the basic linear regressidi many applications in signal processing, one might want to intro-

model and the two areas contribute to the development of new algéluce links between atoms, to favor groups of atoms or to introduce

rithms. Of particular interest is presently the possibility to introducehierarchies. In the simplest case, one groups the atorasiito

some structure into the redundant dictionary or equivalently to favopon-overlapping sets. Without loss of generality and to simplify the

groups in the selection [1, 2]. Once an atom from such a group haotations, we consider non-overlapping pairs as an example of the

been selected, prior information tells us that the whole group shoul@ase of disjoints sets. if is m-dimensional withn = 2p, one gets

potentially be included into the selection. However, since the same »

atom may belong to several groups, some flexibility has to be pre- min lHAx — b2+ hZ(l’%;ﬁl + 222 ©)

served. These issues are considered in this paper. In section II, we @ 2

introduce the modified criterion we will be using, we then evaluate

the dual criterion is section 11l and indicate how to tune the hyper{ntroducingAx=[ azx—1 azx] andX,=[ z2x—1 z2x]", (3) becomes

parameters in the modified criterion. In section IV, an application is » »

proposed, where one identifies the fundamental frequencies of a sum mzin %Hb _ Z AuXi|2+h Z 11X 2. )
k=1

o1
min || Az — b3 + hllzllr, h>0. 1)

1. INTRODUCTION

k=1

of harmonic signals in white noise . =1



An example where this is definitely of interest is the basic sumof  In (8) each unknown appears twice in the penalty terms and
sinusoids plus white noise model, where given a observation vect@nother possibility is to optimize the following criterion where the
b one wants to determine the number of sinusoids and their characumber of unknowns is doubled
teristics (amplitude, frequency and initial phase). For this example »
and using (1), to solve the non-linear initial phase problem, one has ||A cta) b||§+h1\|x’|\1+h2 Z(wzk 1_~_QE%)1/2 )
to resort toa, vectors that are sines spread over a two dlmen5|onalx w2
grid (frequency, initial phase) unless one uses (3) and considiess pa
Ay, of (sine, cosine) vectors over a one-dimensional frequency gridWhile in (1), (4) and (6) the results are quite robust with respect to

The penalty term in (4) with a (non-squareédynorm is indeed  the tuning ofh, in (8) and (9), the relative tuning df; andh is
an efficient way to induce sparsity at the level of the groups (pairsindeed crucial. Let us investigate the tuning of the hyper-parameters
but of course not inside the weights attributed to the elements of issue by evaluating the dual of (9).
group. One can deduce from results established below in section 3
that the dual of (4) is: 3. THE DUAL CRITERION

i 5 . T 3.1. Evaluation
min [|Az[l3 subjectto|[A (Az —b)[z <h Vk. () \ye will detail the dual of (9). This then leads to the dual of (1) and
(4) and also of (6). As already alluded to, the name Global Matched
2.3. Overlapping groups Filter comes from the dual (2) of (1). The constraint in the dual (2)

k=1

T
For more generality and to be able to handle a larger set of appli- A7 (Az = b)[loc < h
cations, overlapping groups are of interest. To keep the expositiogays that at the optimum, say the output of the matched filter
simple, we consider overlapping pairs of (contiguous) vectors. Foapplied to the reconstruction errof = Axz* — b is everywhere

x of dimensionm, one gets smaller than or equal th. In the present context, one might wish
m—1 to solve the following natural extension of (2) to get what could be
min ,HAJ; —b2+h Z (x2 4+ xii )2 called the extended GMF
In this criterion, all unknownsck 1but the two extreme ones, ap- min HAQ;Hg (10)
pear twice in the penalty term. A different criterion is indeed ob- ; .
tained if one duplicates these unknowns as in under |A" (Az — b)||oo < h1, [|Ak (Az —b)||]2 < h2, VE.
1 m—1 While the first constraint corresponds in some precise way to the
min = ||b — ayz; — Z ap (T + k) — amT ||3 + Generalized Likelihood Ratio Test (GLRT) [8], the last set of con-
@ a2 b2 straints corresponds to the extension of the GLRT to groups of atoms
m—1 (in the Gaussian case). Somehow surprisingly the dual of (10) is (9)
h Z 72+ mk“ /2 (6)  which thus might appear as the natural extension of (1).
k=1
This amounts to get back to the non overlapping case by dupli- Lemma 1. The dual of the convex program (10) is (9) and vice
cating the vectors it and the unknowns im to getC' andy, with versa, since the problems are convex. m|
C=la1a2a2 a3 ... Qi1 Qi Qi Ais1 .. Qo1 Gn—1 Qo) Proof: We first rewrite (10) as
1 1
Y = [m1 5 T2 Ty oo Ti1 T, Ti Ty e Tyt Tyt T min 5||Aa:|\§ ~ 5 l1bll> under= = AT (b= Az), [|2]lee < M
This is not forbidden since thd matrix is never full column rank
anyway. It is easy to prove that if, at the optimum, the weights and y, = AL (b— Az), |jyxll2 < ha, V.
andz}, associated with the same columndrare non zero, then they
have the same sign. The dual of (6) is The Lagrangiad(z, z, y, v, s, 4, A) of this problem is then
min ||Az||2 subjectto||Bf (Az —b)|ls <h Vk.  (7) sl Az|3 = 31163 — " (2 — AT (b — Az)) + v(|[2]lec — ha)

—S Ay — AT (b— A . —h
with By, = [ax art1], k = 1tom — 1 andz of (the reduced initial) 2o Ak (= Ak (0= A2) 43 e (lyello = h)

dimensionm. and definingg(v, s, u, A) = ming, », 4 £(z,2,y,v,s,u, ), the
dual problem ismax,>0, u>o0, s, » (s, A).

2.4. Other structures In order to evaluate(s, \), we zero the gradient with respect

The previous section is actually representative for quite general ovel? @ and get

lapping groups, let us consider now a mixture of (1) and (3) ATAz = ATAs+ ATAXN = Az = A(s + )
The minimum inz is obtained by zeroing the sub-gradient
min *HA‘T blI3 + hal|z|l1 + ho Z o1 +a3)% (8)
k=1 s=v9zlec = v=1|s]1 >0 ands"z = v|z| e,
that favors both individual atoms and pairs of non overlapping atoms
As opposed to the criterion (3) or (6) this criterion really favors spar-

sity of the solution since one allows again an isolated atom to be Yk T
selected without appearing necessarily in a pair. Ak = [k Twele M7 IAell2 > 0 and ATy = skl l2

and the minimum iry by zeroing the gradient with respectgo



By substitution of these results inf¢e, z, y, v, s, u, A), thedual  A(w) = [ a(w) a(2w) .. a(Lw) ]. The problem is in general to

problem is found to be identify the fundamental frequencigs = wy/(27) but the other
parameters are of interest as well. If the true order is known it is
max—1\|A(s +A) = b3 = ha||s|ly — ha Z I Ak]|2 useful to introduce this knowledge into the modeling step.
S, A 2
k
and hence the announced result. O 4.2. Proposed solution
3.2. Comments In the context developed in the first part of the papes, of course

. the observation vector and the columms of the A matrix in (1)
The natural extension of the dual (2) of the GMF (1) t0 (5), (7) andye the vectora(w) with w taken on a grid. For harmonic signal of
now to (10) makes us believe that, in case of overlap, one ShOUIaaximal ordet., the groups are quite naturally defined and are asso-
duplicate the unknowns. ciated with the block matriced (w). Depending upon the grid used

In.the sequel, we cpnsider an applicatio.n in which th}? groub3or the fundamental frequencies, these groups will be more or less
to be introduced are quite naturally overlapping and we will indee verlapping. Though complex, we will consider that the frequencies

build successively the different groups without at any time checkingange from0 to .5 and for, = 3. this means that the fundamental
the possible overlap with previous groups. To solve the (primal)frequencies range frofto .5,/3 i.’e. 15 say.

optimization problem, we transform it into a Second Order Cone  \xsith the notations introduced above. we propose to solve
Program (SOCP) which allows to handle complex data as well. '

1 2
min = ||b — BnZn|2+ he Zm||2, (12)
3.3. Tuning the hyper-parameters Zk 2” ; % ; |2l

In presence of groups of different sizes as in (8) the tuning of th§yith p,, = A,,/\/n, then x L matrix A,,-matrix with normalized
associated hyper-parametérsis crucial if one wants to keep a cer- ¢columns whose first column is say,, i.e. the vectom(w) evalu-
tain coherency in the selection of the atoms. In [6] and [8], oneyteq at the m-th point of an M-point grid that covers the potential

explains that the tuning can be done by looking at the dual criteriof,ndamental angular frequencies range. According to section 3, the
and has indeed much in common with the tuning of the threshold igya) of (12) is

the GLRT. For the case of the criterion (8), it follows from (10) an

assuming that the additive noise present in the observation vector min ||Bz||3 under ||BX(b— Bz)|j2 < hr Vm,  (13)

(denoteck below) is white and Gaussian with unit variance, one has i

to compare the distributions of whereB andz are obtained by concatenation of all tBg, and Z,,,

blocks respectively. Or, since these blocks are somehow overlapping

max |a{e| and max \/(agey + (Q{He)?, by keeping in the union of the columns of these blocks only the dis-
k k tinct ones, the two formulations are equivalent and lead to the same

Given a desired probability of false alarm, i.e. the probability to se-OPtimal value. There are thus/ [, complex unknowns ir in the
lect an atomay, when the observation vector is just nolse= e, ~ COnvex optimization problem (12), that is solved by transforming it
these distributions allows to fik; and ks respectively. The ratio into, & second order cone program (SOCP). To get the optimum, we
ha/h1 between the two depends upon the correlation between théSe the subroutines _SeD_uMl [10], itis a freely accessible, second or-
columnsa; anday, ;. If these two columns were equal, the ra- der cone programming library that is released under the GNU/GPL
tio would be+/2, in practice the ratio should thus be taken smallerOPen source license. _ ‘ .

and function of the expected correlations between the vectors within  AS recommended in section 3.3, the paraméterin (12) is

the groups. For a arbitrary size, it is thus recommended to to taken equal to.(.9v/L)v/2In 2n where we assume. to be known.
takeh, /h1 slightly smaller than/m, For a 10% probability of false Only the order of magnitude of. is actually needed since the re-

. sults are quite robust with respect to the tuning she Whenb is
larm, takin =v2In2 recommen lly, works well. . S .
alarm, taking’, n2n, as recommended usually, works we composed of a the single harmonic signal, one group or two neigh-

4. PARAMETRIC ESTIMATION OF A SUM OF boring groups will then in general have non-zero weights. In the
HARMONIC SIGNALS last case, the fundamental frequency estimate is obtained by linear
interpolation of the frequencies associated with the two groups.

4.1. Problem description

Within the last decade, the problem of estimating the fundamentdt-3- Simulation results

frequency of an harmonic signal in noise has attracted considerablge have conducted a set of Monte Carlo simulations in order to eval-
attention because of its importance in speech denoising [9]. We Copte the statistical properties of the extended GMF compared to the
sider the case where several such signals are buried in white Gaygrys|c and the Cramer Rao lower bound. In the first of these sim-
sian noise. We consider the case where the signals are complex afjdiions we simulate only one harmonic signal, consides 80
the additive noise complex white circular Gaussian with variarice  jhservations samples add= 3 harmonically related cisoids with
K L . . s .
o . _ N iwplj each unitamplitude and zero initial phase {( = 1in (11)) and fun-
b= sk(i) e s(d) =D acke (11 Jamental frequency, — .0945. This example is drawn from [11].
which we write in vector formas - Complex white Gaussian circular noise was added to the signal such
that the SNR defined as

L
b= Z Sk +e, sp= Z ek a(wpl) = A(wk) . SNR= 10logy, DIy |20‘£,1|2
Oe

with a(w) = [1e™ .. & V17 and A(w) ann x L matrix asso- has the required value. We ran 400 realizations for different
ciated with an harmonic signal with fundamental frequeng¢y2r), SNR’s and the results are presented in Figure 1 in terms of the MSE



of the angular frequency. Note thAatis not on the proposed grid but 10~ ;
falls in the middle of two neighboring points. This is indeed of little
consequence since in any case some interpolation is performed
deduce the estimates from the location of the non zero componen
in z and that, in any case due to the additive noise, the ML estimate
are likely to be on a different grid point or couple of grid points than
the expected one. The Cramer Rao bounds are sensitive to all tt u
parameters for harmonic signals and a precise development has be £
implemented following [12]. The extended GMF remains close to
the CRB over the whole range of SNR. Some outliers appear at -1
dB.

10

20 40 60 80 100 120
number of samples

Fig. 2. Atwo harmonic signals scenario with fundamental frequency
separation 1/120. Estimate of the (upper) fundamental angular fre-
»n 1074 guency . Cramer Rao bound (lower curve) and MSE as a function of
the number of observed samples.
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