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ABSTRACT

When seeking a sparse representation of a signal on a redundant ba-
sis, one might want to convey available a priori information on the
observations to the optimization criterion. If one observes a sum of
harmonic signals in noise, taking into account the structure of each
individual harmonic signal definitely improves the efficiency of an
estimator of the fundamental frequencies. More or less efficient or
elegant solutions to these problems have been proposed, modifying
the penalty term in a sparse representation criterion is one of them.
We show how to translate prior information by modifying the pe-
nalization term of the usualℓ2 − ℓ1 regularized criterion, we indi-
cate how to tune the corresponding hyper-parameters by forming the
dual of these modified criterion and we evaluate the associated per-
formance on the sum of harmonics example.

Index Terms— Sparse representations, structured sparsity, du-
ality, harmonic signals, fundamental frequencies estimation.

1. INTRODUCTION

Sparse representation approaches enjoy considerable popularity in
signal and image processing. The approach consists in decomposing
a signal into a small number of components chosen from a user-
designed over-complete set of vectors. It is either used to obtain a
simple and sparse approximate model of a complex signal for de-
noising, compression or coding purposes in audio or video signal
processing, or to solve linear inverse problems for which one knows
that the solution is indeed sparse. Identification or parameter estima-
tion problems can often be cast into the second set of applications
together with direction of arrivals estimation, source separation and
many other problems. In statistics, this technique has been devel-
oped independently to select variables in the basic linear regression
model and the two areas contribute to the development of new algo-
rithms. Of particular interest is presently the possibility to introduce
some structure into the redundant dictionary or equivalently to favor
groups in the selection [1, 2]. Once an atom from such a group has
been selected, prior information tells us that the whole group should
potentially be included into the selection. However, since the same
atom may belong to several groups, some flexibility has to be pre-
served. These issues are considered in this paper. In section II, we
introduce the modified criterion we will be using, we then evaluate
the dual criterion is section III and indicate how to tune the hyper-
parameters in the modified criterion. In section IV, an application is
proposed, where one identifies the fundamental frequencies of a sum
of harmonic signals in white noise .

2. THE MODIFIED CRITERION

2.1. Preliminary remarks

Given an observationb ∈ Rn one seeks a sparse representation of
b, in terms of the columnsak of a n × m matrix A, with m ≫
n. ProvidedA is a full row-rank matrix, there are an infinity of
representationsx such thatb = Ax and to select a sparse one, one
solves the quadratic program :

min
x

1

2
‖Ax − b‖2

2 + h‖x‖1, h > 0. (1)

where‖x‖p denotes theℓp norm of a vectorx, ‖x‖p = [
∑m

1 |xj |p]1/p

for p ≥ 1. This criterion known as LASSO [3] in statistics, Basis
Pursuit Denoising [4] in applied mathematics, was introduced si-
multaneously to the Signal Processing community as the Global
Matched Filter (GMF) [5, 6]. In (1), theℓ2-part is clearly linked to
the Maximum Likelihood criterion in the Gaussian noise case and
the ℓ1-penalty term together with the hyper-parameterh allows to
monitor the sparsity of the representation, i.e. the number of non
zero components in the optimalx. The Lagrangian dual of (1) [7, 6]
has a nice physical interpretation

min
x

‖Ax‖2
2 subject to‖AT (Ax − b)‖∞ ≤ h (2)

which lead to the name GMF and permits to tuneh in a justified way
by establishing a link with the Generalized Likelihood Ratio Test
(GLRT) [8]. For the atoms, i.e. the columnsak of A, to play an
identical role, it already follows from (2) that they need to have the
sameℓ2-norm. In the sequel they are assumed to be normed to one.

2.2. Non-overlapping groups

In many applications in signal processing, one might want to intro-
duce links between atoms, to favor groups of atoms or to introduce
hierarchies. In the simplest case, one groups the atoms inA into
non-overlapping sets. Without loss of generality and to simplify the
notations, we consider non-overlapping pairs as an example of the
case of disjoints sets. Ifx is m-dimensional withm = 2p, one gets

min
x

1

2
‖Ax − b‖2

2 + h

p
∑

k=1

(x2
2k−1 + x2

2k)1/2. (3)

IntroducingAk=[ a2k−1 a2k] andXk=[ x2k−1 x2k]T , (3) becomes

min
x

1

2
‖b −

p
∑

k=1

AkXk‖2
2 + h

p
∑

k=1

‖Xk‖2. (4)



An example where this is definitely of interest is the basic sum of
sinusoids plus white noise model, where given a observation vector
b one wants to determine the number of sinusoids and their charac-
teristics (amplitude, frequency and initial phase). For this example
and using (1), to solve the non-linear initial phase problem, one has
to resort toak vectors that are sines spread over a two dimensional
grid (frequency, initial phase) unless one uses (3) and considers pairs
Ak of (sine, cosine) vectors over a one-dimensional frequency grid.

The penalty term in (4) with a (non-squared)ℓ2-norm is indeed
an efficient way to induce sparsity at the level of the groups (pairs)
but of course not inside the weights attributed to the elements of a
group. One can deduce from results established below in section 3
that the dual of (4) is:

min
x

‖Ax‖2
2 subject to‖AT

k (Ax − b)‖2 ≤ h ∀k. (5)

2.3. Overlapping groups

For more generality and to be able to handle a larger set of appli-
cations, overlapping groups are of interest. To keep the exposition
simple, we consider overlapping pairs of (contiguous) vectors. For
x of dimensionm, one gets

min
x

1

2
‖Ax − b‖2

2 + h

m−1
∑

k=1

(x2
k + x2

k+1)
1/2.

In this criterion, all unknownsxk but the two extreme ones, ap-
pear twice in the penalty term. A different criterion is indeed ob-
tained if one duplicates these unknowns as in

min
x, x′

1

2
‖b − a1x1 −

m−1
∑

k=2

ak(x′
k + xk) − amx′

m‖2
2 +

h

m−1
∑

k=1

(x2
k + x

′2
k+1)

1/2. (6)

This amounts to get back to the non overlapping case by dupli-
cating the vectors inA and the unknowns inx to getC andy, with

C = [a1 a2 a2 a3 .... ai−1 ai ai ai+1 .... am−1 am−1 am]

y = [x1 x′
2 x2 x′

3 .... xi−1 x′
i xi x′

i+1 .... x′
m−1 xm−1 x′

m]T .

This is not forbidden since theA matrix is never full column rank
anyway. It is easy to prove that if, at the optimum, the weightsxk

andx′
k associated with the same column inA are non zero, then they

have the same sign. The dual of (6) is

min
z

‖Az‖2
2 subject to‖BT

k (Az − b)‖2 ≤ h ∀k. (7)

with Bk = [ak ak+1], k = 1 to m − 1 andz of (the reduced initial)
dimensionm.

2.4. Other structures

The previous section is actually representative for quite general over-
lapping groups, let us consider now a mixture of (1) and (3)

min
x

1

2
‖Ax − b‖2

2 + h1‖x‖1 + h2

p
∑

k=1

(x2
2k−1 + x2

2k)1/2, (8)

that favors both individual atoms and pairs of non overlapping atoms.
As opposed to the criterion (3) or (6) this criterion really favors spar-
sity of the solution since one allows again an isolated atom to be
selected without appearing necessarily in a pair.

In (8) each unknown appears twice in the penalty terms and
another possibility is to optimize the following criterion where the
number of unknowns is doubled

min
x, x′

1

2
‖A(x+x′)−b‖2

2+h1‖x′‖1+h2

p
∑

k=1

(x2
2k−1+x2

2k)1/2. (9)

While in (1), (4) and (6) the results are quite robust with respect to
the tuning ofh, in (8) and (9), the relative tuning ofh1 andh2 is
indeed crucial. Let us investigate the tuning of the hyper-parameters
issue by evaluating the dual of (9).

3. THE DUAL CRITERION

3.1. Evaluation
We will detail the dual of (9). This then leads to the dual of (1) and
(4) and also of (6). As already alluded to, the name Global Matched
Filter comes from the dual (2) of (1). The constraint in the dual (2)

‖AT (Ax − b)‖∞ ≤ h

says that at the optimum, sayx∗ the output of the matched filter
applied to the reconstruction errorr∗ = Ax∗ − b is everywhere
smaller than or equal toh. In the present context, one might wish
to solve the following natural extension of (2) to get what could be
called the extended GMF

min
x

‖Ax‖2
2 (10)

under ‖AT (Ax − b)‖∞ ≤ h1, ‖AT
k (Ax − b)‖2 ≤ h2, ∀k.

While the first constraint corresponds in some precise way to the
Generalized Likelihood Ratio Test (GLRT) [8], the last set of con-
straints corresponds to the extension of the GLRT to groups of atoms
(in the Gaussian case). Somehow surprisingly the dual of (10) is (9)
which thus might appear as the natural extension of (1).

Lemma 1. The dual of the convex program (10) is (9) and vice
versa, since the problems are convex. 2

Proof: We first rewrite (10) as

min
x

1

2
‖Ax‖2

2 −
1

2
‖b‖2 underz = AT (b − Ax), ‖z‖∞ ≤ h1

and yk = AT
k (b − Ax), ‖yk‖2 ≤ h2, ∀k.

The Lagrangianℓ(x, z, y, v, s, µ, λ) of this problem is then
1
2
‖Ax‖2

2 − 1
2
‖b‖2

2 − sT (z − AT (b − Ax)) + v(‖z‖∞ − h1)

−
∑

k λT
k (yk−AT

k (b−Ax))+
∑

k µk(‖yk‖2−h2)

and definingφ(v, s, µ, λ) = minx, z, y ℓ(x, z, y, v, s, µ, λ), the
dual problem ismaxv≥0, µ≥0, s, λ φ(s, λ).

In order to evaluateφ(s, λ), we zero the gradient with respect
to x and get

AT Ax = AT As + AT Aλ ⇒ Ax = A(s + λ)

The minimum inz is obtained by zeroing the sub-gradient

s = v ∂‖z‖∞ ⇒ v = ‖s‖1 ≥ 0 and sT z = v‖z‖∞,

and the minimum iny by zeroing the gradient with respect toy

λk = µk
yk

‖yk‖2
⇒ µk = ‖λk‖2 ≥ 0 and λT y =

∑

µk‖yk‖2



By substitution of these results intoℓ(x, z, y, v, s, µ, λ), the dual
problem is found to be

max
s, λ

−1

2
‖A(s + λ) − b‖2

2 − h1‖s‖1 − h2

∑

k

‖λk‖2

and hence the announced result. 2

3.2. Comments

The natural extension of the dual (2) of the GMF (1) to (5), (7) and
now to (10) makes us believe that, in case of overlap, one should
duplicate the unknowns.

In the sequel, we consider an application in which the groups
to be introduced are quite naturally overlapping and we will indeed
build successively the different groups without at any time checking
the possible overlap with previous groups. To solve the (primal)
optimization problem, we transform it into a Second Order Cone
Program (SOCP) which allows to handle complex data as well.

3.3. Tuning the hyper-parameters

In presence of groups of different sizes as in (8) the tuning of the
associated hyper-parametershi is crucial if one wants to keep a cer-
tain coherency in the selection of the atoms. In [6] and [8], one
explains that the tuning can be done by looking at the dual criterion
and has indeed much in common with the tuning of the threshold in
the GLRT. For the case of the criterion (8), it follows from (10) an
assuming that the additive noise present in the observation vectorb
(denotede below) is white and Gaussian with unit variance, one has
to compare the distributions of

max
k

|aT
k e| and max

k

√

(aT
k e)2 + (aT

k+1e)
2.

Given a desired probability of false alarm, i.e. the probability to se-
lect an atomak when the observation vector is just noiseb = e,
these distributions allows to fixh1 andh2 respectively. The ratio
h2/h1 between the two depends upon the correlation between the
columnsak and ak+1. If these two columns were equal, the ra-
tio would be

√
2, in practice the ratio should thus be taken smaller

and function of the expected correlations between the vectors within
the groups. For a arbitrary sizeng it is thus recommended to to
takehg/h1 slightly smaller than

√
ng For a 10% probability of false

alarm, takingh1 =
√

2 ln 2n, as recommended usually, works well.

4. PARAMETRIC ESTIMATION OF A SUM OF
HARMONIC SIGNALS

4.1. Problem description

Within the last decade, the problem of estimating the fundamental
frequency of an harmonic signal in noise has attracted considerable
attention because of its importance in speech denoising [9]. We con-
sider the case where several such signals are buried in white Gaus-
sian noise. We consider the case where the signals are complex and
the additive noise complex white circular Gaussian with varianceσ2

e :

bj =

K
∑

k=1

sk(j) + ej , sk(j) =

L
∑

ℓ=1

αℓ,keiωkℓj (11)

which we write in vector form as

b =
∑

sk + e, sk =
∑

αℓ,k a(ωkℓ) = A(ωk)αk.

with a(ω) = [ 1 eiω .. ei(n−1)ω ]T andA(ω) ann×L matrix asso-
ciated with an harmonic signal with fundamental frequencyω/(2π),

A(ω) = [ a(ω) a(2ω) .. a(Lω) ]. The problem is in general to
identify the fundamental frequenciesfk = ωk/(2π) but the other
parameters are of interest as well. If the true order is known it is
useful to introduce this knowledge into the modeling step.

4.2. Proposed solution

In the context developed in the first part of the paper,b is of course
the observation vector and the columnsak of the A matrix in (1)
are the vectorsa(ω) with ω taken on a grid. For harmonic signal of
maximal orderL, the groups are quite naturally defined and are asso-
ciated with the block matricesA(ω). Depending upon the grid used
for the fundamental frequencies, these groups will be more or less
overlapping. Though complex, we will consider that the frequencies
range from0 to .5 and forL = 3, this means that the fundamental
frequencies range from0 to .5/3 i.e., .15 say.

With the notations introduced above, we propose to solve

min
Zk

1

2
‖b −

∑

m

BmZm‖2
2 + hL

∑

m

‖Zm‖2, (12)

with Bm = Am/
√

n, then×L matrixAm-matrix with normalized
columns whose first column is sayam, i.e. the vectora(ω) evalu-
ated at the m-th point of an M-point grid that covers the potential
fundamental angular frequencies range. According to section 3, the
dual of (12) is

min
z

‖Bz‖2
2 under ‖BH

m(b − Bz)‖2 ≤ hL ∀m, (13)

whereB andz are obtained by concatenation of all theBm andZm

blocks respectively. Or, since these blocks are somehow overlapping
by keeping in the union of the columns of these blocks only the dis-
tinct ones, the two formulations are equivalent and lead to the same
optimal value. There are thusML complex unknowns inz in the
convex optimization problem (12), that is solved by transforming it
into, a second order cone program (SOCP). To get the optimum, we
use the subroutines SeDuMi [10], it is a freely accessible, second or-
der cone programming library that is released under the GNU/GPL
open source license.

As recommended in section 3.3, the parameterhL in (12) is
taken equal toσe(.9

√
L)

√
2 ln 2n where we assumeσe to be known.

Only the order of magnitude ofσe is actually needed since the re-
sults are quite robust with respect to the tuning thehL. Whenb is
composed of a the single harmonic signal, one group or two neigh-
boring groups will then in general have non-zero weights. In the
last case, the fundamental frequency estimate is obtained by linear
interpolation of the frequencies associated with the two groups.

4.3. Simulation results

We have conducted a set of Monte Carlo simulations in order to eval-
uate the statistical properties of the extended GMF compared to the
HMUSIC and the Cramer Rao lower bound. In the first of these sim-
ulations, we simulate only one harmonic signal, considern = 80
observations samples andL = 3 harmonically related cisoids with
each unit amplitude and zero initial phase (αℓ,1 = 1 in (11)) and fun-
damental frequencyf1 = .0945. This example is drawn from [11].
Complex white Gaussian circular noise was added to the signal such
that the SNR defined as

SNR= 10 log10

∑L
ℓ=1 |αℓ,1|2

σ2
e

has the required value. We ran 400 realizations for different
SNR’s and the results are presented in Figure 1 in terms of the MSE



of the angular frequency. Note thatf1 is not on the proposed grid but
falls in the middle of two neighboring points. This is indeed of little
consequence since in any case some interpolation is performed to
deduce the estimates from the location of the non zero components
in z and that, in any case due to the additive noise, the ML estimates
are likely to be on a different grid point or couple of grid points than
the expected one. The Cramer Rao bounds are sensitive to all the
parameters for harmonic signals and a precise development has been
implemented following [12]. The extended GMF remains close to
the CRB over the whole range of SNR. Some outliers appear at -10
dB.
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Fig. 1. A single harmonic signal. Estimate of the fundamental angu-
lar frequency. Cramer Rao bound (lower curve) and MSE for HMU-
SIC (o) and proposed method (*) as a function of the SNR.

In another set of simulations, we test the resolution properties of
the proposed algorithm. The sum of two harmonic signals is consid-
ered with an SNR of 20 dB each. As above, we takeL = 3, unit
amplitudes and zero initial phases for both harmonic signals. The
fundamental frequency of the first,f1, is at .1 and the fundamen-
tal frequency of the second isf2 = f1 + 1/120 and the number of
samples varies fromn=20 to n=120. The Cramer Rao bound of the
angular frequency estimate ofω2 = 2πf2 and the MSE averaged
over1000 independent noise realizations is presented in Figure 2.

5. CONCLUDING REMARKS

In the sparse representations community, there is currently a growing
interest for criterion - and associated algorithms [13]- that allow to
introduce prior knowledge about the observations as for instance a
structure among the basis vectors that leads to grouping these vectors
and seeking sparsity at the group level.

The tuning of the hyper-parameters is then important and it is
explained how this should be done by introducing the duals. Differ-
ent criterion are proposed and it is argued that if an atom belongs to
several groups, it should be duplicated and allocated several weights.

A typical example that is considered, is the estimation of the
fundamental frequencies of a sum of harmonic signals where, if a
fundamental frequency is selected, all its harmonics should be re-
tained in the selection. The performance are close to the CRB over a
range that is larger than for previously proposed algorithms.
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Fig. 2. A two harmonic signals scenario with fundamental frequency
separation 1/120. Estimate of the (upper) fundamental angular fre-
quency . Cramer Rao bound (lower curve) and MSE as a function of
the number of observed samples.
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