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The diffraction of various random subsets of the integer lattice Z¢, such as the coin tossing
and related systems, are well understood. Here, we go one important step beyond and consider
random point sets in R%. We present several systems with an effective stochastic interaction
that still allow for explicit calculations of the autocorrelation and the diffraction measure.
We concentrate on one-dimensional examples for illustrative purposes, and briefly indicate
possible generalisations to higher dimensions.

In particular, we discuss the stationary Poisson process in R? and the renewal process
on the line. The latter permits a unified approach to a rather large class of one-dimensional
structures, including random tilings. Moreover, we present some stationary point processes
that are derived from the classical random matrix ensembles as introduced in the pioneering
work of Dyson and Ginibre. Their re-consideration from the diffraction point of view improves
the intuition on systems with randomness and mixed spectra.

Keywords: diffraction spectra; stochastic point processes; random matrix ensembles.

1. Introduction

Mathematical diffraction theory is an abstraction of kinematic diffraction [10] that
is both mathematically rich and practically relevant. Its insight helps to explore the
true setting and difficulty of the inverse problem of structure determination from
(kinematic) diffraction data; compare [3, 5, 16] and references therein. Moreover,
mathematical diffraction theory has several important connections with the theory
of dynamical systems [6-9].

While this is well studied in the classic case of crystals and, more generally, pure
point diffractive systems, much less is known about structures with continuous (or
mixed) diffraction spectra. The Thue-Morse chain is a well-known example with
singular continuous diffraction, but mixed dynamical spectrum; see [4, 17, 26] for
more. Recently, some progress has also been made for point sets of stochastic origin;
see [2] and references therein for a survey.

Nevertheless, the collection of fully worked out and understood examples is rel-
atively meagre in comparison with the situation of pure point diffractive systems.
Here, we summarise two important and versatile examples from [2] and augment
them with two examples from the theory of random matrices. The latter essentially
derive from old papers by Dyson [12] and Ginibre [15], which were later re-analysed
by Mehta [21], though the results seem unknown in diffraction theory.
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Let us briefly recall the setting of mathematical diffraction theory; see [2, 18] and
references therein for more. The underlying structure is modelled by an essentially
translation bounded measure w, which may be signed or even complex; see [22] for
background on measure theory. The corresponding autocorrelation measure 7y, or
autocorrelation for short, is defined as a volume-weighted limit,

wR*wR

(1)

= l' _—
7T RS Vol(BR)

where wp, denotes the restriction of w to the (open) ball of radius R around the ori-
gin. Moreover, w is the ‘flipped-over’ measure defined by w(g) = w(g) for arbitrary

continuous functions of compact support, with g(z) = g(—z). We implicitly use
the Riesz-Markov representation theorem that allows us to identify regular Borel
measures with linear functionals on the space of continuous functions with com-
pact support. In general, the limit in (1) need not exist, but we will only consider
situations where it does, at least almost surely in the probabilistic sense.

By construction, =y is a positive definite measure, hence it is always Fourier trans-
formable. Here, we follow the convention of [2], with the factor 27 in the exponent
(via e~2™7) rather than in front of the integral. The result is the diffraction 7,
which is a positive measure (by the Bochner-Schwartz theorem [22]) that describes,
loosely speaking, how much intensity is scattered into any given volume of space;
see [10, 18] for more. The diffraction measure has a unique decomposition

~

T=ppt (s + (3)ac (2)
into its pure point part (which is a countable sum of Dirac measures, known as
Bragg peaks), its absolutely continuous part (which comprises everything that can
be expressed by a locally integrable density relative to Lebesgue measure, known
as diffuse scattering) and its singular continuous part (which is everything that
remains, and is often disregarded in crystallography — but see [28]).

The focus of this paper is on systems with structural disorder, which means that
we will see either purely absolutely continuous spectra or mixtures thereof with
pure point spectra. We begin with a review of the Poisson process and the renewal
process, where we follow [2] and adapt it to the concrete setting of crystallography.
Then, we consider some point processes that can be extracted from random matrix
theory and give rise to further examples that are explicitly computable.

2. Poisson process

The homogeneous Poisson process in R? is an ergodic point process that is often
considered as a model for an ideal gas. If p denotes its (point) density, the process
is characterised [2, 13, 14] by the two requirements that the number of points in
a (measurable) set A C R? is Poisson distributed with parameter pA(A), where
A is Lebesgue measure, and that the number of points in sets Ay, As,..., A, are
independent random variables, for any collection of pairwise disjoint, measurable
subsets of R?. The Poisson process is a model for an ideal gas of pointlike particles.

Let us consider such a process, with density p. Due to ergodicity, almost every
realisation of it possesses a natural autocorrelation, and the latter can be calculated
via the Palm measure of the process [2, Thm. 3]|. The result reads

’}/P = p(SO ‘|’ p2)\, (3)
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where d is the normalised Dirac measure at 0. With (% =Xand \ = do, one obtains

Ap =P8+ pA, (4)

which is the diffraction measure. We skip the proof, but mention that, in one
dimension, the result can easily be derived from the renewal theorem discussed in
Section 3, with an exponential waiting time distribution [2]. Apart from the trivial
point measure at 0, the diffraction measure 74 is absolutely continuous.

An interesting modification emerges from a marked Poisson process, where each
point of a given realisation randomly gets the weight 1 or —1 with equal probability.
This leads to the following modification of Egs. (3) and (4).

Theorem 2.1: Consider a typical realisation of the homogeneous Poisson process
of density p in R, which is a simple point set A C R%. Let w = Y ozen We by be
a random Dirac comb where (W), ., constitutes an i.i.d. family of random vari-
ables that take the values 1 and —1 with equal probability. Then, the corresponding
autocorrelation and diffraction measures almost surely read

Yo =po and A, =pA

Proof: This is the situation of the random weight model of [2, Ex. 7], applied to
a stationary Poisson process, which is an ergodic and simple point process. The
result now follows from [2, Thm. 4 and Cor. 1] by a small calculation. O

When the density is p = 1, this is one of many examples with diffraction measure
A, which include the coin tossing sequence on the integer lattice and the Rudin-
Shapiro sequence [5, 17], but also various dynamical systems of algebraic origin [9]
such as Ledrappier’s shift on Z2. This provides ample evidence that the inverse
problem of structure determination becomes significantly more involved in the
presence of diffuse scattering.

One limitation of the Poisson process for applications in physics is the missing
uniform discreteness. This can be overcome by an additional hard-core condition,
as in the classic Matérn process; see [24] and references therein for a formulation
that matches our setting. Here, a realisation of a homogeneous Poisson process is
randomly marked and then thinned out on the basis of a pairwise comparison up
to a certain distance. This leads to a modified point set that is uniformly discrete
(meaning that the minimum distance between any two points is a positive number).
Despite this modification, autocorrelation and diffraction can still be calculated
explicitly; see [2, 20] and references therein for more.

3. Renewal process

The situation of random point sets is significantly simpler in one dimension, be-
cause a large class of processes can be characterised constructively as a renewal
process. Here, one starts from a probability measure g on R (the positive real
line) and considers a machine that moves at constant speed along the real line and
drops points on the line with a waiting time that is distributed according to u.
Whenever this happens, the internal clock is reset and the process resumes. Let us
(for simplicity) assume that both the velocity of the machine and the expectation
value of u are 1, so that we end up with realisations that are, almost surely, point
sets in R of density 1 (after we let the starting point of the machine move to —o0).

Clearly, the process just described defines a stationary process. It can thus be
analysed by considering all realisations which contain the point 0. Moreover, there
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is a clear (distributional) symmetry around this point, so that we can determine
the autocorrelation (in the sense of (1)) of almost all realisations from studying
what happens to the right of 0. Indeed, if we want to know the frequency per unit
length of the occurrence of two points at distance x (or the corresponding density),
we need to sum the contributions that x is the first point after 0, the second point,
the third, and so on. In other words, we almost surely obtain the autocorrelation

¥y =0 +v+v (5)

with v = p+p*xpu+p*pu*pu+ ... and v as defined above, where the proper
convergence of the sum of iterated convolutions follows from [2, Lemma 4]. Note
that the point measure at 0 simply reflects that the almost sure density of the
resulting point set is 1. Indeed, v is a translation bounded positive measure, and
satisfies the renewal relations (see [14, Ch. XI.9] or [2, Prop. 1] for a proof)

v = ptpsv  and  (1-f)0 = fi, (6)

where [i is a uniformly continuous and bounded function on R. Note that the second
equation emerges from the first by Fourier transform, but has been rearranged to
indicate why the set {k | z(k) = 1} will become important below. In this setting,
the measure 7 of (5) is both positive and positive definite.

Based on the structure of the support of the underlying probability measure p,
one can now formulate the following result for the diffraction of the renewal process.

Theorem 3.1: Let p be a probability measure on Ry with mean 1, and assume
that a moment of p of order 1+ ¢ exists for some € > 0. Then, the point sets ob-
tained from the stationary renewal process based on p almost surely have a diffrac-
tion measure of the form

7= (3),,+ Q- n)x,

where h is a locally integrable function on R that is continuous except for at most
countably many points. It is given by

2 (B — Re((k)))
e T T

Moreover, the pure point part is given by

(A) Y if supp(p) is not a subset of a lattice,
Ve = 5Z/b’ if bZ is the coarsest lattice that contains supp(u).

Proof: The process has a well-defined autocorrelation + as outlined above and
given in Eq. (5). Due to the ergodicity of the process, this means that almost every
realisation of the process is a simple point set with this autocorrelation. Since 7 is
positive definite, it is Fourier transformable, with 4 being a positive measure on R.

The point measure at 0 (which is always present) reflects the fact that the result-
ing point set almost surely has density 1; see [2, Thm. 1] and its proof for a detailed
argument. The functional form of A can be calculated from the second renewal re-
lation in (6) whenever fi(k) # 1. Its local integrability everywhere is a consequence
of the assumed moment condition, by an application of [25, Thm. 1.5.4].
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The distinction via the nature of supp(u) takes care of the set {k € R | fi(k) = 1},
which is either {0} or countable. The result now follows from [2, Lemma 5 and
Thm. 1] together with Remark 3 of the same paper. O

The renewal process is a versatile method to produce point sets on the line.
These include random tilings with finitely many intervals (which are Delone sets)
as well as the homogeneous Poisson process on the line (where p is the exponential
distribution with mean 1); see [2, Sec. 3| for explicit examples and applications.

4. Random matrix ensembles and random point sets on the line

The global eigenvalue distribution of random orthogonal, unitary or symplectic
matrix ensembles is known to asymptotically follow the classic semi-circle law. More
precisely, this law describes the eigenvalue distribution of the underlying ensembles
of symmetric, Hermitian and symplectic matrices with Gaussian distributed entries.
The corresponding random matrix ensembles are called GOE, GUE and GSE, with
attached (-parameters 1, 2 and 4, respectively. They permit an interpretation as a
Coulomb gas, where 3 is the power in the central potential; see [1, 21| for general
background and [12] for the results that are relevant to our point of view.

For matrices of dimension N, the semi-circle has radius y/2N/7 and area N.
Note that, in comparison to [21], we have rescaled the density by a factor 1//7
here, so that we really have a semi-circle, and not a semi-ellipse. To study the
local eigenvalue distribution with our application in mind, we rescale the central
region (between +1, say) by /2N/m. This leads, in the limit as N — oo, to a new
ensemble of point sets on the line that can be interpreted as a stationary, ergodic
point process of intensity 1; for § = 2, see [1, Ch. 4.2] or [23] and references therein
for details. Since the process is simple (meaning that, almost surely, no point is
occupied twice), almost all realisations are point sets of density 1.

It is possible to calculate the autocorrelation of these processes, on the basis of
Dyson’s correlation functions [12]. Though the latter originally apply to the circular
ensembles, they have been adapted to the other ensembles by Mehta [21]. For all
three ensembles mentioned above, this leads to an autocorrelation of the form

v =20+ (1 f(lz])X (7)
where f is a locally integrable function that depends on (. Defining s(r) = w,
one obtains (with r > 0)
s(r)? +s'(r) [ s(t) dt, if p=1,
fr) = qs(r)? if =2, (8)

s(2r)? —25'(2r) [, s(2t)dt, if B =4.

The diffraction measure is the Fourier transform of +, which has also been cal-
culated in [12, 21]. Observing 6y = A and A = dy, the result is always of the form

5 = b0 + (1= b(k))A = 0o + h(k) A (9)
where b = f The Radon-Nikodym density h for § = 1 reads

ha (k) = {W —log(2lkl +1)), if [k] <1,

2/k|+1 .
2 — |k| log %, if |k| > 1,
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-2 -1 0 1 2 3

Loy
-3
Figure 1. Absolutely continuous part of the autocorrelation (left) and the diffraction (right) for the three
point set ensembles on the line, with 8 € {1,2,4}. On the left, the oscillatory behaviour increases with

3. On the right, 8 = 2 corresponds to the piecewise linear function with bends at 0 and +1, while g = 4
shows a locally integrable singularity at +1. The latter reflects the slowly decaying oscillations on the left.

where k € R. The result for 6 = 2 is simpler and reads

k[, if k] <1,
ha(k) = 11
2(k) {1, if k| > 1, (1)

while 3 = 4 leads to

ha(k) = .
1, if |k > 2.

(12)

Figure 1 illustrates the three cases. To summarise:

Theorem 4.1: The eigenvalues of the Dyson random matrix ensembles for pa-
rameter 3 € {1,2,4}, in the scaling of the local region around 0 as used above,
almost surely give rise to point sets of density 1, with autocorrelation and diffrac-
tion measures as specified in Eqs. (7) and (9). O

Note that h4 is smooth at £ = £2, but has integrable singularities at k£ = £1.
The latter are a consequence of the stronger oscillatory behaviour of the function
fa at integer values, as was already noticed in [12]. When extrapolating to other
values of  (in particular to § > 4), this is the onset of another Bragg peak.

It is well-known that the circular random matrix ensembles (COE, CUE, CSE)
asymptotically give rise to the same local correlations [12, 21}, and hence to the
same autocorrelation and diffraction (after appropriate rescaling).

5. Random matrix ensembles and random point sets in the plane

The above examples were derived from matrix ensembles with real eigenvalues, and
thus lead to point processes in R. There is also one ensemble, due to Ginibre [15]
(see also [21]), of general complex matrices with Gaussian distributed entries that
will give rise to a stationary point process in R?. Again, this emerges (by proper
rescaling) from the eigenvalues (now seen as elements of the plane), which approach
uniform distribution in a circle of radius y/N/7 (and hence area N) as N — oo.

As before, the system can be interpreted as a Coulomb gas, with a potential
parameter 8 = 2. Other matrix ensembles permit this interpretation, too, but do
not seem to correspond to interesting stationary processes, wherefore we stick to
Ginibre’s example here.
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1k

-2 -1 1 2

Figure 2. Radial dependence of the absolutely continuous part both of the autocorrelation and the diffrac-
tion measure for the planar point set ensemble, as derived from Ginibre’s matrix ensemble.

Following the original approach of [15], the limit N — oo leads to a stationary
and ergodic, simple point process of intensity 1, so that almost every realisation
is a point set in the plane of density 1. Using complex variables z; € C ~ R?, the
2-point correlation function is of determinantal form,

w2, |2 w2z 2
=7z 2 +]2)?) |€77Y € _ —7| 2, —2,|?
p(zl’ZZ) =€ (=2 = ) 67'('2_122 e7r|22\2 - (1 —€ 171~ 2] )a (13)

see [15] or [21] for a derivation. Note that, despite using complex coordinates here,
the expression is calculated relative to the volume element of real coordinates
(hence relative to Lebesgue measure, as in [21]). The result is translation invariant
and only depends on the distance r between the two points.

As a consequence, the autocorrelation of a realisation almost surely reads

2

3= 00 (L), (14

which is radially symmetric, with 7 as above. By a standard calculation, the Fourier
transform of v results in

F =080+ (1 —e ™FH) A (15)

so that we obtain a self-dual pair of measures under Fourier transform (as in the
Poisson process of density 1). The radial dependence is illustrated in Figure 2.

Theorem 5.1: The Ginibre complex random matrix ensemble, in the scaling used
above, almost surely results in point sets of density 1, with autocorrelation (14) and
diffraction (15). O

6. Summary and Outlook

In this short communication, we have discussed several explicit examples of stochas-
tic point sets with explicitly computable autocorrelation and diffraction measures.
The viewpoint of point process theory provides a universal platform to do so,
though our examples above also admit a direct approach. It would be interesting to
extend this to a family of processes, with 3 as parameter in the spirit of [11, 19, 27],
which then interpolates between the Poisson process of density 1 (8 = 0) and the
integer lattice (which is approached as § — o).
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An interesting question concerns the connection with dynamical systems theory,
in particular the general relation between diffraction and dynamical spectra. Re-
cent progress suggests that such a connection might indeed exist, although it will
certainly be more involved than in the pure point diffractive case.

One fundamental shortcoming so far is the lack of understanding and explicit
examples for randomness with interaction. A first step in that direction needs the
inclusion of Gibbs measures for equilibrium states, though it is not clear at the
moment to what extent one can derive explicit examples (such as the classic and
well-known Ising lattice gas).
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