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Abstract. In this paper, I prove two existence results for regular eigenforms on finitely
ramified fractals. The first result shows the existence of a regular eigenform for suitable
weights, on fractals with the only assumptions that the boundary cells are separated and
the union of the interior cells is connected. This result improves previous results, and
works for many of the usually considered finitely ramified fractals. The second result shows
the existence of a regular eigenform in the general case of finitely ramified fractals, in
the setting considered, for example, in the book of Strichartz. In this more general case,
however, the eigenform is not necessarily on the given structure, but on a suitable power
of it. In any case, as the fractal generated is the same as the original fractal, the result
provides a regular self-similar energy on the given fractal.

MSC: 31C25, 28A80, 47H10

1. Introduction

The subject of this paper is that of analysis on finitely ramified fractals. The Sierpinski
Gasket, the Vicsek Set and the Lindstrøm Snowflake are finitely ramified fractals, while the
Sierpinski Carpet is not. The essential reason is that, in the Sierpinski Carpet, some two
cells intesect at a segment line and not only at finitely many points. J. Kigami introduced
in [3] a general class of finitely ramified fractals, called P.C.F. self-similar sets. The general
theory of P.C.F. self-similar sets and many examples can be found in [4]. In this paper,
I essentially consider P.C.F. self-similar sets with a mild additional hypothesis − as e.g.
considered in [10] − that is, I require that every point in the initial set is a fixed point of
one of the contractions defining the fractal. I will only consider connected fractals.

One of the main problems in analysis on finitely ramified fractals is the construction
of self-similar Dirichlet forms, i.e. energies, on them, and the basic tool to do this is
the construction of a self-similar discrete Dirichlet form defined on a finite subset V (0)

of the fractal, which is a sort of boundary of the fractal, but not in a topological sense.
Such Dirichlet forms on V (0) are self-similar in the sense that they are eigenforms, that is,
eigenfunctions of a special nonlinear operator Λr, depending on a set of positive numbers
ri (called weights) put on the cells, often called renormalization operator. More precisely,
I will call r-eigenform an eigenfunction of Λr and G-eigenform (short for generalized eigen-
form) an r-eigenform fo some r. In [5], [9] and [6] criteria for the existence of an eigenforms
with prescribed weights are discussed. In particular, in [5], T. Lindstrøm proved that there
exists an eigenforms on the nested fractals with all weights equal to 1, C. Sabot in [9] proved
a rather general criterion, and V. Metz in [6] improved the results in [9].
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In this paper I consider, instead, the problem whether on a given fractal there exists a
set of weights r such that the operator Λr has an eigenform, in other words whether there
exist a G-eigenform. In fact, an open problem is

Does a G-eigenform exist on every P.C.F.self-similar set? (C)

Results about this problem, so far, have been given in [1], in [7] and in [8]. In [1], a
method is described that permits to prove the existence of a G-eigenform on fractals with
three vertices with some additional, relatively mild, conditions, and on fractals with more
than three vertices, but with stronger symmetry assumptions. In [7], the existence of
a G-eigenform is proved in the general case of fractals with three vertices. In [8] the
existence of a G-eigenform is proved on a relatively general class of fractals, called nicely
separated fractals, with an arbitrary number of vertices, and with no symmetries. However,
the eigenform turns out to be regular only on a subclass of those fractals, which in any
case contains new and nontrivial examples of fractals having a G-eigenform. In [1], the
method consists of approximating a collapsed simpler structure in which there is existence
and uniqueness of the eigenform, by putting weights tending to infinity on the interior
(i.e., containing no vertices) cells. In [7] the existence result follows from a connectedness
argument. In [8], the existence of a G-eigenform is proved using an approximation method
combined with a fixed point argument. Namely, if we say that a map is stably fixed if it
is continuous and maps a suitable nonempty compact and convex set into its interior, we
note that a sufficiently close approximation of a stably fixed map has a fixed point. Now,
in [8], roughly speaking, Λr, or more precisely, a sort of normalization of it, on the given
fractal, tends, when some weights tend to infinity (and possibly other weights to 0), to a
stably fixed map.

In the present paper, I prove two existence results. In the first, proved in Section 4,
I merely require that the boundary (i.e., containing a vertex) cells are mutually disjoint
and that the set of interior cells is connected, and prove that on such fractals there exists
a regular G-eigenform. Such a result improves both the result of [1], in that it does not
require any sort of symmetry, and that of [8], in that it does not require any technical
condition on the intersection of the boundary cells with the interior cells. The method
of proof is similar to that in [8], in the sense that here I use the idea (introduced in
[1]) of putting weights tending to infinity on the interior cells, and the corresponding Λr
approximate a stably fixed map on a collapsed structure.

The difference is that in [8] the map is a rather technical form of normalization of Λr,
and this as a natural normalization of Λr (e.g., Λr divided by its norm) fails to be a stably
fixed map. In the present paper, instead of using the map E 7→ Λr(E) with fixed r, I use
a map of the form E 7→ Λr(E)(E), where r is a suitable continuous function. A natural
normalization of the map obtained by this simple device is in fact a stably fixed map. The
proof in the present paper definitely simplifies that in [8].

The second result, proved in Section 8, provides a solution of conjecture (C) in a weak
form, that is, I prove that, in the setting considered in the present paper, we have in any
case an eigenform, but not necessarily on the given fractal structure, but on a suitable
n-power of it, for sufficiently large n. Roughly speaking, this means that a fractal K
can be defined by a set {ψ1, ..., ψk} of one-to-one maps from K to K, and we especially
investigate the behaviour of ψi on a special finite subset V (0) of K, which I previously
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mentioned in this Introduction. On the other hand, K can also be defined by the set of
maps {ψi1,...,in : i1, ..., in = 1, ..., k}, for some positive integer n. Thus, we can say that
such a set is the n-power of the original set of maps. The details about such considerations
can be found in beginning of Section 3 and in section 5. Note that, in any case, the result
proved in Section 8, provides a self-similar energy on the fractal, the self-similarity being
intended with respect to the n-power of the set of maps.

The method of proof is a variant of that of the result in Section 4. Any n-power with
n > 1 satisfies the condition that the boundary cells are mutually disjoint, but in general
there is no reason that it is with connected interior for some n. Thus, we have to split the
set of interior cells into components. Then, roughly speaking, the idea is that of working
separately on every component to get relations on the weights of the components, and
gluing suitably such relations. Sections 6-8 are devoted to such a construction.

2. Notation

First of all, I recall some notion on graphs. A graph is a pair (A,G) where A is a set
and G is a set of subsets of A having precisely two elements. I will also say that G is a
graph on A. If {d, d′} ∈ G, we say that d and d′ are G-close or simply close, and write
d∼
G
d′ or simply d ∼ d′. I will say that a sequence (d0, d1, ..., dn), n ≥ 0, of elements of A

connects d and d′ (or d to d′) if d0 = d and dn = d′; that it is a path if di−1 ∼ di for every
i = 1, ..., n; that it is a weak path if either di−1 = di or di−1 ∼ di, for every i = 1, ..., n;
that it is a simple path if it is a path and moreover, the elements di, except possibly for
d0 and dn, are all different. In such a case, we say that a weak path connects d and d′ in
a subset A′ of A if di ∈ A′ for every i = 1, ..., n − 1, and that d and d′ are connected in
A′ if there exists a path connecting d and d′ in A′. Note that by weak path in a set A,
we will mean that all its elements, but the first and the last, are in A, while by weak path
contained in A we will mean that all its elements are in A. We say that a subset A′ of
A is connected if any two elements of it are connected in A′. It is easy to verify that the
following a), b), c) are equivalent

a) There exists a path connecting d and d′ in A′,

b) There exists a weak path connecting d and d′ in A′,

c) There exists a simple path connecting d and d′ in A′.

Thus, in the previous definitions it is equivalent to consider a path or a weak path or a
simple path. If necessary, in the previous definitions, we will stress the relation with G
and write for example G-connected, G-path and so on.

In the sequel, I will use the obvious notation RA to denote the linear space of the
functions from a set A to R and for every t ∈ R, tA will denote the function in RA taking
the value t at every point of A. In case A = {1, ..., n}, I will write Rn for RA as usual, and
t(n) for tA. I will use the restriction of an element of RA to a subset B of A in its obvious
sense, which can also be interpreted as the projection on RB . I will say that a subset C of
RA is bounded on B ⊆ A if there exists a constant K such that |xb| ≤ K for all x ∈ C and
b ∈ B and that C is bounded if it is bounded on A. Note that if A is finite, then bounded
amounts to bounded in the norm. I will denote by pA,B such a projection. I will denote
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by iA,B the inclusion from RB to RA defined by iA,B(f)(a) =

{
f(a) if a ∈ B

0 otherwise
. In the

following we denote a finite set V having at least two elements, by V = {Pj : j ∈ N} where
N is a finite subset of N \ {0}. Let J(= J(N )) = {{j1, j2} : j1, j2 ∈ N , j1 ̸= j2}. With
a light abuse of notation, we will also write J = J((V )). Tipically, N = {1, 2, ...N}, thus
V = {P1, ..., PN}, N ≥ 2. Note that in such a case #J = M where M = n(n−1)

2 . I will
denote by D(V ) or simply D the set of the Dirichlet forms on V , invariant with respect to
an additive constant, i.e., the set of the functionals E from RV into R of the form

E(u) =
∑

{j1,j2}∈J

c{j1,j2}(E)
(
u(Pj1)− u(Pj2)

)2
with c{j1,j2}(E) ≥ 0. I will denote by D̃(V ) or simply D̃ the set of the irreducible Dirichlet

forms, i.e., E ∈ D̃ if E ∈ D and moreover E(u) = 0 if and only if u is constant. Note that
every E ∈ D is uniquely determined by its coefficients, namely

c{j1,j2}(E) =
1

4

(
E(χ{Pj1} − χ{Pj2})− E(χ{Pj1} + χ{Pj2})

)
(2.1)

χA denoting the characteristic function of a set A for every E ∈ D. Thus, we could identify
E ∈ D with the set of its coefficients in Q := [0,+∞[J . However, as I will also define the
set of effective resistances, in order to avoid possible confusion in the interpretation of an
element of Q, I will explicitly define this identification as a map. Let Q̃ be the set of q ∈ Q
such that the graph Gr(= Gr(q)) on N defined by

{
{j1, j2} : q{j1,j2} > 0

}
is connected.

Note that Q̃ ⊇]0,+∞[J . Now, we define the bijection I from Q to D in the following
way:

Given q ∈ Q we put I(q) to be the element of D such that cd
(
I(q)

)
= qd for every d ∈ J .

In other words,

I(q)(u) =
∑

{j1,j2}∈J

q{j1,j2}
(
u(Pj1)− u(Pj2)

)2
.

Note that I maps bijectively Q̃ onto D̃. We also have q{j1,j2} = 1
4

(
I(q)(χ{Pj1} −χ{Pj2})−

I(q)(χ{Pj1} + χ{Pj2})
)

∀ {j1, j2} ∈ J ,. We define

|q| :=
∑
d∈J

qd ∀ q ∈ Q, Ba =
{
q ∈ Q̃ : |q| < a

}
.

so that

I(q)(u) ≤ |q|I(1J )(u) . (2.2)

The problems in this papers, in fact, only concern the sets D̃ and Q̃. The sets D and
Q play a merely auxiliary role. I now recall standard results, and, since their proofs are
well-known, I will omit them, except for Lemma 2.4 which is less standard.
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Lemma 2.1. For every qn, q ∈ Q, the following are equivalent
i) qn −→

n→+∞
q

ii) I(qn) −→
n→+∞

I(q) pointwise

iii) I(qn) −→
n→+∞

I(q) uniformly on the compact subsets of RV .

I now recall the notion of the restriction of an element of D. Given u ∈ RV ′
, put

LV,V ′(u) = {v : V → R : v = u on V ′} ,

L′
V,V ′(u) = {v ∈ LV,V ′(u) : minu ≤ v ≤ maxu} .

Given E ∈ D, a nonempty subset V ′ of V and u ∈ RV ′
, I denote by

EV ′(u) = inf
{
E(v) : v ∈ LV,V ′(u)} .

It is well-known that inf
{
E(v) : v ∈ LV,V ′(u)} = inf

{
E(v) : v ∈ L′

V,V ′(u)} and the infima
are in fact minima It follows that for every E ∈ D, min

LV,V ′ (u)
E is attained at some function

HV,V ′,E(u), and we can choose such a function belonging to L′
V,V ′(u). If E ∈ D̃, such a

function is unique.

Lemma 2.2. If E ∈ D̃, then there exist positive c1, c2 such that

c1(Osc(u))
2 ≤ E(u) ≤ c2(Osc(u))

2 ∀u ∈ RV .

Lemma 2.3. If E ∈ Q and V ′′ ⊆ V ′ ⊆ V , then (EV ′)V ′′ = EV ′′ .

Lemma 2.4.
i) The map (q, u) 7→ I(q)(u) from Q(V )× RV to R is continuous

ii) The maps (q, u) 7→ HV,V ′,I(q)(u) from Q̃(V )× RV ′
to RV and (q, u) 7→ I(q)V ′(u) from

Q(V )× RV ′
to R are continuous.

Proof. i) and the first statement of ii) are well-known. For the second, let (qn, un) ∈ Q(V )×
RV ′

such that (qn, un) −→
n→+∞

(q, u) ∈ Q(V ) × RV ′
. Then, I(qn)V ′(un) = I(qn)(vn) and

vn ∈ L′
V,V ′(un), I(qn)(vn) ≤ I(qn)(v) ∀ v ∈ LV,V ′(un). As minun ≤ vn ≤ maxun, and

A ≤ un ≤ B for some A,B ∈ R, taking a subsequence, we can assume that vn −→
n→+∞

w ∈

RV . We have w ∈ LV,V ′(u). Moreover, given v ∈ LV,V ′(u), taking vn ∈ LV,V ′(un) such
that vn = u on V \ V ′, then vn −→

n→+∞
v. Therefore, I(qn)(vn) ≤ I(qn)(vn), and, passing

to the limit, in view of Lemma 2.4, we get lim
n→+∞

I(qn)V ′(un) = I(q)(w) ≤ I(q)(v), hence
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I(qnh
)V ′(unh

) −→
h→+∞

I(q)V ′(u). Thus, every subsequence of I(qn)V ′(un) has a subsequence

convergent to I(q)V ′(u), thus I(qn)V ′(un) −→
n→+∞

I(q)V ′(u) .

Lemma 2.5. We have EV ′ ∈ D̃(V ′) for every E ∈ D̃(V ) and EV ′ ∈ D(V ′) for every
E ∈ D(V ).

Lemma 2.6. If E ∈ D̃, the function v := HV,V ′,E(u) is the unique function from V to R
having the following properties:
i) v = u on V ′

ii)
∑
j′ ̸=j

c{j,j′}(v(Pj)− v(Pj′)) = 0 for every Pj ∈ V \ V ′.

Also, HV,V ′,E is linear on RV ′
, and HV,V ′,E(c) = c for every constant c.

I will now introduce the notion of effective resistances, which will play a key role in the
following. Its reciprocal can be also called effective conductivity. The importance of such
notions is related to the fact that they are simpler to evaluate in combinations of sets than
the actual conductivities cj1,j2 , e.g. there are the rules of resistances in series or simlar.
Given two nonempty disjoint subsets (shortly nptdss) of V A and B, we put

LV ;A,B =
{
v ∈ RV : v(P ) = 0 ∀P ∈ A, v(P ) = 1 ∀P ∈ B

}
,

L′
V ;A,B =

{
v ∈ LV ;A,B : 0 ≤ v ≤ 1

}
.

and if q ∈ Q, we recall that the effective resistance R̂(q){A,B} is defined by

R̂(q){A,B} =
1

I(q)A∪B(χB)
=

1

inf
{
I(q)(v)| v ∈ LV ;A,B

} .
Put also

R(q){j1,j2} = R̂(q){{Pj1},{Pj2}} =
1

inf
{
I(q)(v)| v ∈ LV ;{Pj1},{Pj2}

}
when {j1, j2} ∈ J . This is the most usual case (effective resistance between two points).

In the sequel, we will put (1/R̂)(q) = (R̂(q))−1, and (1/R)(q) = (R(q))−1. In the previous
definition we use the convention 1

0 = +∞. Note that, as, given v ∈ RV , we have

v ∈ LV ;A,B ⇐⇒ 1− v ∈ LV ;B,A, E(v) = E(1− v) ∀E ∈ D

thus the definition of R̂(q){A,B} is in fact independent of the order of A and B. In fact,

Also, R̂(q){A,B} ∈]0,+∞[ if q ∈ Q̃. I will know discuss simple properties of effective
resistances.

Lemma 2.7. If q ∈ Q and {j, j′} ∈ J , then

i) R(q){j,j′} < +∞ if and only if j and j
′
are connected in Gr.
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ii) If j and j
′
are connected in Gr, and C is their component, then

R(q){j,j′} = R(q|J(C)){j,j′} < +∞ .

Lemma 2.8.
i) The map (1/R) : Q → [0,+∞[J is one-to-one and continuous.
ii) The set R(]0,+∞[J ) is an open set in ]0,+∞[J , and R is a homeomorphism from
]0,+∞[J onto its image.

iii) The map R is a homeomorphism from any bounded subset of Q̃ onto its image.

iv) For every R ∈ R(Q̃), there exists U neighbourhood of R such that R
−1

(U) is a bounded

subset of Q̃.

Proof. i) The map (1/R) is continuous by Lemma 2.4. Moreover, it is one-to-one on Q̃ by
[4], Theorem 2.1.12. We are going to prove it is one-to-one on Q, by reducing this case to
that on Q, using Lemma 2.7. Namely, Let q1, q2 ∈ Q, and suppose R(q1) = R(q2). We have

two possibilities: either j and j
′
are not connected in Gr(q1) (or equivalently in Gr(q2))

and thus (q1){j,j′} = (q2){j,j′} = 0 or j and j
′
are connected in Gr(q1) . In the latter case, if

C denotes their component both in Gr(q1) and in Gr(q2), then (q1)|J(C), (q2)|J(C) ∈ Q̃(V ′)

where V ′ := {Pj : j ∈ C}, and by Lemma 2.7 again, R((q1)|J(C)) = R((q2)|J(C)){j1,j2}
on J(C). Thus, (q1)|J(C) = (q2)|J(C), in particular, (q1){j,j′} = (q2){j,j′}. In conclusion,

(q1){j,j′} = (q2){j,j′} for each {j, j′} ∈ J and i) is proved.

ii) follows from the well known statement that a one-to-one continuous map from an open
set in Rn into Rn is open, i.e., sends open sets into open sets.
iii) Let F be a bounded subset of Q̃. Then (1/R) is continuous and one-to-one, thus a
homeomorphism, from the compact set F onto its image. By restricting it, (1/R) is a
homeomorphism from F onto its image.
iv) We have Rd ≥ A > 0 for every d ∈ J . Take U neighbourhood of R such that for every

R′ ∈ U we have R′
d >

A
2 for every d ∈ J . For every q ∈ R

−1
(U) we have qd ≤ 2

A for every
d ∈ J . In fact, if there exists {j1, j2} ∈ J such that q{j1,j2} >

2
A , then

I(q)(v) ≥ q{j1,j2} ∀ v ∈ LV ;Pj1 ,Pj2
.

Thus (1/R)(q){j1,j2} >
2
A , and R(q){j1,j2} <

A
2 , but R(q) ∈ U , a contradiction. Moreover,

given R′ ∈ U , we also have R′ ∈ RJ , hence R′
d < +∞ for every d ∈ J . Therefore, for every

q ∈ R
−1

(U) and {j1, j2} ∈ J , we have R(q){j1,j2} < +∞, thus j1 and j2 are connected in

Gr(q) by Lemma 2.7 i), and q ∈ Q̃.

Remark 2.9. If A B are nptdss of V and q ∈ Q, then

min
{
I(q)(v) : v ∈ RV : v(P ) = t1 ∀P ∈ A, v(P ) = t2 ∀P ∈ B

}
= (t1−t2)2(1/R̂)(q)A,B .
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3. The fractal general setting.

I will now define the fractal setting, which is based on that in [7]. This kind of approach was
firstly given in [2]. We define a fractal by giving a fractal triple, i.e., a triple (V (0), V (1),Ψ)
where V (0) and V (1) are finite sets with #V (0) ≥ 2, and Ψ is a finite set of one-to-one
maps from V (0) into V (1) satisfying

V (1) =
∪
ψ∈Ψ

ψ(V (0)) .

We put V (0) =
{
P1, ..., PN

}
, and of course N ≥ 2. A set of the form ψ(V (0)) with ψ ∈ Ψ

will be called a cell or a 1-cell. We require that

a) For each j = 1, ..., N there exists a (unique) map ψj ∈ Ψ such that ψj(Pj) = Pj, and
Ψ =

{
ψ1, ..., ψk

}
, with k ≥ N .

b) Pj /∈ ψi(V
(0)) when i ̸= j (in other words, if ψi(Ph) = Pj with i = 1, ..., k, j, h = 1, ..., N ,

then i = j = h).

c) Any two points in V (1) can be connected by a path whose any edge belongs to a 1-cell,
depending of the edge.

Of course, it immediately follows V (0) ⊆ V (1). Let W =]0,+∞[k. We put D̃ = D̃(V (0)),
and in general we will consider the previous setting with V = V (0). Put Vi = ψi(V

(0)) for
each i = 1, ..., k and put

V (B) :=
∪
i∈B

Vi

(
⊆ V (1)

)
for B ⊆ {1, ..., k}. I will consider the graph G on {1, ..., k}, whose edges are the sets of the
form {i1, i2} such that Vi1 ∩ Vi2 ̸= ø. In view of c), it easily follows that G is a connected
graph.

Next, I recall the definition of the renormalization operator Λr. For every u ∈ RV (0)

,
every E ∈ D and every r ∈W , let

Λr(E) =
(
S′′
r (E))V (0) , S′′

r (E) : RV
(1)

→ R, S′′
r (E)(v) :=

k∑
i=1

riE(v ◦ ψi) .

Note that Λr maps D into itself and D̃ into itself. The problem discussed in the present
paper is that of the existence of a G-eigenform in D̃, in other words, the existence of E ∈ D̃
such that Λr(E) = ρE for some ρ > 0 and r ∈W . Let

Λ̂r(q) = Λ̂(r, q) := I
−1 ◦ Λr ◦ I(q) ∀ q ∈ Q .

Note that Λ̂r maps Q into itself and Q̃ into itself.

Lemma 3.1. The map Λ̂ from W ×Q to Q is continuous.

Proof. The map q 7→ I(q)(u) from Q to R is continuous for every u ∈ RV (0)

. As a
consequence, the map (r, q) 7→ S′′

r (I(q))(v) from W × Q to R is continuous for every
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v ∈ RV (1)

. Thus, the map (r, q) 7→ I
−1

(
S′′
r (I(q))

)
from W ×Q to Q(V (1)) is continuous.

By Lemma 2.4, the map (r, q) 7→ Λr(I(q))(u) is continuous for every u ∈ RV (0)

. Hence,

the map (r, q) 7→ I
−1

(
Λr(I(q))

)
= Λ̂(r, q) is continuous.

Given A ⊆ {1, ..., k}, s ∈]0,+∞[A and t ∈]0,+∞], we define ιt(s) ∈W by

ιt(s)i =

{
si if i ∈ A

t if i /∈ A ,

More generally, we define

S′′
r,i,B(Ei)(v) =

∑
i∈B

riEi(v ◦ ψi),

when Ei ∈ D̃ for every i ∈ B, when ø ̸= B ⊆ {1, ..., k}, r ∈]0,+∞[B, v ∈ RV (B). Also, put

S′
r,i,B(qi) = S′′

r,i,B(I(qi)),

when qi ∈ Q̃ for every i ∈ B, in other words, q : B → Q̃. We put shortly S′
r,B(qi) for

S′
r,i,B(qi), and S

′′
r,B(Ei) = S′′

r,i,B(Ei). The following lemma is substantially well-known.

Lemma 3.2. We have S′
r,B(qi) ∈ D

(
V (B)

)
, and, if B is connected in G, then S′

r,B(qi) ∈
D̃
(
V (B)

)
.

Put Sr,B(q) = I
−1(

S′
r,B(q)

)
, Sr,i,B(qi)(= Sr,B(qi)) = I

−1(
S′
r,B(qi)

)
. We will shortly write

S′
r for S′

r,B, S
′′
r for S′′

r,B and Sr for Sr,B when B = {1, ..., k}. Moreover, when qi = q for
every i ∈ B, we can put S′

r,B(qi) = S′
r,B(q) and similarly in the other cases. The following

lemmas will be useful in the sequel.

Lemma 3.3. For every q ∈ Q̃ and {j1, j2} ∈ J we have

R̂
(
Λ̂r(q)

)
{Pj1},{Pj2}

= R̂
(
Sr(q)

)
{Pj1},{Pj2}

.

Proof. This is a particular case of Lemma 2.3.

Lemma 3.4. The map (q, r) 7→ R̂
(
Sr,B(q)

)
{A,B} is continuous from Q×]0,+∞[B→

]0,+∞], for every ø ̸= B ⊆ {1, ..., k} and A,B nptdss of V (B).

Lemma 3.5. if s : B →]0,+∞[, with i ∈ B ⊆ {1, ..., k}, qi ∈ Q, then, if A, B are nptdss

of V (0), then R̂(Ss,{i}(qi)){ψi(A),ψi(B)} = 1
si
R̂(qi){A,B} .

Proof. For every v ∈ V R
i , we have I(Ss,{i}(qi))(v) = I(siqi)(v ◦ψi) and we conclude by the

definition of R̂, identifying V (0) with Vi via ψi.
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Remark 3.6. Suppose ø ̸= B1 ⊆ B2 ⊆ {1, ..., k}, r ∈]0,+∞[B2 , v ∈ RV (B2). Then

S′
r,B1

(q)(v) ≤ S′
r,B2

(q)(v). Therefore, if A,B are nptdss of V (B1), then R̂
(
Sr,B1(q)

)
{A,B} ≥

R̂
(
Sr,B2(q)

)
{A,B}.

We say that two subsets B and B′ of {1, ..., k} are separated if V (B) ∩ V (B′) = ø, in
other words, if Vd ∩ Vd′ = ø when d ∈ B, d′ ∈ B′. Of course two separated subsets are
disjoint, but the converse does not hold.

We will now prove two important lemmas (Lemma 3.7 and Lemma 3.9) concerning the
relation between the effective conductivity with respect to a set A and with respect to
a subset of A. In particular, in part ii) of Lemma 3.7, roughly speaking, we prove that
putting conductivity equal to infinity on a subset amounts to collapsing such a set. A
similar consideration is given in [1]. Note that, for the uniform convergence, in place of
the more natural condition of (s, q) staying on compact sets, I here require a weaker and a
bit technical condition, that however, apparently is necessary for the sequel (Lemma 8.4).

Lemma 3.7. Let B1,B2,B3,B4 be subsets of {1, 2, ..., k}. Suppose B1,B2,B3,B4 are

mutually disjoint and B1,B2,B4 are mutually separated. Put A :=
4∪
i=1

Bi. Suppose M1 =

V (B1)∩V (B3) ̸= ø, M2 = V (B2)∩V (B3) ̸= ø. Let A1 ⊆ V (B1), A2 ⊆ V (B2) and suppose
A1 ∩M1 = ø, A2 ∩M2 = ø, A1 and A2 nonempty. Then,

i) R̂(Ss′,A(q)){A1,A2} ≥ R̂(Ss,B1(q)){A1,M1} + R̂(Ss,B2(q)){A2,M2} if s′ ∈]0,+∞[A , s =
s′|B1∪B2∪B4

ii) If moreover, B3 is connected (in G), then

R̂(Sιt(s),A(q)){A1,A2} −→
t→+∞

R̂(Ss,B1(q)){A1,M1} + R̂(Ss,B2(q)){A2,M2}

for (s, q) ∈]0,+∞[B1∪B2∪B4×Q̃, and the convergence is uniform for (s, q) in any subset Z

of ]0,+∞[B1∪B2∪B4×Q̃ where q ∈ K, si ≤ A for every i ∈ B5 and the right-hand side of

formula in ii) is ≤ B, with K compact subset of Q̃ and B5 is the set of i ∈ B1 ∪ B2 ∪ B4

such that Vi ∩ V (B3) ̸= ø and A and B are positive constants.

Proof. Let s and q be as above, and let E = I(q). Then,

(1/R̂)
(
Ss′,A(q)

)
{A1,A2}

= inf
v∈LV (A);A1,A2

(
S′
s,B1∪B2∪B4

(q)(v) + S′
s′,B3

(q)(v)
)

(3.1)

Let

S = inf
v∈L

S′
s′,A(q)(v), L :=

{
v ∈ LV (A);A1,A2

: v constant on V (B3)
}
.)

We clearly have S = Ŝ where

Ŝ = inf
τ∈R

(
τ2(1/R̂)

(
Ss,B1(q)

)
{A1,M1}

+ (1− τ)2(1/R̂)
(
Ss,B2(q)

)
{A2,M2}

)
In fact, if v ∈ L, then v = τ on V (B3) for some τ ∈ R. Hence,
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S′
s,B1∪B2∪B4

(q)(v) + S′
s′,B3

(q)(v)
)
≥ S′

s,B1
(q)(v) + S′

s,B2
(q)(v)

≥ τ2(1/R̂)
(
Ss,B1(q)

)
{A1,M1}

+ (1− τ)2(1/R̂)
(
Ss,B2(q)

)
{A2,M2}

≥ Ŝ

by Lemma 2.9, hence S ≥ Ŝ. On the other hand, let τ attain the inf in the definition of
Ŝ. For such a τ , by Lemma 2.9 again, there exist v1 ∈ RV (B1) and v2 ∈ RV (B2) such that

v1 = 0 on A1, v1 = τ on M1 S′
s,B1

(q)(v1) = τ2(1/R̂)
(
Ss,B1(q)

)
{A1,M1}

v2 = 1 on A2, v2 = τ on M2 S′
s,B2

(q)(v2) = (1− τ)2(1/R̂)
(
Ss,B2(q)

)
{A2,M2}

.

Now, defining v ∈ RV (A) by v(Q) =


v1(Q) if Q ∈ V (B1),

v2(Q) if Q ∈ V (B2),

τ otherwise

we easily see that v ∈ L.

Moreover, S′
s′,A(q)(v) = Ŝ and formula Ŝ = S is proved. By a standard argument, we

thus obtain 1

S
= R̂(Ss,B1(q)){A1,M1} + R̂(Ss,B2(q)){A2,M2} and, by the definition of S, i)

is proved. In order to prove the convergence in ii), we will show that for every ε > 0, for
every (s, q) ∈ Z, for sufficiently large t, we have

(1/R̂)(Sιt(s),A(q)){A1,A2} ≥ S − ε

Take η ∈]0, 1[ so that if v, v′ : V (B5) → [−1, 2] and max |v − v′| ≤ η, then∣∣S′
s,B5

(q)(v)− S′
s,B5

(q)(v′)
∣∣ ≤ A

∑
i∈B5

∣∣I(q)(v ◦ ψi)− I(q)(v′ ◦ ψi)
∣∣ < ε (3.2)

As q ∈ K with K compact, there exists c1 > 0 such that I(q)(u) ≥ c1I(q)(u) for every

u ∈ RV (0)

, where q is a fixed element of K. By Lemmas 2.2 and 3.2, for every v ∈ RV (B3),
we thus have

S′
1,B3

(q)(v) ≥ c1S
′
1,B3

(q)(v) ≥ c1H
(
Osc
V (B3)

v
)2

for some positive constant H. Hence, if vt ∈ L′
V (A);A1,A2

realizes the infimum in (3.1), as

we have proved S ≥ Ŝ, we obtain

S ≥ S′
s,B1∪B2∪B4

(q)(vt) + tS′
1,B3

(q)(vt) ≥ tc1H
(
Osc
V (B3)

vt
)2

thus, for every ε > 0, for sufficiently large t, we have Osc
V (B3)

vt ≤ η. Therefore, there exists

a constant C such that |vt − C| ≤ η on V (B3). Let now vt(Q) =

{
vt(Q) if Q /∈ V (B3)

C if Q ∈ V (B3)
,

vt ∈ RV (A). Thus, max |vt − vt| ≤ η, and by (3.2), putting B =
(
B1 ∪ B2 ∪ B4

)
\ B5, we

have
∣∣S′
s,B1∪B2∪B4

(q)(vt)− S′
s,B1∪B2∪B4

(q)(vt)
∣∣ = ∣∣S′

s,B5
(q)(vt)− S′

s,B5
(q)(vt)

∣∣ < ε as vt, vt
take value in [−1, 2]. Thus, we have
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(1/R̂)(Sιt(s),A(q)){A1,A2} = S′
s,B1∪B2∪B4

(q)(vt) + tS′
1,B3

(q)(vt)

≥ S′
s,B1∪B2∪B4

(q)(vt)− ε = S′
ιt(s),A(q)(vt)− ε ≥ S − ε

and we easily conclude.

Remark 3.8. Note that in Lemma 3.7 B1, B2 and B3 are necessarily nonempty, while B4

could be empty.

Lemma 3.9. Suppose A ⊆ A3,1 is the union of the mutually disjoint subsets B1,B2.
Suppose M = V (B1) ∩ V (B2). Let ø ̸= Ai ⊆ V (B1) with Ai ∩ M = ø for i = 1, 2,
A1 ∩A2 = ø. Put ri = 1 for i ∈ B2. Then

0 ≤ (1/R)
(
S′
r,A(qi)

)
{A1,A2}

− (1/R)
(
S′
r,B1

(qi)
)
{A1,A2}

≤ k max{|qi| : i ∈ B2} .

Proof. Note that A1 and A2 are nonempty disjoint subsets both of V (A) and of V (B1).
By Remark 3.6, (1/R)

(
S′
r,A(qi)

)
{A1,A2}

≥ (1/R)
(
S′
r,B1

(qi)
)
{A1,A2}

. On the other hand, for

every v ∈ L′
V (B1);A1,A2

, we extend v to w ∈ L′
V (A);A1,A2

, putting w = 0 on V (A) \ V (B1).
Then (

S′
r,A(qi)

)
(w)−

(
S′
r,B1

(qi)
)
(v) =

∑
i∈B2

I(qi)(w ◦ ψi) ≤ k max{|qi| : i ∈ B2}

as

I(qi)(w ◦ ψi) =
∑

{j1,j2}∈J

(qi){j1,j2}

(
w
(
ψi(Pj1)

)
− w

(
ψi(Pj2)

))2

≤ |qi|

for every i ∈ B2, and
(
w(ψi(Pj1)) − w(ψi(Pj2))

)2 ≤ 1 as 0 ≤ w ≤ 1, and #(B2) ≤ k. We

conclude the proof, using the definition of (1/R̂).

4. Fractals with connected interior.

In this Section, I will prove the existence of a G-eigenform for fractals with connected
interior. We will say that the fractal triple is a connected interior fractal triple or shortly
C.I.F.T if
i) Vj1 ∩ Vj2 = ø if j1, j2 = 1, ..., N , j1 ̸= j2,
ii) the set {N + 1, ..., k} is connected in G.

We will assume that i) and ii) hold in all of this section.
As a consequence, defining

Ṽ := V
(
{N + 1, ..., k}

)
and, for i = 1, .., N ,
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ϕ(i) :=
{
Pj : j = 1, ..., N, ψi(Pj) ∈ Ṽ

}
,

we have that Ṽ ̸= ø, and Pi /∈ ϕ(i) ̸= ø, for every i = 1, ..., N . Moreover,

ψh(ϕ(h)) = Vh ∩ Ṽ ∀h = 1, ..., N .

Note that this class of fractals generalizes both that considered in [1], and that considered
in [8] when the eigenform is regular. I will prove that on these fractals there exists a

G-eigenform. The idea of the proof is that the map q 7→ Λ̂
(
ιt
(
σ(q)

)
, q
)
sends a suitable

compact and convex neighborhood of 1J into itself, for a suitable continuous map σ :
]0,+∞[J→]0,+∞[N , that is we put weights on the vertex cells suitably, and in fact the
weights are chosen so that the effective resistance between Pj and ϕ(j) equals

1
2 (multiplied

by a constant a), so that, in view of Lemma 3.7, all the effective resistances between two
different Pj approximates 1 (times a), and a is chosen so that the resistances aJ come from

the element 1J of Q̃.

Lemma 4.1. Let (s, q) ∈]0,+∞[N×]0,+∞[J . Then, for every {j1, j2} ∈ J we have

R
(
Λ̂(ιt(s), q)

)
{j1,j2}

−→
t→+∞

R̂(q){{Pj1},ϕ(j1)}

sj1
+
R̂(q){{Pj2},ϕ(j2)}

sj2
.

uniformly on the compact subsets of ]0,+∞[N×]0,+∞[J .

Proof. By Lemma 3.3

R
(
Λ̂
(
ιt(s), q

))
{j1,j2}

= R̂
(
Λ̂
(
ιt(s), q

))
{{Pj1},{Pj2}}

= R̂
(
Sιt(s)(q)

)
{{Pj1},{Pj2}}

.

We now use Lemma 3.7 with B1 = {j1}, B2 = {j2}, B3 = {N +1, ..., k}, B4 = {1, ..., N} \
{j1, j2}. In this way, A = {1, ..., k} and V (A) = V (1), V (B3) = Ṽ . We have

M1 = Vj1 ∩ Ṽ = ψj1(ϕ(j1)) ̸= ø, M2 = Vj2 ∩ Ṽ = ψj2(ϕ(j2)) ̸= ø .

Moreover, put A1 = {Pj1} ⊆ V (B1), A2 = {Pj2} ⊆ V (B2). Also, if l = 1, 2, then
Ml ∩ Al = ø since, if Q ∈ Ml ∩ Al, thus Q = Pjl = ψjl(Pjl) ∈ ψjl(ϕ(jl)) and Pjl ∈ ϕ(jl),
a contradiction. Next, B3 is connected by hypothesis ii), and, finally, B1, B2 and B4 are
mutually separated by i). Thus, in view of Lemma 3.7 and Lemma 3.5, we obtain

R̂(Sιt(s)(q)){{Pj1},{Pj2}} −→
t→+∞

R̂(Ss,{j1}(q)){{Pj1},ψj1 (ϕ(j1))}+R̂(Ss,{j2}(q)){{Pj2},ψj2 (ϕ(j2))}

=
R̂(q){{Pj1},ϕ(j1)}

sj1
+
R̂(q){{Pj2},ϕ(j2)}

sj2

uniformly on the compact subsets of ]0,+∞[N×Q̃.
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Theorem 4.2 There exist q ∈]0,+∞[J , s ∈]0,+∞[N and t > 0 such that Λ̂
(
ιt(s), q

)
= q.

Proof. By a symmetry argument, R(1J) = aJ for some a > 0. By Lemma 2.8 ii), there
exists δ1 ∈]0, a[ such that

[a− δ1, a+ δ1]
J ⊆ R(]0,+∞[J) .

On the other hand, it is well known that Λ̂(r, q) ∈]0,+∞[J for every r ∈W, q ∈ ]0,+∞[J .
Therefore, by Lemma 2.8 ii) again, given η ∈]0, 1[ there exists δ ∈ ]0, δ1[ such that, if
q ∈]0,+∞[J and R(q) ∈ [a − δ, a + δ]J , then q ∈ [1 − η, 1 + η]J . For q ∈ [1 − η, 1 + η]J ,

define σ(q)j :=
2R̂(q){{Pj},ϕ(j)}

a
for every j = 1, ..., N . Then, by Lemma 4.1, for sufficiently

large t, independent of q,

R

(
Λ̂
(
ιt
(
σ(q)

)
, q
))

{j1,j2}
∈ [a− δ, a+ δ] ∀ {j1, j2} ∈ J ,

hence, Λ̂
(
ιt
(
σ(q)

)
, q
)

∈ [1 − η, 1 + η]J . Moreover, σ : [1 − η, 1 + η]J → ]0,+∞[N is

continuous by Lemma 2.4. Thus, for such t, the map q 7→ Λ̂
(
ιt(σ(q)), q

)
sends continuously

[1− η, 1 + η]J into itself, hence it has a fixed point.

Corollary 4.3 There exist E ∈ D̃ and r ∈W such that Λr(E) = E.

Proof. It suffices to take E = I(q), where q is as in Theorem 4.2 and r = ιt(s).

Remark 4.4 It follows that the eigenform obtained as above is regular (this means that
ri > ρ for every i = 1, ..., k) as, by a known and standard argument, this is always true
when ri ≤ ri′ when i ≤ N , i′ > N . See for example [4] for the notion of regular eigenform.

5. The structure of V (n) on General Fractals

A self-similar fractal set in Rν is defined by a set of contracting similarities Ψ :=
{ψ1, ..., ψk}, k ≥ 2 from Rν into itself, that is there exists αi ∈]0, 1[ such that ||ψi(x1) −
ψi(x2)|| = αi||x1−x2|| for every x1, x2 ∈ Rν . The fractal is defined as the unique nonempty

compact set K such that K =
k∪
i=1

ψi(K). For example, the Sierpinski Gasket is defined

by the set of similarities {ψi : i = 1, 2, 3} where ψi(x) = 1
2 (x + Pi) and Pi are the ver-

tices of an equilateral triangle. Under some condition, we can associate a fractal triple
by taking V (0) to be a subset with N ≥ 2 elements of the set of the fixed points of ψi.
Note that we can also define the same fractal K replacing the set {ψi : i = 1, ...k} by
the set Ψn :=

{
ψi1 ◦ · · · ◦ ψin : i1, ..., in = 1, ..., k

}
. For the more general setting of the

P.C.F. self-similar sets see [4]. Conversely, there exists a standard way to associate to a
given fractal triple a self-similar fractal K, and also an n-fractal triple corresponding to
the previously defined set Ψn of one-to-one maps and generating the same fractal K.
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Namely, given a fractal triple F := (V (0), V (1),Ψ), Ψ = {ψ1, ..., ψk}, we can define a
related fractal, F in the following way: Let

K̃ =
{
1, ..., k

}N\{0}
.

We denote an element of K̃ by (i1, i2, ...) with il = 1, ..., k for l = 1, 2, .... The fractal set K

will be defined as K̃ quotiented by the equivalence relation R that identifies two different
elements (i1, i2, ...) and (i′1, i

′
2, ...) if there exists ζ = 1, 2, ... such that

is = i′s ∀ s < ζ,

iζ ̸= i′ζ , iζ+1, i
′
ζ+1 ≤ N, ψiζ (Piζ+1

) = ψi′
ζ
(Pi′

ζ+1
),

is = iζ+1, i
′
s = i′ζ+1 ∀ s > ζ .

Such a number ζ is clearly unique. It is simple to verify that R is in fact an equivalence
relation and, in view of b) of the definition of a fractal triple, that the equivalence class
of (j, j, j, ...), j ≤ N , is a singleton. I will denote the equivalence class of (i1, i2, ...) by
[i1, i2, ...]. We define ψi on K as

ψi([i1, i2...]) = [i, i1, i2, ...] ∀ i = 1, ..., k .

In this way, every ψi is a one-to-one map from K into itself, and we put Ψ := {ψi :
i = 1, ..., k}. When j, j′ ≤ N , then ψj([j, j, j, .....]) = [j, j, ...], and also, ψi([j, j, j, .....]) =
ψi′([j

′, j′, j′, ....]) amounts to ψi(Pj) = ψi′(Pj′), thus we put Pj := [j, j, j, .....] if j =
1, ..., N , and V = V (0) = {Pj , j = 1, ..., N}. In this way, K is an extension of the
previously defined V (0), and ψi extends on K the previously defined ψi on V

(0). We put

ψi1,...,in := ψ11 ◦ · · · ◦ ψin , Ai1,...,in = ψi1,...,in(A) ∀A ⊆ K .

We also put

V (n) :=
k∪

i1,i2,...,in=1

Vi1,...,in , V (∞) =
∞∪
n=1

V (n) .

The sets Vi1,...,in are called n-cells. The following Lemma can be easily verified.

Lemma 5.1.
i) If ψi1,...,in(Q) = Pj , with Q ∈ K, h, j = 1, ..., N , then Q = Pj and i1 = i2 = ... = in = j.
ii) If (i1, ..., in) ̸= (i′1, ..., i

′
n), then

Ki1,...,in ∩Ki′1,...,i
′
n
= Vi1,...,in ∩ Vi′1,...,i′n . (nesting axiom)

iii) If (i1, ..., in) ̸= (i′1, ..., i
′
n) and ψ(i1,...,in)(Q) = ψ(i′1,...,i

′
n)
(Q′) with Q,Q′ ∈ K, then

Q,Q′ ∈ V (0).

Corollary 5.2. If i1, ..., in, i
′
1, ..., i

′
n = 1, ..., k, j, j′ = 1, ..., N , and
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ψi1,...,in(Pj) = ψi′1,...,i′n(Pj′), (i1, ..., in) ̸= (i′1, ..., i
′
n)

then there exists s = 1, ..., n such that is = i′s for 1 ≤ s < s, is = j and i′s = j′ for
s < s ≤ n.

Proof. Let s be the smallest s such that is ̸= i′s. Then

Q := ψi1,...,in(Pj) = ψi1,...,is

(
ψis+1,...,in(Pj)

)
= ψi′1,...,i′s

(
ψi′

s+1
,...,i′n

(Pj′)
)

thus, by Lemma 5.1 iii), ψis+1,...,in(Pj) ∈ V (0), hence for every s > s we have is = j and
by a similar argument i′s = j′.

We equip K with a topology taking as a basis of neighbourhoods of Q ∈ K the set

Un =
∪

Q∈Ki1,...,in

Ki1,...,in , n = 1, 2, ....

Given the fractal triple F , we also define a related n-fractal triple Fn by

Fn := (V (0), V (n),Ψn), Ψn :=
{
ψi1,...,in : i1, ..., in = 1, ..., k

}
.

Here, the map ψ ∈ Ψn satisfying ψ(Pj) = Pj is ψ(j,j,...,j) for every j ≤ N . It can be
easily proved that in fact Fn is a fractal triple. Indeed, b) in the definition of a fractal
triple follows from Lemma 5.1 i), and c) can be proved by induction on n. It can be easily
verified that the fractal generated by Fn is the same as that generated by F and with the
same topology. The rest of the present paper is devoted to prove

(Main Theorem) For every fractal triple, there exist n ≥ 1 and a G-eigenform on Fn.
This provides a self-similar energy on the fractal generated by the fractal structure. Given
a fractal triple F := (V (0), V (1),Ψ), we put

A1(F) = {1, ..., N}, A2(F) = {N + 1, ..., k}, A3(F) = A1(F) ∪ A2(F) = {1, ..., k} .

The rest of this section is devoted to the main properties of the n-fractal triples Fn. Of
course, A2(F) could be empty. In some sense A3 is the set of the indices of the maps in
Ψ, and A1 the set of the indices of the maps that fix an element of V (0). We say that a
subset A(F) of A3(F) is connected if it is connected in G. We put Ai,n(F) = Ai(Fn). We
write shortly Ai for Ai(F) and Ai,n for Ai,n(F) when F is clear from the context. We
identify A3,n with the set {(i1, ..., in) : i1, ..., in = 1, ..., k}. Of course, by this identification
we have A1,n = {j(n) : j = 1, ..., N}. We put Wn =]0,+∞[A3,n .

Note that, if n > 1, then A2,n is nonempty in any case as it contains every object of the
form (j1, j2, ...) with j1 ̸= j2.

In the following, we will denote by ϖ or nϖ or similar the elements (i1, ..., in) of A3,n.
In such a case we put Vϖ := Vi1,...,in , and, if A is a subset of A3,n,
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V (A) =
∪
ϖ∈A

Vϖ , K(A) =
∪
ϖ∈A

Kϖ .

We call such sets respectively V -copy of A, and K-copy of A. Note that

V (A3,n) =
k∪

i1,...,in=1

Vi1,...,ik = V (n) .

By the previous identification, G(Fn) = Gn is the graph on A3,n where the edges are
the pairs {ϖ,ϖ′} such that ϖ ̸= ϖ′ and Vϖ ∩ Vϖ′ ̸= ø. In the following, the notions
concerning graphs on A3,n will be always referred to Gn, for example path will mean
path in Gn, connected will mean connected in Gn and so on. Let Πn,n : A3,n → A3,n be
defined by Πn,n((i1, ..., in)) = (i1, ..., in), when n ≤ n, and we define naturally Πn,n(C) =
{Πn,n(ϖ) : ϖ ∈ C} for every C ⊆ A3,n. Of course, for every C ⊆ A3,n we have

Π−1
n,n(C) := C ×A3,n−n

(
̸= ø if C ̸= ø

)
. (5.1)

Note that

Π−1
n,n(A2,n) ⊆ A2,n . (5.2)

In the following Lemmas 5.3, 5.4, 5.5, we will discuss the relationships between V -copy or
K-copy of a set and of its image or preimage with respect to the projection Πn,n. The
proof essentially depends on Lemma 5.1.

Lemma 5.3. Suppose n ≥ n, ϖ ∈ A3,n. Then,
i) Vϖ ⊆ KΠn,n(ϖ) ∀n ≥ n, ∀ϖ ∈ A3,n

ii) If moreover, ϖ′ ∈ A3,n and Πn,n(ϖ) ̸= Πn,n(ϖ
′), then Vϖ∩Vϖ′ ⊆ VΠn,n(ϖ)∩VΠn,n(ϖ

′) .

Proof. In fact, if Q ∈ Vϖ, ϖ = (i1, ..., in), then, for some Pj ∈ V (0), we have

Q = ψi1,...,in
(
ψin+1,...,in(Pj)

)
= ψΠn,n(ϖ)

(
ψin+1,...,in(Pj)

)
, ψin+1,...,in(Pj) ∈ K .

and i) is proved. To prove ii), note in view of i) and Lemma 5.1 ii),

Vϖ ∩ Vϖ′ ⊆ KΠn,n(ϖ) ∩KΠn,n(ϖ
′) = VΠn,n(ϖ) ∩ VΠn,n(ϖ

′) .

Lemma 5.4. Given n and B,B′ ⊆ A3,n, B ∩B′ = ø, then for every n ≥ n we have
i) K(B) ⊇ V

(
Π−1
n,n(B)

)
⊇ V (B),

ii) V
(
Π−1
n,n(B)

)
∩ V

(
Π−1
n,n(B

′)
)
= V (B) ∩ V (B′) ,

iii) If ϖ,ϖ′ ∈ A3,n, ϖ ̸= ϖ′, then V
(
Π−1
n,n({ϖ})

)
∩ V

(
Π−1
n,n({ϖ′})

)
= Vϖ ∩ Vϖ′

Proof. i) The first inclusion in i) follows from Lemma 5.3 i). To prove the second, note
that, if P ∈ V (B), then P = ψϖ(Pj) for some j = 1, ..., N and for some ϖ ∈ B. Therefore,
P = ψ(ϖ,j(n−n))

(Pj) ∈ V
(
Π−1
n,n(B)

)
. ii) Let P ∈ V

(
Π−1
n,n(B)

)
∩ V

(
Π−1
n,n(B

′)
)
. Then
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P ∈ Kϖ ∩ Kϖ′ , with ϖ ∈ B, ϖ′ ∈ B′. Consequently, by the nesting axiom, P ∈
Vϖ ∩ Vϖ′ ⊆ V (B) ∩ V (B′). In conclusion, we have proved the inclusion ⊆ in ii), and the
opposite inclusion is trivial. Finally, iii) is a particular case of ii).

Lemma 5.5.
i) If n > 1, n ≥ n, n′ ≥ n − 1, ϖ ∈ A3,n, ϖ

′ ∈ A3,n′ and ϖ ∈ Π−1
n,n(j(n)), ϖ

′ /∈
Π−1
n′,n−1(j(n−1)), then Vϖ ∩ Vϖ′ = ø.

ii) If n > 1, we have Vj(n)
∩ Vi1,i2,...,in = ø if (i1, ..., in−1) ̸= j(n−1). In particular, Vj(n)

∩
Vj′

(n)
= ø for every j, j′ = 1, ..., N , j ̸= j′, thus Fn satisfies i) in the definition of a connected

interior fractal triple.

Proof. Suppose Q ∈ Vϖ ∩ Vϖ′ and ϖ′ = (i1, ..., in′) with (i1, ..., in−1) ̸= j(n−1). Then, by
Lemma 5.4 i), there exist P, P ′ ∈ K such that Q = ψj(n)

(P ) = ψi1,...,in−1
(P ′), hence

ψj(n−1)

(
ψj(P )

)
= ψi1,...,in−1

(P ′) .

By Lemma 5.1 iii), we deduce ψj(P ) ∈ V (0) and by Lemma 5.1 i), P = Pj , thus ψj(P ) = Pj ,
thus ψi1,...,in−1

(P ′) = ψj(n−1)
(Pj) = Pj , and as (i1, ..., in−1) ̸= j(n−1), this contradicts

Lemma 5.1 i), thus i) is proved, and ii) is a particular case of i).

In the following Lemmas 5.6, 5.7, 5.8, I will discuss relationships between separation of
two sets, or connectedness of a set, and the corresponding properties of the images or
preimages of the sets via the map Πn,n. In particular, in Lemma 5.8 gives a simple and
useful criterion for connecting two points in a set.

Lemma 5.6. Given two subsets B1 and B2 of A3,n, then
i) B1 and B2 are disjoint if and only if so are Π−1

n,n(B1), Π
−1
n,,n(B2)

ii) B1 and B2 are separated if and only if so are Π−1
n,,n(B1) and Π−1

n,,n(B2).

Proof. Point i) immediately follows from (5.1), and ii) holds by Lemma 5.4 ii) provided B1

and B2 are disjoint. But if they are not disjoint, B1 and B2 are not separated, as well as
Π−1
n,,n(B1) and Π−1

n,,n(B2).

Lemma 5.7.
i) A subset A of A3,n is connected if and only if so is Π−1

n,n(A) for every n ≥ n

ii) if A ⊆ A3,n is connected, then so is Πn,n(A).

Proof. To prove i) first of all, note that Π−1
n,n(ϖ) is connected for every ϖ ∈ A3,n, as it

is isomorphic to A3,n−n2 . Now, if A ⊆ A3,n is connected, let ϖ,ϖ′ ∈ Π−1
n,n(A), so that

Πn,n(ϖ) = nϖ ∈ A,Πn,n(ϖ′) = nϖ
′ ∈ A. Let (nϖ0, ..., nϖm) be a path in A connecting

nϖ to nϖ
′. By Lemma 5.4 iii), as V

nϖi−1
∩ V

nϖi
̸= ø, there exist ϖ−

i ∈ Π−1
n,n(nϖi),

ϖ+
i−1 ∈ Π−1

n,n(nϖi−1) so that Vϖ+
i−1

∩ Vϖ−
i
̸= ø. It follows that ϖ+

i−1 ∼ ϖ−
i or ϖ+

i−1 = ϖ−
i ,

hence ϖ is connected to ϖ′ in Π−1
n,n(A).

To prove the converse, it suffices to note that, if (ϖ0, ..., ϖm) is a path in B ⊆ A3,n

connecting ϖ to ϖ′, then, by Lemma 5.3 ii), the image
(
Πn,n(ϖ0), ...,Πn,n(ϖm)

)
is a
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weak path in Πn,n(B) connecting Πn,n(ϖ) to Πn,n(ϖ
′) and i) is proved. In a similar way

we can prove ii).

Lemma 5.8. If n ≥ n, nϖ, nϖ
′ ∈ A3,n, B1,B2 ⊆ A3,n and nϖ is connected to nϖ

′

in B1 ∪ B2, nϖ ∈ B1 \ B2, nϖ
′ ∈ B2, then every ϖ ∈ Π−1

n,n(nϖ) is connected to some

ϖ′ ∈ Π−1
n,n(B2) in Π−1

n,n(B1).

Proof. Let A be a path connecting nϖ to nϖ
′ in B1 ∪ B2, thus A ⊆ B1 ∪ B2. Then

B := Π−1
n,n(A) is connected, and if ϖ′′ is any element in Π−1

n,n(nϖ
′) then ϖ,ϖ′′ ∈ B, and

ϖ is connected to ϖ′′ by a path contained in B ⊆ Π−1
n,n(B1 ∪B2). Since ϖ /∈ Π−1

n,n(B2) and

ϖ′′ ∈ Π−1
n,n(B2), then ϖ is connected in Π−1

n,n(B1) to the first point in the path belonging

to Π−1
n,n(B2).

As previously stated, every n-fractal triple with n > 1 satisfies i) in the definition of
C.I.F.T . Thus, if for some n > 1 ii) in the definition of C.I.F.T is satisfied, then we
obtain, by Theorem 4.2 (or Corollary 4.3) a G-eigenform on the corresponding n-fractal
triple. Note that if

A3,1 \ {j} is connected ∀ j = 1, ..., N, (5.3)

then F2 satisfies ii) in Definition of C.I.F.T. To see this, we proceed like in the proof of
Lemma 5.7. Given (i1, i2), (i

′
1, i

′
2) ∈ A2,2, that is (i1, i2) and (i′1, i

′
2) not of the form (j, j)

with j = 1, ..., N , there exists a path (ϖ1, ..., ϖm) in A3,2 connecting them, and if such
a path passes through a point (j, j) ∈ A1,2, and ϖs1 = (j, is1) and ϖs2 = (j, is2) are
respectively the first and the last point in the path in Π−1

2,1(j), by Lemma 5.5 we have

is1 ̸= j ̸= is2 , so that by the hypothesis (5.3), we can replace (ϖs1 , ..., ϖs2) by a path in
Π−1

2,1(j) not passing through (j, j). By iterating this process, we find a path connecting
(i1, i2) and (i′1, i

′
2) all contained in A2,2. However, if we do not assume (5.3), then in

general, ii) in definition of C.I.F.T need not necessarily hold for some n, for example in
the tree-like Gasket, that is the modified Gasket, with two of the three 1-cells separated,
for every n > 1 the set A2,n is disconnected, namely has two components. Thus, in order
to obtain the main Theorem, we cannot apply Theorem 4.2 (at least directly). We instead
will split A2,n into components and work separately on every component.

For n > 1, we consider A2,n(F) as the union of its components C1,n, ..., Chn,n, hn ≥ 1.
For every subset C of A2,n(F) put

(Ex)n(C) =
∪{

Ci,n : Ci,n ∩ C ̸= ø
}
.

In particular, if C is a nonempty subset of a component Cl,n, and this occurs if C is a
nonempty connected subset of A2,n, then (Ex)n(C) = Cl,n. Also, for every C ⊆ A2,n, put

θn(C) =
{
j(n) ∈ A1,n : V

(
(Ex)n(C)

)
∩ Vj(n)

̸= ø
}
,

Remark 5.9. We easily see that θn(C) is the set of elements of A1,n(F) connected to
some point of C in A2,n(F).
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Lemma 5.10. If n > 1
i) The set θn(C) is nonempty for every nonempty subset C of A2,n

ii) We have A1,n(F) =
∪{

θn(Cl,n) : #
(
θn(Cl,n)

)
≥ 2

}
.

iii) Given ø ( A ( A1,n, there exist ϖ ∈ A, ϖ′ ∈ A1,n\A belonging to the same θn(Cl,n).

Proof. Given ϖ ∈ C, take a path connecting ϖ to an element of A1,n. Then, the first
element of A1,n in such a path is in θn(C) and i) is proved. For every ϖ ∈ A1,n, there
exists a simple path in Gn connecting ϖ to another element of A1,n. Let ϖ′ be the first
element of A1,n in such a path different from ϖ. The second element ϖ′′ in such a path
satisfies ϖ′′ ∼ ϖ, therefore belongs to A2,n by Lemma 5.5, thus to Cl,n for some l. Thus,
ϖ,ϖ′ ∈ θn(Cl,n), and this proves ii). We can prove similarly iii). Consider a path in Gn
connecting an element of A and an element of A1,n \ A, we take ϖ and ϖ′ to be two
consecutive elements of A1,n in the path, one in A and the other in A1,n \A, and proceed
as in ii).

We previously introduced the components Cl,n of A2,n, Now, we introduced two types of
sets related to them, that is we start from the basic level 2 (we avoid 1 since some results,

as Lemma 5.10, require n > 1). Then, for n ≥ 2, we define the sets Cl,n and C̃l,n, that,
roughly speaking, represent respectively, the elements of A2,n and of A2,2 connected to
Cl,n via A2,n. So, for n > 1, let

Cl,n := (Ex)n(Π
−1
n,2(Cl,2))

(
⊆ A2,n

)
C̃l,n := Πn,2

(
Cl,n

)
∩ A2,2, Bl,n := θ2(C̃l,n) ⊆ A1,2, l = 1, ..., h2 .

In general, for fixed n, the sets Bl,n are not necessarily mutually disjoint, and even some
of them could coincide.

Remark 5.11. Note that since Π−1
n,2(Cl,2) is connected by Remark 5.7, then Cl,n is a

component of A2,n, and Cl,n ⊇ Π−1
n,2(Cl,2).

Remark 5.12. Given ϖ ∈ A2,2, then ϖ ∈ C̃l,n if and only if there exist nϖ ∈ Π−1
n,2(ϖ),

nϖ
′ ∈ Π−1

n,2(Cl,2) such that nϖ and nϖ
′ are connected in A2,n. In such a case, taking

n+1ϖ ∈ Π−1
n+1,n(nϖ) ⊆ Π−1

n+1,2(ϖ), n+1ϖ
′ ∈ Π−1

n+1,n(nϖ
′) ⊆ Π−1

n+1,2(Cl,2)

then n+1ϖ and n+1ϖ
′ are connected in A2,n+1. As a consequence, C̃l,n ⊆ C̃l,n+1. In

particular, C̃l,n ⊇ C̃l,2 = Cl,2 ̸= ø.

Lemma 5.13. Suppose n > n ≥ 2. Then
i) We have Π−1

n,n

(
Cl,n

)
⊆ Cl,n,

ii) We have V
(
Cl,n

)
∩ V ({j(n)}) ⊆ V

(
Cl,n ∩Π−1

n,n(j(n))
)
for every j = 1, ..., N .
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Proof. The set Π−1
n,n

(
Cl,n

)
is connected and contains Π−1

n,2

(
Cl,2

)
, hence is contained in Cl,n

and i) is proved. We now prove ii). Let Q ∈ V
(
Cl,n

)
∩ V ({j(n)}), so that Q = ψϖ(Ph) =

ψj(n)
(Ph′) for some ϖ ∈ Cl,n, h, h

′ = 1, ..., N . As Q /∈ V (0), we have h′ ̸= j. Moreover,

Q = ψ(ϖ,h(n−n))
(Ph) = ψ(j(n),h

′
(n−n)

)(Ph′), (5.4)

and (ϖ,h(n−n)) ∈ Π−1
n,n

(
Cl,n

)
⊆ Cl,n by i). Since (ϖ,h(n−n)) ∼ (j(n), h

′
(n−n)) and Cl,n is

a component in A2,n, and (j(n), h
′
(n−n)) ∈ A2,n as n−n > 0, we have (j(n), h

′
(n−n)) ∈ Cl,n,

so that (j(n), h
′
(n−n)) ∈ Cl,n ∩Π−1

n,n(j(n)), and by (5.4) we conclude.

Lemma 5.14. When n > 1
i) The sets Bl,n are nonempty,

ii) A1,2(F) =
∪{

Bl,n : #
(
Bl,n)

)
≥ 2

}
.

iii) Given ø ( A ( A1,2, there exist ϖ ∈ A, ϖ′ ∈ A1,2 \ A belonging to the same Bl,n.

Proof. As Bl,n ⊇ θ2(Cl,2), i), ii) and iii) follow from the corresponding statement in Lemma
5.10.

6. Special subsets of A3,n.

We now want to mimic the argument in Section 4, working separately on the components.
To this aim, we will find a partition ofA3,n of a special type which we will call decomposition
of A3,n into n-blocks. By this we will mean a family of subsets Cl,n, l = 1, ..., h′ of A3,n

with the following properties

#
(
Cl,n ∩ A1,n

)
≥ 2 (P1)

h′∪
l=1

Cl,n ⊇ A1,n (P2)

Cl+1,n ∩
( l∪
l=1

Cl,n

)
=

{
(j̃l)n

}
⊆ A1,n (P3)

Cl,n ∩ A2,n is connected. (P4)

In this context, I will call n-blocks the sets Cl,n. Note that I have not required that
the union of all Cl,n amounts to all of A3,n, as it will turn out to be impossible to have
such a property, keeping at the same time nice properties on the decomposition. Thus,
we have to add a possibly nonempty (residual) set in order to obtain a partition of A3,n.
The present Section will be devoted to the construction and the main properties of such
a decomposition. Once we have a decomposition into n-blocks as above, the idea consists
in mimicking on every n-block the construction of Section 4. In such a case, of course,
we have to adapt the weights in the joint points (j̃l)n to two (or more) different n-blocks.
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However, this leads to a difficulty. In fact, the effective resistance between Pj̃l and the
interior cells of the n-block in general depends on the n-block, thus unlike the case of
Section 4, we cannot put a weight on V(j̃l)n in such a way that such a resistance is, say, al2
where al is a suitable positive constant depending on the n-block Cl,n. We will modify thus
the construction, selecting on every n-block some ”central” cells, that I will call strictly
interior cells among the interior cells and constructing on the n-block separate ”bridges”
between every vertex cell and the strictly interior cells. Next, we will split the bridges
into two parts, one exterior, that is closer to the vertex cell, and the interior part, that is
closer to the strictly interior cells. Such a construction requires a sufficiently large level
n. Finally, we will put relatively large weights on the vertex cells in such a way that
the effective resistance R1 between Pj and the bridge is less than al

2 (for every n-block
the vertex cell belongs to), then weights on the interior part of the bridge such that the
effective resistance R2 between the exterior part of the bridge and the strictly interior cells
satisfies

R1 +R2 =
al
2
,

thus, putting large weights on the exterior part of the bridge, using Lemma 3.7, the effective
resistance between Pj̃l and the strictly interior cells of the n-block approximates al

2 . Thus,
putting large weights on the strictly interior cells of the n-block, we can proceed like in
Section 4. However, there is a further difficulty, that is, we want that the eigenform is
regular, and this occurs if the weights on all the interior cells of Fn, including that in the
bridges, are not less than the weights on the vertex cells (cf. Remark 4.4). On the other
hand, if R1 is small, then formula R1 + R2 = al

2 cannot hold when the weights on the
interior part of the bridge is not sufficiently small. To overcame such a difficulty, we will
fill the cells, choosing a sufficiently large level n, as the effective resistance goes to infinity
when the level n goes to infinity (cf. Lemma 7.8 and Corollary 7.9). For a similar reason,
when the level is sufficiently large the residual set, in the initial construction, is negligible.
Although the construction in the sequel could differ in some details from the ideas above
discussed, this motivates the next definitions. First of all, we will suitably split the set
A1,n. Note that formulas (3.1), (3.2), (3.3) below are related respectively to (P1), (P2),
(P3).

By Remark 5.12 there exists n1 > 2 such that

C̃l,n1 = C̃l,n hence Bl,n = Bl,n1 ∀n ≥ n1 .

We put C̃l = C̃l,n1 , Bl = Bl,n1 . In view of Lemma 5.14 iii) with A =
∪
s<l

Bs, we can also

enumerate the sets Bl, l ≤ h′ ≤ h2, in such a way that

#(B1) ≥ 2,

Bl+1 *
l∪

s=1

Bs, xl ∈
( l∪
s=1

Bs

)
∩Bl+1,

h′∪
l=1

Bl = A1,2 ∀l = 1, ..., h′ − 1,

xl = (j̃l, j̃l), j̃l = 1, ..., N .
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Remark 6.1. Note that, using the previous enumeration of Bl, for every n ≥ n1 the sets
Cl,n, l = 1, ..., h′, are distinct, hence mutually disjoint, and, as they are components in
A2,n, they are in fact mutually separated.

We define B′
l, B̃

′
l by:

B′
1 = B1, B′

l+1 =

(
Bl+1 \

( l∪
s=1

Bs

))
∪ {xl}, 1 ≤ l ≤ h′ − 1 .

B̃′
l := Π2,1(B

′
l) = {j = 1, ..., N : (j, j) ∈ B′

l} ,

in other words, j ∈ B̃′
l ⇐⇒ (j, j) ∈ B′

l. We have B′
l ⊆ Bl, and also,

#(B̃′
l) = #(B′

l) ≥ 2, (6.1)

l∪
s=1

B′
s =

l∪
s=1

Bs ∀ l = 1, ..., h′ , (6.2)

( l∪
s=1

B′
s

)
∩B′

l+1 = {xl} ∀ l = 2, ..., h′ , (6.3)

( l∪
s=1

B̃′
s

)
∩ B̃′

l+1 = {j̃l} ∀ l = 2, ..., h′ , (6.3′)

so that #
(
B′
l1
∩ B′

l2

)
≤ 1 when l1 ̸= l2. As a particular case of (6.2),

h′∪
s=1

B′
s = A1,2, and

consequently,
h′∪
s=1

B̃′
s = {1, ..., N}. Let

J =:
h′∪
l=1

J
(
B̃′
l

)
⊆ J

We will now construct the n-blocks for n = n2 (the sets C
(4)

l ) and also for n > n2 (the sets

G
(4)

l,n), where n2 is a suitable integer with n2 > n1 + 1. The sets C
(1)

j (or more precisely

V (C
(1)

j )) represent the vertex cells, the sets C
(3)

l the strictly interior cells and the sets C
(2)

j,l

the bridges. So, fix n2 > n1 + 1 and for every j ∈ B̃′
l, l = 1, ..., h′, and n ≥ n2, define the

following subsets of A3,n2 ,

C
(1)

j = {j(n2)}, G
(1)

j,n = Π−1
n,n2

(
C

(1)

j

)
C

(2)

j,l = Cl,n2 ∩Π−1
n2,n1

(j(n1)), G
(2)

j,l,n = Π−1
n,n2

(
C

(2)

j,l

)
C

(3)

l = Π−1
n2,n1

(
Cl,n1

)
, G

(3)

l,n = Π−1
n,n2

(C
(3)

l ) = Π−1
n,n1

(
Cl,n1

)
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In the sequel, I will define other sets of the form C
(a)

b where a and b are symbols or strings

of symbols. I will use the general convention that in such a case G
(a)

b,n = Π−1
n,n2

(C
(a)

b ).
In order to apply Lemma 3.7 as hinted above, the exterior part of the bridge should be

connected (note that we also need the connectedness of C
(3)

l , but this immediately follows

from Lemma 5.7 and Remark 5.11). Thus, I will first modify every bridge C
(2)

j,l , extracting
a connected subset of it, and then I will split such a connected set into two parts, the

exterior part C
(21)
j,l and the interior part C

(22)
j,l according to the hinted idea. We need the

following Lemma.

Lemma 6.2. There exists a simple path (ϖ0, ..., ϖm) connecting j(n2) to some element of

C
(3)

l in C
(2)

j,l .

Proof. For every l = 1, ..., h′, if j ∈ B̃′
l, then j(2) is connected to an element of C̃l in {j(2)}∪

C̃l. By Lemma 5.8, j(n1) ∈ Π−1
n1,2

(j(2)) is connected in Π−1
n1,2

(j(2)) to some n1ϖ ∈ Π−1
n1,2

(C̃l).

Moreover, by the definition of C̃l, there exists n1ϖ
′ ∈ Cl,n1 such that Πn1,2(n1ϖ

′) =

Πn1,2(n1ϖ) := ϖ ∈ C̃l ⊆ A2,2, hence, as Π−1
n1,2

(ϖ) is connected and contained in A2,n1 ,

j(n1) is connected to n1ϖ
′ by a simple path in Π−1

n1,2
(j(2)) ∪ A2,n1 . Also, as every element

of Π−1
n1,2

(j(2)) different from j(n1) lies in A2,n1 , the elements of the path but the first are

thus in A2,n1 , hence, by the definition of Cl,n1 , they are in fact in Cl,n1 , so that j(n1)

is connected to n1ϖ
′ in {j(n1)} ∪ Cl,n1 . By Lemma 5.8 again, j(n2) ∈ Π−1

n2,n1
({j(n1)}) is

connected to some point of Π−1
n2,n1

(Cl,n1) = C
(3)

l by a simple path in Π−1
n2,n1

({j(n1)}), and as

the elements of the path but the first are in A2,n2 , and the last is in Π−1
n2,n1

(Cl,n1) ⊆ Cl,n2 ,

then the path is in Cl,n2 ∩Π−1
n2,n1

({j(n1)}) = C
(2)

j,l .

Now, we consider ϖ as in the Lemma and we can and do assume that this path is of
minimum length, so that

if s′ > s+ 1 then Vϖs′ ∩ Vϖs
= ø . (6.4)

We have ϖ0 = j(n2) and ϖm /∈ Π−1
n2,n1

(j(n1)) thus, by Corollary 5.5, we have Πn2,n2−1(ϖ1)
= j(n2−1), and recalling that n2 − 1 ≥ n1 + 1, Πn2,n1+1(ϖ1) = j(n1+1), thus

ϖ1 ∈ Π−1
n2,n1+1(j(n1+1)), ϖm−1 /∈ Π−1

n2,n1+1(j(n1+1))

Now, let s̃ be the maximum index s so that ϖs ∈ Π−1
n2,n1+1(j(n1+1)), and put

C
(21)

j,l =
{
ϖs : 1 ≤ s ≤ s̃

}
⊆ C

(2)

j,l , C
(22)

j,l =
{
ϖs : s̃ < s < m

}
⊆ C

(2)

j,l

and define G
(21)

j,l,n, G
(22)

j,l,n according to the previous convention. Moreover, note that 1 ≤
s̃ < m− 1, and ϖs̃ ∈ C

(21)

j,l , ϖs̃+1 ∈ C
(22)

j,l . We have

V
(
C

(21)

j,l

)
∩ V

(
C

(22)

j,l

)
= Vϖs̃

∩ Vϖs̃+1
. (6.5)
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In fact, the inclusion ⊇ is trivial. To prove ⊆, note that if Q ∈ V
(
C

(21)

j,l

)
∩V

(
C

(22)

j,l

)
, then

there exist s ≤ s̃, s′ > s̃ such that Q ∈ Vϖs
∩ Vϖs′ . On the other hand, by (6.4), we have

s = s̃ and s′ = s̃+ 1. For j ∈ B̃′
l, l = 1, ..., h′, put

C
(4)

l =
( ∪
j∈B̃′

l

C
(1)

j

)
∪
( ∪
j∈B̃′

l

(C
(21)

j,l ∪ C(22)

j,l )
)
∪ C(3)

l

C
(5)

=
h′∪
l=1

C
(4)

l

C
(6)

= A3,n2 \ C
(5)

For every j ∈ B̃′
l let C

(7)

j,l be the set of ϖ ∈ C
(5) \ C(4)

l connected to j(n2) in C
(5) \ C(4)

l .

We of course define G
(4)

l,n , G
(5)

n , G
(6)

n , and G
(7)

j,l,n = Π−1
n,n2

(
C

(7)

j,l

)
as usual. The sets C

(4)

l are

the n2-blocks, and C
(6)

is the residual set, and G
(4)

l,n and G
(6)

n are the analogs at level n.
Using also Lemma 6.3 ii) below, we easily see that properties (P1), (P2), (P3), (P4) hold.

We remark that the sets of the forms C
(21)

j,l , C
(22)

j,l , C
(3)

l are contained in A2,n2 and

consequently G
(21)

j,l,n, G
(22)

j,l,n, G
(3)

l,n are contained in A2,n. On the contrary, C
(1)

j is contained
in A1,n2 .
In the following lemmas, we will now see the intersection properties of the sets defined
above. In particular, the sets with one of apex (1), (21), (22) and (3) are mutually disjoint.

Lemma 6.3.
i) The sets C

(1)

j , C
(21)

j,l , C
(22)

j,l , C
(3)

l are mutually disjoint. Consequently, for fixed n ≥ n2,

so are the sets G
(1)

j,n, G
(21)

j,l,n, G
(22)

j,l,n G
(3)

l,n .

ii) Suppose l ̸= l′. Then, if Q ∈ C
(4)

l ∩ C(4)

l′ , we have Q = j(n2) for some j ∈ B̃′
l ∩ B̃′

l′ .

Proof. In the present proof, we will say that the sets of the form C
(1)

j are of type 1, the

sets of the form C
(2)

j,l are of type 2, the sets of the form C
(3)

l are of type 3. Using such
a convention, the sets of type 1 are contained in A1,n2 , the sets of type 2 are contained
both in A2,n2 and in Π−1

n2,n1
(A1,n1), the sets of type 3 are contained both in A2,n2 and in

Π−1
n2,n1

(A2,n1). Hence, as A1,n and A2,n are disjoint for every fixed n, sets of different types
are disjoint. Sets of the same type are disjoint as for every n the sets {j(n)} are obviously

mutually disjoint and by Remark 6.1. Finally, the sets C
(21)

j,l and C
(22)

j,l are disjoint as, by
hypothesis the path (ϖ0, ..., ϖm) is simple. This proves i), and ii) is a simple consequence
of i).

Lemma 6.4. Suppose ϖ,ϖ′ ∈ C
(5)

, Vϖ ∩ Vϖ′ ̸= ø. Then
i) There exists l such that ϖ,ϖ′ ∈ C

(4)

l .

ii) If ϖ ∈ C
(4)

l , ϖ′ /∈ C
(4)

l , then ϖ = j(n2) for some j ∈ B̃′
l.
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Proof. We have ϖ ∈ C
(4)

l , ϖ′ ∈ C
(4)

l′ for some l, l′ = 1, ..., h′. By Remark 6.1, if Vϖ∩Vϖ′ ̸=
ø, then, either ϖ,ϖ′ ∈ Cl,n2 for some l, or one of ϖ,ϖ′, for example ϖ′, amounts to j(n2)

for some j = 1, ..., N . In the latter case, by Lemma 5.5 i) Πn2,n1(ϖ) = j(n1), thus the

unique possibility is that ϖ ∈ C
(2)

j,l for some l with j ∈ B̃′
l by the definition of the C

(5)
.

It follows that ϖ,ϖ′ ∈ C
(4)

l . As, by Lemma 6.2, ϖ /∈ C
(4)

l′ if l ̸= l′, then i) and ii) easily
follow.

Lemma 6.5.
i) The set C

(8)

j,l := C
(1)

j ∪
(
(C

(21)

j,l ∪ C(22)

j,l )
)
∪ C(3)

l is connected when j ∈ B̃′
l.

ii) The set C
(4)

l is connected for every l = 1, ..., h′.

iii) The set C
(5)

is connected.

Proof. Recall that C
(21)

j,l ∪ C(22)

j,l =
{
ϖs : 1 ≤ s < m

}
. Thus,

C
(8)

j,l =
{
ϖ0, ..., ϖm

}
∪ C(3)

l , ϖm ∈
{
ϖ0, ..., ϖm

}
∩ C(3)

l

and, as C
(3)

l is connected by Lemma 5.7, then i) is proved, and, as C
(3)

l ̸= ø, ii) is an

immediate consequence of i). As, by definition, j(n2) ∈ C
(4)

l for every j ∈ B̃′
l, and by (6.3),

(j̃l)(n2) ∈
( l∪
s=1

C
(4)

s

)
∩ C(4)

l+1 ̸= ø for every l = 1, ..., h′ − 1, iii) easily follows from ii).

I previously introduced the sets C
(7)

j,l . In some sense, such sets can be seen as ”tails”

attached to every ”boundary” point j(n2) of C
(4

l . We now discuss the structure of such

sets. In particular, Lemma 6.6 i) states that C
(5)

can be represented as C
(4)

l with the

addition of the separate tails C
(7)

j,l .

Lemma 6.6.
i) The set C

(5) \ C(4)

l is the union of the mutually disjoint sets C
(7)

j,l , j ∈ B̃′
l.

ii) For fixed l = 1, ..., h′, the sets C
(1)

j , C
(7)

j,l , C
(21)

j,l , C
(22)

j,l , C
(3)

l , j ∈ B̃′
l are mutually disjoint

and there union amounts to C
(5)

. Consequently, the sets G
(1)

j,n, G
(7)

j,l,n, G
(21)

j,l,n, G
(22)

j,l,n, G
(3)

l,n ,

j ∈ B̃′
l are mutually disjoint and there union amounts to G

(5)

n .

Proof. We first prove that

C
(7)

j,l ∩ C
(7)

j′,l = ø ∀ j, j′ ∈ B̃′
l | j ̸= j′ . (6.6)

If this is false, then there exists a simple path y1 = j(n2), y2, ..., ys = j′(n2)
, with s > 2,

yi ∈ C
(5) \ C(4)

l when 1 < i < s . (6.7)

Let l be the maximum m such that C
(4)

m contains at least two different yi, namely yi1 and
yi2 . Suppose i1, i2 are respectively the minimum and the maximum of the set of the indices
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i such that yi ∈ C
(4)

l
. As y1, ys ∈ C

(4)

l , then l ≥ l. If l = l, then i1 = 1 and i2 = s. Thus,
by (6.7) and Lemma 6.4 we have

yi1 , yi2 ∈ C
(4)

l
∩
( ∪
m<l

C
(4)

m

)
. (6.8)

If, on the contrary, l > l, then either i1 = 1 and yi1 ∈ C
(4)

l
∩C(4)

l , or i1 > 1 and yi1−1 /∈ C
(4)

l

by the definition of i1, thus, by Lemma 6.4 again we have yi1−1, yi1 ∈ C
(4)

m for some m ̸= l,
and by the definition of l we have m < l, thus

yi1 ∈ C
(4)

l
∩
( ∪
m<l

C
(4)

m

)
and a similar argument works for yi2 so that (6.8) holds as well. By Lemma 6.3 ii), as

yi1 ∈ C
(4)

l
∩ C

(4)

m1
, yi2 ∈ C

(4)

l
∩ C

(4)

m2
with m1,m2 < l, thus yi1 = (j1)n2 , yi2 = (j2)n2 ,

j1, j2 ∈ B̃′
l
∩
( ∪
m<l

B̃′
m

)
, and j1 ̸= j2, but this contradicts (6.3). To prove that every point

x in C
(5) \ C(4)

l belongs to some C
(7)

j,l , note that, by Lemma 6.4, there exists a path in

C
(5) \ C(4)

l connecting x to some element of C
(4)

l . Let ϖs−1, ϖs be the last two points in

such a path. As ϖs−1 /∈ C
(4)

l , while ϖs ∈ C
(4)

l , and Vϖs−1 ∩ Vϖs ̸= ø, by Lemma 6.3,

ϖs = j(n2) for some j ∈ B̃′
l, thus x ∈ C

(7)

j,l . This proves i). In order to prove ii), note

that the first statement follows from Lemma 6.3 i) and i), and the fact that the C
(4)

l is the

union of the sets C
(1)

j , C
(21)

j,l , C
(22)

j,l , C
(3)

l with j ∈ B̃′
l.

Remark 6.7. If j ∈ B̃′
l, ϖ ∈ G

(7)

j,l,n, and (ϖ0, ...ϖm), ϖs ∈ G
(5)

n , is a path connecting

ϖ to some element ϖ′ of G
(4)

l,n , then the first element ϖs of the path in G
(4)

l,n in fact

belongs to G
(1)

j,n. To see this, let n2ϖi := Πn,n2(ϖi). Then, (n2ϖ0, ..., n2ϖs) is a weak path

connecting n2ϖ0 ∈ C
(7)

j,l to n2ϖs ∈ C
(4)

l in C
(5) \C(4)

l . As s ≥ 1 and n2ϖs−1 ∈ C
(5) \C(4)

l ,

Vn2ϖs
−1 ∩ Vn2ϖs

̸= ø, by Lemma 6.4, we have n2ϖs = j′(n2)
for some j′ ∈ B̃′

l, thus

n2
ϖ0 = n2

ϖ ∈ C
(7)

j′,l. By Lemma 6.6, we have j′ = j, thus ϖs ∈ G
(1)

j,n, as claimed.

Consequently, if ϖ ∈ G
(7)

j,l,n and ϖ′ ∈ G
(5)

n , Vϖ ∩ Vϖ′ ̸= ø, then ϖ′ ∈ G
(1)

j,n ∪ G
(7)

j,l,n.

Conversely, if j ∈ B̃′
l and (ϖ0, ...ϖm), ϖs ∈ G

(5)

n , is a path connecting ϖ /∈ G
(4)

l,n to some

element ϖ′ of G
(4)

l,n , and the first element ϖs of the path in G
(4)

l,n in fact belongs to G
(1)

j,n,

then ϖ ∈ G
(7)

j,l,n. In fact, if n2ϖs := Πn,n2(ϖs), then n2ϖ0 = Πn,n2(ϖ) ∈ C
(5) \ C(4)

l is

connected to n2ϖs = j(n2) in C
(5) \ C(4)

l . Hence n2ϖ0 ∈ C
(7)

j,l .

In Lemma 6.3 we saw that the sets G with apex (1), (21), (22) and (3) are mutually
disjoint. We will now see when two of these are separated. Namely, roughly speaking,
they are always separated, unless thery are trivially nonseparated.
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Lemma 6.8. Let G be the family of the sets G
(1)

j,n, G
(21)

j,l,n, G
(22)

j,l,n, G
(3)

l,n , with l = 1, ..., h′,

j ∈ B̃′
l. Then

a) The set G
(1)

j,n, is separated from all sets of G but itself and G
(21)

j,l,n and the sets with j ∈ B̃′
l

b) The set G
(21)

j,l,n is separated from all sets of G but itself, G
(1)

j,n and G
(22)

j,l,n

c) The set G
(22)

j,l,n is separated from all sets of G but itself, G
(3)

l,n and G
(21)

j,l,n

d) The set G
(3)

l,n is separated from all sets of G but itself and G
(22)

j,l,n

e) The set G
(7)

j,l,n is separated from the sets G
(21)

j,l,n, G
(22)

j,l,n, G
(3)

l,n .

Proof. We will prove the following facts

(S1) The sets C
(1)

j , C
(21)

j,l , C
(22)

j,l , are separated from C
(1)

j′ , C
(21)

j′,l′ , C
(22)

j′,l′ , when j ̸= j′

(S2) The sets C
(21)

j,l , C
(22)

j,l , C
(3)

l are separated from C
(21)

j′,l′ , C
(22)

j′,l′ , C
(3)

l′ , when l ̸= l′

(S3) C
(1)

j is separated from C
(22)

j,l , j ∈ B̃′
l;C

(3)

l , (j not necessarily in B̃′
l)

(S4) C
(21)

j,l is separated from C
(3)

l

and, in view of Remark 5.6, this suffices to conclude. To prove (S1) it suffices to note

that the sets C
(1)

j , C
(21)

j,l , C
(22)

j,l are contained in Π−1
n2,n1

(j(n1)), and the sets {j(n1)} and
{j′(n1)

} are separated by Lemma 5.5 i), so that we use Remark 5.6 again. Statement (S2)

is an immediate consequence of Lemma 6.4 ii). C
(1)

j is separated from C
(22)

j,l by (6.4), and

moreover it is separated from C
(3)

l . In fact, as C
(3)

l ⊆ Π−1
n2,n1

(A2,n1), then the elements of

C
(3)

l have the form (i1, ..., in2), and (i1, ..., in2−1) ̸= j(n2−1), and we use Lemma 5.5 i). To

prove (S4), note that in the opposite case, we have ϖs ∼ ϖ′ ∈ C
3)

l for some s ≤ s̃, thus the

path (ϖ0, ..., ϖs, ϖ
′) connects j(n2) to ϖ

′ ∈ C
(3)

l in C
(2)

j,l , and its length is s+1 ≤ s̃+1 < m,
and this contradicts the assumption that the original path (ϖ0, ..., ϖm) was of minimum
length with such properties.

In order to evaluate the effective resistances between two points, we have to investigate
the intersections of the V -copies of the previously defined sets. When j ∈ B̃′

l, let us define

Mj,l = V
(
C

(1)

j

)
∩ V

(
C

(21)

j,l

)
,

M ′
j,l = V

(
C

(21)

j,l

)
∩ V

(
C

(22)

j,l

)
,

M ′′
j,l = V

(
C

(22)

j,l

)
∩ V

(
C

(3)

l

)
,

M(j,n) = V ({j(n)}) ∩ V
(
Π−1
n,n2

(j(n2)) \ {j(n)}
)
, j = 1, ..., N, n > n2 .

Lemma 6.9. For every n ≥ n2 we have

Mj,l = V
(
G

(1)

j,n

)
∩ V

(
G

(21)

j,l,n

)
, (6.9)

M ′
j,l = V

(
G

(21)

j,l,n

)
∩ V

(
G

(22)

j,l,n

)
, (6.10)
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M ′′
j,l = V

(
G

(22)

j,l,n

)
∩ V

(
G

(3)

l,n

)
. (6.11)

Moreover, the sets Mj,l, M
′
j,l M

′′
j,l, M(j,n), n > n2, are nonempty.

Proof. The first statement immediately follows from Lemma 5.4 ii and Lemma 6.2 i). To
prove that the sets Mj,l, M

′
j,l, M

′′
j,l are nonempty, it suffices to observe that (ϖ0, ..., ϖm)

is a path, and ϖ0 ∈ C
(1)

j , ϖ1, ϖs̃ ∈ C
(21)

j,l , ϖs̃+1, ϖm−1 ∈ C
(22)

j,l , ϖm ∈ C
(3)
l . Finally,

to prove that M(j,n) ̸= ø, note that, by the connectedness of Fn there exists ϖ ∈ A3,n,
ϖ ̸= j(n) such that Vj(n)

∩ Vϖ ̸= ø. By Corollary 5.5, we have ϖ ∈ Π−1
n,n2

(j(n2)), so that
by definition, M(j,n) ̸= ø.

Lemma 6.10. For every n > n2, the sets {Pj}, Mj,l, M
′
j,l , M

′′
j,l with all j, l such that

j ∈ B̃′
l, and M(j,n) with j = 1, ..., N , are mutually disjoint.

Proof. The sets Mj,l, M
′
j,l , M

′′
j,l are mutually disjoint by Lemma 6.8 and formulas (6.9),

(6.10), (6.11). Also, they are disjoint from the sets {Pj},M(j,n) by Lemma 5.5. By Lemmas
5.1 and 5.5 again, the sets {Pj}, M(j,n) are mutually disjoint.

We will now define new sets, useful in the sequel, defined as the union of previously defined
sets. Let

C
(17)

j,l = C
(1)

j ∪ C(7)

j,l

C
(1217)

j,l = C
(1)

j ∪ C(21)

j,l ∪ C(7)

j,l

C
(121)

j,l := C
(1)

j ∪ C(21)

j,l if j ∈ B̃′
l, C

(121)

j =
∪

l:j∈B̃′
l

C
(121)

j,l

and G
(17)

j,l,n, C
(1217)

j,l,n , G
(121)

j,l,n , G
(121)

j,n as usual.

Lemma 6.11. The sets C
(17)

j,l , C
(1217)

j,l , C
(121)

j,l , C
(121)

j , C
(121)

j,l ∪ C(121)

j,l′ , and consequently,

G
(17)

j,l,n, G
(1217)

j,l,n , G
(121)

j,l,n , G
(121)

j,n , G
(121)

j,l,n ∪G(121)

j,l′,n are connected.

Proof. It suffices to observe that C
(1)

j ∪C(21)

j,l is a path, and that, by definition, every point

of C
(7)

j,l is connected to j(n2) ∈ C
(1)

j by a path in C
(7)

j,l . Thus, in any of the sets C
(17)

j,l ,

C
(1217)

j,l , C
(121)

j,l , C
(121)

j , every point is connected to j(n2) by a path contained in the set.

Remark 6.12. Note that, by Remark 6.7, when j ∈ B̃′
l, then G

(7)

j,l,n is separated from

G
(5)

n \G(1217)

j,l,n . Therefore, in view also of Lemma 6.8, if ϖ ∈ G
(1217)

j,l,n , ϖ′ ∈ G
(5)

n \G(1217)

j,l,n and

ϖ ∼ ϖ′, then, ϖ ∈ G
(21)

j,l,n, ϖ
′ ∈ G

(22)

j,l,n; thus V (G
(1217)

j,l,n ) ∩ V (G
(5)

n \G(1217)

j,l,n ) ⊆ M ′
j,l. Using

Lemma 6.8 again, we can prove similarly that, if ϖ ∈ G
(121)

j,l,n , j ∈ B̃′
l, ϖ

′ ∈ G
(5)

n \G(121)

j,n and

ϖ ∼ ϖ′, then we have ϖ ∈ G
(21)

j,l,n, ϖ
′ ∈ G

(22)

j,l,n; thus V (G
(121)

j,l,n ) ∩ V (G
(5)

n \ G(121)

j,n ) ⊆ M ′
j,l.
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7. Several Lemmas.

The present Section is devoted to prove several preparatory results for the proof of the
main Theorem. First of all I will introduce an element q of Q̃, that in the proof of main
Theorem plays the role that 1J played in Section 4. In this more general case, we need a
form that is less symmetric than I(1J), in the sense that is symmetric only restricted to a
single block. Recall that the graph J on {1, ..., N} is defined by

J =
{
{j1, j2} : j1, j2 = 1, ..., N, j1 ̸= j2, ∃ l = 1, ..., h′ : j1, j2 ∈ B̃′

l

}
⊆ J .

In view of (6.3′), it is simple to see that J on {1, ..., N} is connected. Thus q ∈ Q̃ defined

by q = χJ , in fact belongs to Q̃, since Gr(q) = J . In order to investigate the properties of

q, I will now define a set that is a sort of analog of C
(7)

j,l in
{
1, ..., N

}
. Namely, if j ∈ B̃′

l,

we denote by C̃
(7)
j,l the set of j′ ∈ {1, ..., N} \ B̃′

l J-connected to j in {1, ..., N} \ B̃′
l.

Lemma 7.1.
i) For every j ∈ B̃′

l, j
′ = 1, ..., N , we have j′ ∈ C̃

(7)
j,l ⇐⇒ j′(n2)

∈ C
(7)

j,l ,

ii) The set {1, ..., N} \ B̃′
l is the union of the mutually disjoint sets C̃

(7)
j,l , j ∈ B̃′

l.

iii) if j1 ∈ C̃
(7)
j,l , j2 ∈ C̃

(7)
j′,l, with j, j

′ ∈ B̃′
l, j ̸= j′, then {j1, j2} /∈ J .

Proof. We first prove the ”⇒” part in i). Suppose j′ ∈ C̃
(7)
j,l . Then, there exists a J path

(j0, ..., jm) in {1, ..., N} \ B̃′
l connecting j

′ to j, thus two consecutive vertices of the path

js−1, js belong to a common B̃′
u(s) for every s = 1, ..,m and of course u(s) ̸= l as js−1 /∈ B̃′

l.

Pick a point ϖ ∈ C
(3)

u(s). By Lemma 6.5 there exist a G-path in C
(8)

js−1,u(s) connecting

(js−1)(n2) to ϖ and a G-path in C
(8)

js,u(s) connecting (js)(n2) to ϖ. Therefore, there exists

a path connecting (js−1)(n2) to (js)(n2) in A2,n2 ∩
(
C

(5) \ C(4)

l

)
. As a consequence, j′(n2)

is connected to j(n2) in C
(5) \C(4)

l , thus j′(n2)
∈ C

(7)

j,l and the ”⇒” part in i) is proved. By

Lemma 6.6 the sets C̃
(7)
j,l , j ∈ B̃′

l are mutually disjoint. Next, we prove that

{1, ..., N} \ B̃′
l =

∪
j∈B̃′

l

C̃
(7)
j,l (7.1)

It clearly suffices to prove the inclusion ⊆. If j′ ∈ {1, ..., N} \ B̃′
l, there exists a J-path

connecting j′ to some point in B̃′
l, and suppose j is the first vertex in the path belonging

to B̃′
l. Then j′ ∈ C̃

(7)
j,l and (7.1) follows, thus ii) is proved. Next, we prove the ”⇐” part

in i). Suppose j ∈ B̃′
l, j

′ = 1, ..., N and j′(n2)
∈ C

(7)

j,l . Then j′ ∈ {1, ..., N} \ B̃′
l, so that

j′ ∈ C̃
(7)
j′′,l for some j′′ ∈ B̃′

l. Thus, j
′
(n2)

∈ C
(7)

j′′,l, so that, by Lemma 6.5 again, j′′ = j and

⇐ in i) is proved. Finally, iii) immediately follows from ii).

We now are going to evaluate R(q). To this aim, we need some preliminary considerations.
First, we will evaluate the resistance between two different Pj lying in the same block.
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The evaluation of R(q) restricted to a single n-block is simple and is essentially the same

problem as the evaluation of R̂(1j) in the case of C.I.F.T.. However, we have to prove that

such effective resistance (along C
(4)

l ) is the same as that along C
(5)

. Lemmas 7.2 and 7.4
are the tools to obtain this, while Lemma 7.3 will lead us to evaluate R(q) between points
in different blocks. We say that a subset W ′ of a graph (W,G) is normally disconnecting
(in W ) if every Q ∈W \W ′ is G connected to at most one point of W ′ in W \W ′.

Lemma 7.2. If V ′ ⊆ V , V ′ = {Pj : j ∈ C}, #(V ′) ≥ 2, q ∈ Q, and C is Gr(q)-normally
disconnecting. Putting q′ := q|J(C) then for every Pj1 , Pj2 ∈ V ′, j1 ̸= j2
i) I(q)|V ′ = I(q′),
ii) R(q){j1,j2} = R(q′){j1,j2}.

Proof. The statement is well-known so that I omit the proof. The idea is that every function
on V ′ can be extended to a function on V , constant on every component of V \ V ′.

Lemma 7.3. Suppose q ∈ Q, V = V ′ ∪ V ′′, and V ′ ∩ V ′′ = {Pj}, V ′ = {Pj : j ∈ C ′},
V ′′ = {Pj : j ∈ C ′′} with C ′ and C ′′ subsets of {1, ..., N}. Suppose {j1, j2} /∈ Gr(q) for
every j1 ∈ C ′ \ {j}, j2 ∈ C ′′ \ {j}. Then for every Pj1 ∈ V ′ \ {Pj}, Pj2 ∈ V ′′ \ {Pj}

i) R(q){j1,j} = R(q|J(C′)){j1,j}, R(q){j2,j} = R(q|J(C′′)){j2,j}
ii) R(q){j1,j2} = R(q){j1,j} +R(q){j2,j}.

Proof. i) follows from Lemma 7.1, and ii) is a case of the well-known resistances in series
principle.

Lemma 7.4. For every l = 1, .., h′, the sets B̃′
l and

l∪
h=1

B̃′
h are J-normally disconnecting.

Proof. The set B̃′
l is normally disconnecting by Lemma 7.1. We prove that B :=

l∪
h=1

B̃′
h

is normally disconnecting too. Suppose there is a point in {1, ..., N} \ B connected in
{1, ..., N} \ B to two different points j and j′ of B. Then, j and j′ are connected by a
simple path (j0, ..., jm) with js ∈ {1, ..., N} \ B for s = 1, ...,m − 1, m > 1. Let l be the

maximum h such that B̃′
h contains at least two different js, namely js1 and js2 . Suppose

s1, s2 are respectively the minimum and the maximum of the set of the indices s such that
js ∈ B̃′

l
. As j1 /∈ B, and by hypothesis j0, j1 belong to a common B̃′

s we have s > l, thus

l > l. In any case, we have js1 , js2 ∈ B̃′
l
∩
( l−1∪
m=1

B̃′
m

)
and this contradicts (6.3′).

In order to completely evaluate R(q), we have still to discuss what happens between points
in different blocks. To this aim, I will now introduce to following notion.

We say that (j1, j2) is a l-pair if j1 ∈
( l∪
l=1

B̃′
l

)
\ B̃′

l+1
, j2 ∈ B̃′

l+1
\
( l∪
l=1

B̃′
l

)
.

Lemma 7.5.
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i) If j1, j2 ∈
l+1∪
l=1

B̃′
l, j1 ̸= j2, then precisely one of the following occurs

a) there exists l = 1, ..., l + 1 such that j1, j2 ∈ B̃′
l

b) there exists l′ = 1, ..., l such that either (j1, j2) or (j2, j1) is an l
′-pair.

ii) If (j1, j2) is a l-pair, then j1, j2 and j̃l are mutually different.

Proof. If there exists no l = 1, ..., l + 1 such that j1, j2 ∈ B̃′
l, then, let l1 be the minimum

l such that j1 ∈ B̃′
l and let l2 be the minimum l such that j2 ∈ B̃′

l. We have l1 ̸= l2 and,
if for example l1 < l2, then (j1, j2) is a (l2 − 1)-pair. Moreover, if both a) and b) hold, by

definition, we have l′+1 < l, but in such a case, j1, j2 ∈
( l−1∪
s=1

B̃′
s

)
∪B̃′

l, and this contradicts

(6.3′), and i) is proved, and ii) is an immediate consequence of the definition of an l-pair
and (6.3′).

Now, putting R̃ := R(q), we are ready to find R̃ recursively:

Lemma 7.6. If {j1, j2} ∈ J , then

R̃{j1,j2} =


2

#(B̃′
l)

if j1, j2 ∈ B̃′
l ,

R̃{j̃l,j1} + R̃{j̃l,j2} if (j1, j2) is l-pair .

Proof. Suppose j1, j2 ∈ B̃′
l. By Lemma 7.2, we have

R̃{j1,j2} = R(q|
J(B̃′

l
)
){j1,j2}

but q|
J(B̃′

l
)
≡ 1, thus the minimum in the definition of (1/R)(q|

J(B̃′
l
)
) is attained at the

function v that attains the value 1
2 at all points different from j1 and j2, and I(q|J(B̃′

l
)
)(v) =

#(B̃′
l)

2
, so that the lemma is proved in this case. Putting B =

l+1∪
s=1

B̃′
s, we have

R̃{j̃l,j1} = R(q|J(B)){j̃l,j1}, R̃{j̃l,j2} = R(q|J(B)){j̃l,j2}, R̃{j1,j2} = R(q|J(B)){j1,j2},

by Lemmas 7.2 and 7.4. Thus, the formula when (j1, j2) is l-pair follows from Lemma 7.3

where we put V = {Pj : j ∈ B}, C ′ =
l∪

s=1
B̃′
s, C

′′ = B̃′
l+1.

Let

K̃ =
{
q ∈ RJ : qd ∈ [1− ς, 1 + ς] ∀d ∈ J, qd ∈ [0, ς] ∀ d ∈ J \ J

}
⊆ Q̃
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for positive ς < 1, which we will fix in the sequel. Note that K̃ is a nonempty compact
convex subset of RJ . I will prove that, for a suitable n, a suitable continuous map σ : K̃ →
W , the map q 7→ Λ̂σ(q)(q) sends K̃ into itself, thus it has a fixed point.

Lemma 7.7. There exists a neighbourhood U of R̃ such that, if q ∈ Q and R(q) ∈ U ,

then q ∈ K̃ .

Proof. By Lemma 2.8 iv), there exists U open neighbourhood of R̃ such that R
−1

(U) is a

bounded subset of Q̃. Thus, by Lemmas 2.8 iii), R is a homemomorphism from R
−1

(U)
onto

R
(
R

−1
(U)

)
=: V ⊆ U.

Hence, as R
−1

(R̃) = q and K̃ is a neighbourhood of q in Q̃, there exists Ũ open neigh-

bourhood of R̃ in V such that if y ∈ Ũ , then R
−1

(y) ∈ K̃. We have Ũ = U ∩ V for some
U open set in RJ contained in U . We easily see that U satisfies the Corollary.

In the sequel, we will denote by Λ̂r;n the operator Λ̂r on Fn for n > 1 when there is

possibility of confusion, for example Λ̂1;n. Usually, we can see that Λ̂r is defined on Fn on
the basis that r ∈]0,+∞[A3,n . A well-known result is that

Λ̂1;n = Λ̂n1 := Λ̂n1;1 . (7.2)

We will now investigate some properties of Λ̂r useful for the sequel. First, we prove that
Λ̂1 goes to 0 when n goes to infinity, and this fact will play an essential role in the sequel
as, for example, will lead us to prove that the contribution of the cells on the residual set

C
(6)

negligible for n large enough.

Lemma 7.8. Λ̂n1 (q){j1,j2} −→
n→+∞

0 for every q ∈ Q and {j1, j2} ∈ J .

Proof. For every q ∈ Q, n ∈ N and j = 1, ..., N , let

c̃j,n(q) =
∑
j′ ̸=j

Λ̂n1 (q){j,j′}, ˜̃cn(q) =

N∑
j=1

c̃j,n(q) .

Of course c̃j,n
(
Λ̂m1 (q)

)
= c̃j,n+m(q). Clearly,

c̃j,n(q) = I
(
Λ̂n1 (q)

)
(χ{Pj}) .

We now prove

c̃j,1(q) ≤ c̃j,0(q) (7.3)

c̃j,1(q) < c̃j,0(q) if c̃j,0(q) > 0 . (7.3′)

In order to prove (7.3) and (7.3′), for every t ∈ R, define vt ∈ RV (1)

by

33



vt = χ{Pj} + tχV (1)\V (0) ,

thus we have

c̃j,1(q) = Λ1

(
I(q)

)
(χ{Pj}) ≤ S′′

1

(
I(q)

)
(vt) = I(q)(vt ◦ ψj) +

∑
j′=1,...,N,j′ ̸=j

I(q)(vt ◦ ψj′)

= I(q)
(
t+ (1− t)χ{Pj}

)
+

∑
j′=1,...,N,j′ ̸=j

I(q)
(
t− tχ{Pj′}

)
= (1−t)2I(q)(χ{Pj})+t

2
∑

j′=1,...,N,j′ ̸=j

I(q)
(
χ{Pj′}

)
= (1−t)2c̃j,0(q)+t2

∑
j′=1,...,N,j′ ̸=j

c̃j′,0(q)

for every t ∈ R. Letting γ to be the function defined in the last row, we have γ(0) = c̃j,0(q)
and (7.3) follows at once. If moreover c̃j,0(q) > 0, then γ′(0) < 0, and (7.3′) follows. Note
that the function c̃j,0, c̃j,1 and ˜̃co are continuous. Thus the set

Aα,K :=
{
q ∈ Q : c̃j,0(q) ≥ α, ˜̃c0(q) ≤ K

}
is compact for every positive α,K. Thus, if q ∈ Aα,K , then

c̃j,1(q) ≤ c̃j,0(q)− β, (7.4)

where β is a positive constant (depending on α and K). Therefore, given K > ˜̃c0(q), we
have K > ˜̃cn(q) for every n, by (7.3). Suppose now given α > 0. Then, if c̃j,n(q) ≥ α
for every n we would have c̃j,n(q) ≤ c̃j,0(q) − nβ by (7.4), a contradiction. Thus, as by
(7.3) the sequence c̃j,n(q) is decreasing, then c̃j,n(q) < α for sufficiently large n. Therefore,
c̃j,n(q) −→

n→+∞
0 and the statement of the Lemma easily follows.

Corollary 7.9. |Λ̂1;n(q)| = |Λ̂n1 (q)| −→
n→+∞

0, uniformly on Ba for every a > 0.

Proof. If q ∈ Ba, then I(q) ≤ |q| I(1J) ≤ aI(1J), therefore I
(
Λ̂n1 (q)

)
≤ aI

(
Λ̂n1 (1J)

)
. Thus,

Λ̂n1 (q){j1,j2} ≤ 1

4
I
(
Λ̂n1 (q)

)
(χPj1

− χPj2
) ≤ 1

4
aI

(
Λ̂n1 (1J)

)
(χPj1

− χPj2
)

and we conclude by Lemma 7.8, and (7.2).

The final results of this Section are generalizations of Lemma 3.3. In fact, Lemma 3.3 can
be seen as a particular case of Lemma 7.10 when n = 0.

Lemma 7.10. Let B be a nonempty subset of A3,n and let r′ ∈]0,+∞[B, r′′ϖ ∈]0,+∞[A3,m

for every ϖ ∈ B. Let qϖ ∈ Q̃ for every ϖ ∈ B, let r ∈ RB×A3,m be defined by r(ϖ,ϖ′′) =
r′(ϖ)r′′ϖ(ϖ

′′). Let M1, M2 be nonempty disjoint subsets of V (B). Then

R̂
(
Sr′,ϖ,B

(
Λ̂r′′ϖ (qϖ)

))
{M1,M2}

= R̂
(
Sr,(ϖ,ϖ′′),B×A3,m

(qϖ)
)
{M1,M2}

. (7.5)
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Proof. Note that by Lemma 5.4, V (B) ⊆ V
(
Π−1
n+m,n(B)

)
= V (B ×A3,m), so that M1 are

also nonempty disjoint subsets of V (B ×A3,m). As for every v ∈ RV (m)

we have

S′
r′′ϖ

(qϖ)(v) ≥ Λr′′ϖ
(
I(qϖ)

)
(v|V (0)) = I

(
Λ̂r′′ϖ (qϖ)

)
(v|V (0))

then for every w ∈ RV (B×A3,m) we have,

S′
r,(ϖ,ϖ′′),B×A3,m

(qϖ)(w) =
∑

(ϖ,ϖ′′)∈B×A3,m

r′(ϖ)r′′ϖ(ϖ
′′)I(qϖ)(w ◦ ψϖ ◦ ψϖ′′)

=
∑
ϖ∈B

r′ϖ
∑

ϖ′′∈A3,m

r′′ϖ(ϖ
′′) I(qϖ)(w ◦ ψϖ ◦ ψϖ′′) =

∑
ϖ∈B

r′ϖS
′
r′′ϖ

(qϖ)(w ◦ ψϖ)

≥
∑
ϖ∈B

r′ϖ I
(
Λ̂r′′ϖ (qϖ)

)
(w|V (B) ◦ ψϖ) = S′

r′,ϖ,B
(
Λ̂r′′ϖ (qϖ)

)
(w|V (B))

(7.6)

Now, if w ∈ LV (B×A3,m),M1,M2
, then w|V (B) ∈ LV (B),M1,M2

. Therefore, by the definition

of (1/R̂), we have

(1/R̂)
(
Sr′,ϖ,B

(
Λ̂r′′ϖ (qϖ)

))
{M1,M2}

≤ (1/R̂)
(
Sr,(ϖ,ϖ′′),B×A3,m

(qϖ)
)
{M1,M2}

. (7.7)

Let now v ∈ LV (B);M1,M2
. For every ϖ ∈ B let ṽϖ ∈ LV (A3,m),V (0)(v ◦ ψϖ) be so that

I
(
Λ̂r′′ϖ (qϖ)

)
(v ◦ ψϖ) = S′

r′′ϖ
(qϖ)(ṽϖ) (7.8)

and let v ∈ RV (B×A3,m) be defined by

v
(
ψϖ ◦ ψϖ′′(P )

)
= ṽϖ

(
ψϖ′′(P )

)
for every ϖ ∈ B, ϖ′′ ∈ A3,m, P ∈ V (0). The definition is correct. In fact, if ψϖ ◦ψϖ′′(P ) =
ψϖ1 ◦ψϖ′′

1
(P1), then either ϖ = ϖ1, thus ψϖ′′(P ) = ψϖ′′

1
(P1), or ϖ ̸= ϖ1, thus by Lemma

5.1, ψϖ′′(P ), ψϖ′′
1
(P1) ∈ V (0) and ṽϖ

(
ψϖ′′(P )

)
= v

(
ψϖ ◦ ψϖ′′(P )

)
= v

(
ψϖ1 ◦ ψϖ′′

1
(P1)

)
=

ṽϖ1

(
ψϖ′′

1
(P1)

)
. It follows

v ◦ ψϖ = ṽϖ . (7.9)

Moreover, we have v ∈ LV (B×A3,m),M1,M2
and v = v on V (B). In fact, if Q ∈ V (B),

then Q = ψϖ(P ) for some ϖ ∈ B and P ∈ V (0). There exists ϖ′′ ∈ A3,m such that
P = ψϖ′′(P ). Thus,

v(Q) = v
(
ψϖ(P )

)
= v

(
ψϖ ◦ ψϖ′′(P )

)
= ṽϖ

(
ψϖ′′(P )

)
= v ◦ ψϖ(P ) = v(Q)

Thus, by (7.6), (7.8) and (7.9) we have
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S′
r,(ϖ,ϖ′′),B×A3,m

(qϖ)(v) =
∑
ϖ∈B

r′ϖS
′
r′′ϖ

(qϖ)(v ◦ ψϖ)

=
∑
ϖ∈B

r′ϖI
(
Λ̂r′′ϖ (qϖ)

)
(v ◦ ψϖ) = S′

r′,ϖ,B
(
Λ̂r′′ϖ (qϖ)

)
(v)

and, in view also of the definition (1/R̂) and (7.7), the Lemma is proved.

Corollary 7.11. Let B be a subset ofA3,n. Let q ∈ Q̃. Let r′ ∈]0,+∞[B, r′′ ∈]0,+∞[A3,m .
Let r ∈]0,+∞[B×A3,m be defined by r(ϖ′, ϖ′′) = r′(ϖ′) r′′(ϖ′′). LetM1, M2 be nonempty
disjoint subsets of V (B). Then

R̂
(
Sr′,B

(
Λ̂r′′(q)

))
{M1,M2}

= R̂
(
Sr,B×A3,m(q)

)
{M1,M2}

.

8. Eigenforms on General Fractals

In this Section, we will prove the main Theorem. Following the ideas described at beginning
of Section 6, we will evaluate the resistances along bigger and bigger sets. We will use the

n-blocks G
(4)
l,n with n large enough for the reason explained there. We start by evaluating

the resistance between Pj and the relative bridge. We have to require that it is less then
al
2

where the correct value of al amounts to
2

#(B̃′
l)

(cf. Lemma 7.6). To this aim, we need

to introduce a special constant t as follows

t = 3max
{
R̂(q){{Pj},B}, q ∈ K̃, j ∈ A1,ø ̸= B ⊆ V (0), Pj /∈ B

}
.

Moreover, we will define a class of sets of weights in Wn that, restricted to A2,n, only
depend on the Πn,n2-image of the point. Namely, given

n > n2, g : A3,n2 →]0,+∞[, 0 < η ≤ min
{ 1

#(B̃′
l)

}
≤ 1

2
,

we define r(g,η,n) ∈Wn by

r(g,η,n)(ϖ) =


t

η
if ϖ = (j(n))

g
(
Πn,n2(ϖ)

)
otherwise

∀ϖ ∈ A3,n .

In the sequel, untill Lemma 8.11, we will consider η as a fixed value (satisfying the
required inequalities), and in the constants introduced (t̃1,j,l,n, t2,q,j,l,n and so on) we will
not stress the dependance on η. Only in Lemma 8.12 we will choose a suitable, sufficiently
small, value of η.
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Lemma 8.1. Given n > n2 and j ∈ B̃′
l, there exists t̃1,j,l,n ≥ t

η such that, if g = t̃ ≥

t̃1,j,l,n on C
(1)

j then R̂
(
S
r(g,η,n),G

(1)

j,n

(q)
)
{{Pj},Mj,l}

≤ η
2 ≤ 1

2#(B̃′
l)

for every q ∈ K̃.

Proof. Let ϖ ∈ G
(1)

j,n be such that there exists Q ∈ Vϖ ∩Mj,l ̸= ø. As G
(1)

j,n is connected,

there exists a simple path (ϖ0, ..., ϖm) in G
(1)

j,n connecting ϖ to j(n). Since Q ∈ V (G
(21)

j,l,n),

then Q /∈ V(jn) by Lemma 5.5, thus ϖ ̸= j(n), and m ≥ 1. For every v ∈ RV (G
(1)

j,n), we have

S′
r(g,η,n),G

(1)

j,n

(q)(v) =
∑

ϖ∈G(1)

j,n

r(g,η,n)(ϖ)I(q)(v ◦ ψϖ) ≥
m∑
s=0

r(g,η,n)(ϖs)I(q)(v ◦ ψϖs)

=
(
g(j(n2))

m−1∑
s=0

I(q)(v ◦ ψϖs)
)
+
t

η
I(q)(v ◦ ψj(n)

)

≥ t̃1

m−1∑
s=0

I(q)(v ◦ ψϖs) +
t

η
I(q)(v ◦ ψj(n)

)

provided g(j(n2)) ≥ t̃1,j,l,n. Now, if q ∈ K̃, we have qϖ ≥ q̂ϖ for every ϖ ∈ J , where

q̂ ∈ K̃ ⊆ Q̃ is defined by

q̂ϖ = 1− δ if ϖ ∈ J, q̂ϖ = 0 if ϖ ∈ J \ J .

Hence, q{j1,j2} ≥ q̂{j1,j2} for every {j1, j2} ∈ J , thus I(q)(u) ≥ I(q̂)(u), hence,

S′
r(g,η,n),G

(1)

j,n

(q)(v) ≥ t̃1

m−1∑
s=0

I(q̂)(v ◦ ψϖs) +
t

η
I(q̂)(v ◦ ψj(n)

)

= t̃1,j,l,nS
′
1,G

(q̂)(v) +
t

η
S′
1,{j(n)}(q̂)(v), G := {ϖ0, ..., ϖm−1}

Let M := Vϖm−1 ∩ Vϖm = Vϖm−1 ∩ Vj(n)
̸= ø. We have Pj /∈M , and let

M ′ :=M ∪ {Pj} ⊆ Vj(n)
.

Suppose now v ∈ L′
V (G

(1)

j,n);{Pj},Mj,l

. By the uniform continuity of ≥ S′
1,{j(n)}(q̂)|M ′ we

have S′
1,{j(n)}(q̂)|M ′(v|M ′) > 2

3S
′
1,{j(n)}(q̂)|M ′(χ|M ) = 2

3 (1/R̂)
(
S1,{j(n)}(q̂)

)
{Pj},M

provided

|v(Q)− 1| < η on M where η is a suitable positive number. Thus,

S′
1,{j(n)}(q̂)(v) ≥ S′

1,{j(n)}(q̂)|M ′(v|M ′) >
2

3
(1/R̂)

(
S1,{j(n)}(q̂)

)
{Pj},M

.

As M ⊆ ψj(n)
(V (0)) we have M = ψj(n)

(B) with ø ̸= B ⊆ V (0). Also, Pj /∈ B, so that

{Pj} and B are nptdss of V (0). Therefore, by Corollary 3.5, we have
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R̂
(
S1,{j(n)}(q̂)

)
{Pj},M

= R̂(q̂){{Pj},B} ≤ t

3
.

Summarizing, if |v(Q)− 1| < η for every Q ∈M , then

S′
r(g,η,n),G

(1)

j,n

(q)(v) ≥ t

η
S′
1,{j(n)}(q̂)(v) >

t

η

2

3
(1/R̂)

(
S1,{j(n)}(q̂)

)
{Pj},M

≥ 2

η
. (8.1)

If, on the contrary, there exists Q ∈M such that |v(Q)− 1| ≥ η, then, v ∈ T1, where

T1 :=
{
w ∈ RV (G) : w(Q) = 1 ∀Q ∈Mj,l∩V (G), ∃Q ∈M : |w(Q)−1| ≥ η, 0 ≤ w ≤ 1

}
.

By a compactness argument, there exists min
w∈T1

S′
1,G

(q̂)(w) := c1 > 0. Hence, S′
1,G

(q̂)(v) ≥
c1. As a consequence,

S′
r(g,η,n),G

(1)

j,n

(q)(v) ≥ t̃1,j,l,nS
′
1,G

(q̂)(v) ≥ t̃1,j,l,nc1 >
2

η

for sufficiently large t̃1,j,l,n. Taking also into account (8.1), in any case, for such t̃1,j,l,n we

have R̂
(
S
r(g,η,n),G

(1)

j,n

(q)
)
{{Pj},Mj,l}

≤ η
2 .

Next, following the scheme in Section 6, we will prove in Lemma 8.3 the equivalent of

formula R1 +R2 =
al
2

there. We need the following preliminary Lemma.

Lemma 8.2. For j ∈ B̃′
l,

R̂
(
S
1,G

(22)

j,l,n

(q)
)
{M ′

j,l
,M ′′

j,l
} −→
n→+∞

+∞.

uniformly for q ∈ K̃.

Proof. We use Corollary 7.11 with n2 in place of n, C
(22)

j,l in place of B, n− n2 in place of

m, r′ = r′′ = 1 so that r(ϖ) = 1 for every ϖ ∈ G
(22)

j,l,n. We have

(1/R̂)
(
S
1,G

(22)

j,l,n

(q)
)
{M ′

j,l
,M ′′

j,l
} = (1/R̂)

(
S
1,C

(22)

j,l

(
Λ̂1;n−n2(q)

))
{M ′

j,l
,M ′′

j,l
}

≤
∣∣Λ̂1;n−n2(q)

∣∣ (1/R̂)(S
1,C

(22)

j,l

(1J)
)
{M ′

j,l
,M ′′

j,l
}

−→
n→+∞

0

uniformly on K̃, by (2.2) and Corollary 7.9, and the Lemma follows.

Lemma 8.3. For every η as above, there exists n1,η > n2 such that, if n ≥ n1,η and

j ∈ B̃′
l, for every q ∈ K̃ there exists a unique t(= t2,q,j,l,n) ≥ t

η , continuously depending

on q, such that if g = t̃ ≥ t̃1,j,l,n on C
(1)

j and g = t on C
(22)

j,l , we have
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R̂
(
S
r(g,η,n),G

(17)

j,l,n

(q)
)
{{Pj},Mj,l}

+ R̂
(
S
r(g,η,n),G

(22)

j,l,n

(q)
)
{M ′

j,l
,M ′′

j,l
} =

1

#(B̃′
l)
.

Proof. By Lemma 8.1, we have

R̂
(
S
r(g,η,n),G

(17)

j,l,n

(q)
)
{{Pj},Mj,l}

≤ R̂
(
S
r(g,η,n),G

(1)

j,n

(q)
)
{{Pj},Mj,l}

<
1

#(B̃′
l)

for every q ∈ K̃. On the other hand,

R̂
(
S
r(g,η,n),G

(22)

j,l,n

(q)
)
{M ′

j,l
,M ′′

j,l
} = R̂

(
S
t,G

(22)

j,l,n

(q)
)
{M ′

j,l
,M ′′

j,l
} =

1

t
R̂
(
S
1,G

(22)

j,l,n

(q)
)
{M ′

j,l
,M ′′

j,l
}

and, by Lemma 8.2, for sufficiently large n, R̂
(
S
1,G

(22)

j,l,n

(q)
)
{M ′

j,l
,M ′′

j,l
} >

t

η

1

#(B̃′
l)

for every

q ∈ K̃. As by (6.1) we have #(B̃′
l) ≥ 2, and R̂

(
S
1,G

(22)

j,l,n

(q)
)
{M ′

j,l
,M ′′

j,l
} is finite by Lemma

3.2, we conclude with

t =
R̂
(
S
1,G

(22)

j,l,n

(q)
)
{M ′

j,l
,M ′′

j,l
}

1

#(B̃′
l
)
− R̂

(
S
r(g,η,n),G

(17)

j,l,n

(q)
)
{{Pj},Mj,l}

.

We will now prove that the resistance between two points of V (0) approximates R̃. In the
following Lemma we will see this when the points are in the same block. We will get this
using two times Lemma 3.7 in the situation of Lemma 8.3.

Lemma 8.4. For every η ∈
]
0,min

{
1

#(B̃′
l
)

}]
and n ≥ n1,η, there exist t̃2,n, t̃3,n >

t
η such

that if q ∈ K̃, g = t̃1,n := max{t̃1,j,l,n : j, l} on C
(1)

j , g = t̃2,n on C
(21)

j,l , g = t̃3,n on C
(3)

l ,

g = t2,q,j,l,n on C
(22)

j,l for every l = 1, ..., h′, j ∈ B̃′
l, then for every l = 1, ..., h′, j1, j2 ∈ B̃′

l,
j1 ̸= j2

i)
2

#(B̃′
l)

− 3η < R̂
(
S
r(g,η,n),G

(5)

n

(q)
)
{Pj1 ,Pj2}

<
2

#(B̃′
l)

+ 3η.

ii) R̂
(
Sr(g,η,n),A{j1,j2}(q)

)
{M ′

j1,l
,M ′

j2,l
} ≥ 2

#(B̃′
l)

− η, where

A{j1,j2} := G
(5)

n \
(
G

(1217)

j1,l,n ∪G(1217)

j2,l,n

)
.

Proof. For j ∈ B̃′
l, we use Lemma 3.7 with

B1 := G
(17)

j,l,n, B2 := G
(22)

j,l,n, B3 := G
(21)

j,l,n, B4 := ø,
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A1 = {Pj}, A2 =M ′′
j,l.

and obtain that

M1 = V (G
(17)

j,l,n) ∩ V (G
(21)

j,l,n) = V (G
(1)

j,n) ∩ V (G
(21)

j,l,n) =Mj,l, (8.2)

M2 = V (G
(21)

j,l,n) ∩ V (G
(22)

j,l,n) =M ′
j,l,

Note that the second equality in (8.2) is a simple consequence of Lemma 6.8, case e). Next,
by Lemma 6.8 again, B1 and B2 are separated so that we can in fact apply Lemma 3.7,

and moreover, B5 ⊆ G
(1)

j,n ∪ G(22)

j,l,n. We note that, if ϖ ∈ B5, then, by definition, we have

r(g,η,n)(ϖ) = t̃ or r(g,η,n) =
t
η or r(g,η,n)(ϖ) = t2,q,j,l,n. Once we fix n and η, such numbers

are bounded independently of q ∈ K̃. In fact, t2,q,j,l,n dependes continuously on q, thus it

has a maximum on K̃. Now, for every j ∈ B̃′
l, put

Gj =: G
(17)

j,l,n ∪G(21)

j,l,n ∪G(22)

j,l,n = G
(1)

j,n ∪G(7)

j,l,n ∪G(21)

j,l,n ∪G(22)

j,l,n

We now use Lemma 3.7 ii) and, for sufficiently large t̃2,n, and for every q ∈ K̃, we get

1

#(B̃′
l)

− η < R̂
(
Sr(g,η,n),Gj (q)

)
{{Pj},M ′′

j,l
} <

1

#(B̃′
l)

+ η (8.3)

Note that the sets Gj are mutually disjoint by Lemma 6.6 ii). Thus, we use Lemma 3.7
again with

B1 := Gj1 , B2 := Gj2 , B3 := G
(3)

l,n , B4 :=
∪

j∈B̃′
l
\{j1,j2}

Gj .

A1 = {Pj1}, A2 = {Pj2}. We easily see that B1, B2, B3, B4 are mutually disjoint subsets of
A3,n. Moreover, B1, B2 and B4 are mutually separated by Lemma 6.8. Finally, by Lemma
6.8 again, M1 := V (B1) ∩ V (B3) = M ′′

j1,l
, and similarly, M2 = M ′′

j2,l
. In conclusion, all

hypotheses of Lemma 3.7 ii) are satisfied. Note also, that B5 ⊆
∪
j∈B̃′

l

G
(22)

j,l,n by Lemma 6.8,

and A = G
(5)

n . We have r(g,η,n)(ϖ) = t2,q,j,l,n ≤ A for every ϖ ∈ B5, where A is a suitable
constant. By Lemma 3.7, also using (8.3) both with j = j1 and with j = j2, we have

2

#(B̃′
l)

− 3η <

R̂
(
Sr(g,η,n),Gj1

(q)
)
{{Pj1},M

′′
j1,l

} + R̂
(
Sr(g,η,n),Gj2

(q)
)
{{Pj2},M

′′
j2,l

} − η ≤

R̂
(
S
r(g,η,n),G

(5)

n

(q)
)
{{Pj1},{Pj2}}

≤

R̂
(
Sr(g,η,n),Gj1

(q)
)
{{Pj1},M

′′
j1,l

} + R̂
(
Sr(g,η,n),Gj2

(q)
)
{{Pj2},M

′′
j2,l

} + η
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<
2

#(B̃′
l)

+ 3η

for every q ∈ K̃, for sufficiently large t̃3,n for every l and j1, j2 ∈ B̃′
l, and i) is proved.

We are now going to prove ii). In this case, we use Lemma 3.7 i) with

B1 = G
(22)

j1,l,n, B2 = G
(22)

j2,l,n, B3 := G
(3)

l,n , B4 :=
∪

j∈B̃′
l
\{j1,j2}

Gj

A1 =M ′
j1,l, A2 =M ′

j2,l

We easily see that the hypothesis of Lemma 3.7 is in fact satisfied. Moreover, M1 =M ′′
j1,l

,
M2 =M ′′

j2,l
, and A = Aj1,j2 . We conclude

R̂
(
Sr(g,η,n),Aj1,j2

(q)
)
{M ′

j1,l
,M ′

j2,l
} ≥

R̂
(
S
r(g,η,n),G

(22)

j1,l,n

(q)
)
{M ′

j1,l
,M ′′

j1,l
} + R̂

(
S
r(g,η,n),G

(22)

j2,l,n

(q)
)
{M ′

j2,l
,M ′′

j2,l
}

=
2

#(B̃′
l)

−
(
R̂
(
S
r(g,η,n),G

(17)

j1,l,n

(q)
)
{{Pj1},Mj1,l}

+ R̂
(
S
r(g,η,n),G

(17)

j2,l,n

(q)
)
{{Pj2},Mj2,l}

)
by Lemma 8.3, and by Lemma 8.1 and Remark 3.6, we have

R̂
(
S
r(g,η,n),G

(17)

j,l,n

(q)
)
{{Pj},Mj,l}

≤ R̂
(
S
r(g,η,n),G

(1)

j,n

(q)
)
{{Pj},Mj,l}

≤ η

2

for j = j1, j2, and ii) follows.

We have now to prove that the effective resistance (denoted in this discussion by Rj1,j2)

between two points Pj1 , Pj2 of V (0) not in the same block approximates R̃{j1,j2}. In order
to do this, we need some preliminary considerations. If j1, j2 are not in a common block,
which means that they do not belong to a common B̃′

l, by Lemma 7.5 we can assume
(j1, j2) is an l-pair for some l, so that we can suppose by a recursive argument we have
information about Rj1,j̃l

and Rj1,j̃l
, and we have to combine such information to investigate

Rj1,j2 . We will easily deduce, in view of Lemma 8.4 and of the triangular inequality of the

effective resistance, that R{j1,j2} does not exceed R̃j1,j2+ a small quantity, and we have to
find a bound from below. The way to obtain the bound from below turns out to be rather
long and technical. However, I do not see a simpler proof. A possible alternative approach
would be to replace the set K̃ by a set where the conductivities q{j1,j2} approximate those
of q, that is 1, for vertices in the same block, and amount to 0 for vertices in different
blocks, but it does not appear to be simple to prove that such a set is mapped into itself
in the general case.

To find the bound from below, we first need to prove a separation property of Pj̃
l
. To

describe it more precisely, observe that the set G
(121)

j̃
l
,n can be seen as the union of the vertex

part G
(1)

j̃
l
,n and some branches, that is the exterior parts G

(21)

j̃
l
,l,n of the bridges. In Lemma
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8.5 we will prove that every point not in G
(121)

j̃
l
,n can be connected to precisely one branch,

and in Lemma 8.7, in view of the final paragraph in Remark 8.6, we in particular prove
that Pj1 and Pj2 are connected to different branches, so that they lie in different parts
with respect to Pj̃

l
.

Lemma 8.5. For every ϖ ∈ G
(5)

n \ G(121)

j̃
l
,n there exists precisely one l with j̃l ∈ B̃′

l such

that ϖ is connected in G
(5)

n \G(121)

j̃
l
,n to points in G

(121)

j̃
l
,l,n.

Proof. There exists a simple path connecting ϖ to (j̃l)(n) ∈ G
(1)

j̃
l
,n in G

(5)

n , and the first

vertex in the path lying in G
(121)

j̃
l
,n , in fact belongs to G

(121)

j̃
l
,l,n for some l and the existence

is proved. We now prove the uniqueness: Suppose by contradiction that there exist two

different li, i = 1, 2 with j̃l ∈ B̃′
li
such that ϖ is connected in G

(5)

n \G(121)

j̃
l
,n to some point

in G
(121)

j̃
l
,li,n

, and by Lemma 6.8 such a point belongs to G
(21)

j̃
l
,li,n

. Then there exists a path

in G
(5)

n \G(121)

j̃
l
,n connecting some point ϖ− ∈ G

(21)

j̃
l
,l1,n

to some point ϖ+ ∈ G
(21)

j̃
l
,l2,n

, passing

through ϖ, and by Remark 6.7, ϖ− /∈ G
(7)

j̃
l
,l2,n

. On the other hand, by Lemma 6.5 i), there

exists a path connecting ϖ− to some point of G
(1)

j̃
l
,n in G

(8)

j̃
l
,l1,n

\ G(1)

j̃
l
,n ⊆ G

(5)

n \ G(4)

l2,n, and

by Remark 6.7 ϖ− ∈ G
(7)

j̃
l
,l2,n

, a contradiction, and the uniqueness is proved.

We say that two pairs (j1, l1) and (j2, l2) are (l1, l2)-related if j1 ∈ B̃′
l1
, j2 ∈ B̃′

l2
, l1 ≤ l2,

j1 ̸= j2, l1, l2 ∈ [l1, l2], and for every ϖ ∈ G
(22)

j1,l1,n, ϖ
′ ∈ G

(22)

j2,l2,n there exists a path

in
( l2∪
l=l1

G
(4)

l,n

)
\
(
G

(121)

j1,n ∪ G
(121)

j2,n

)
connecting ϖ and ϖ′. Note that in such a case, since

ϖ,ϖ′ ∈
( l2∪
l=l1

G
(4)

l,n

)
\
(
G

(121)

j1,n ∪G(121)

j2,n

)
, the path is contained in

( l2∪
l=l1

G
(4)

l,n

)
\
(
G

(121)

j1,n ∪G(121)

j2,n

)
,

We will write shortly l2-related for (1, l2)-related.

Remark 8.6. Since C
(21)

j,l ∪ C(22)

j,l is a path, thus is connected, the set G
(21)

j,l,n ∪ G(22)

j,l,n is

also connected. Therefore, there exist ϖ ∈ G
(21)

j,l,n, ϖ
′ ∈ G

(22)

j,l,n such that ϖ ∼ ϖ′. Thus, if

(j1, l1) and (j2, l2) are (l1, l2)-related, then for every ϖ ∈ G
(22)

j1,l1,n, there exists ϖ
′ ∈ G

(21)

j2,l2,n

and a path connecting ϖ to ϖ′ in
( l2∪
l=l1

G
(4)

l,n

)
\
(
G

(121)

j1,n ∪G(121)

j2,n

)
.

By a similar argument, we see that, if (j1, li) and (j̃l.l2) are (l1, l2)-related, then, in
Lemma 8.5 for ϖ = (j1)n we have l = l2.

Lemma 8.7
i) If l = 1, ..., h′ and j1, j2 ∈ B̃′

l, j1 ̸= j2, then (j1, l) and (j2, l) are (l, l)-related.
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ii) If (j1, j2) is a l-pair, and (j1, l1) and (j̃l, l2) are l-related, and (j̃l, l + 1) and (j2, l + 1)

are (l + 1, l + 1)-related, then (j1, l1) and (j2, l + 1) are (l + 1)-related.

iii) For every j1, j2 ∈
l∪
l=1

B̃′
l, j1 ̸= j2, then there exist l1, l2 = 1, ..., l such that (j1, l1) and

(j2, l2) are l-related.
iv) If (j1, j2) is a l-pair, then there exist l1, l2 such that (j1, l1) and (j̃l, l2) are l-related.

Moreover, (j̃l, l + 1) and (j2, l + 1) are (l + 1, l + 1)-related.

Proof. The set C
(22)

j1,l ∪C
(22)

j2,l ∪C
(3)

l is connected, as C
(22)

j1,l and C
(22)

j2,l are paths not separated

from the connected set C
(3)

l . As a consequence G
(22)

j1,l,n∪G
(22)

j2,l,n∪G
(3)

l,n is connected, thus we

have proved i). We now prove ii). Given ϖ ∈ G
(22)

j1,l1,n and ϖ′ ∈ G
(22)

j2,l+1,n
, by hypothesis,

there exists a path connecting ϖ to any ϖ′′ ∈ G
(22)

j̃
l
,l2,n

contained in
( l∪
l=1

G
(4)

l,n

)
\
(
G

(121)

j1,n ∪

G
(121)

j̃
l
,n

)
, thus contained in

( l+1∪
l=1

G
(4)

l,n

)
\
(
G

(121)

j1,n ∪ G
(121)

j2,n

)
, as, by the definition of l-pair,

j2 /∈
l∪
l=1

B̃′
l, thus the points of G

(121)

j2,n do not belong to
l∪
l=1

G
(4)

l,n . Moreover, l1, l2 ≤ l.

Similarly, there exists a path connecting ϖ′ to any ϖ′′′ ∈ G
(22)

j̃
l
,l+1,n

contained in G
(4)

l+1,n
\(

G
(121)

j2,n ∪G(121)

j̃
l
,n

)
, thus contained in

( l+1∪
l=1

G
(4)

l,n

)
\
(
G

(121)

j1,n ∪G(121)

j2,n

)
, as, by the definition of

l-pair, j1 /∈ B̃′
l+1

, thus the points of G
(121)

j1,n do not belong to G
(4)

l+1,n
. Moreover, we can

choose ϖ′′ ∼ ϖ̃′′ ∈ G
(21)

j̃
l
,l2,n

⊆ G
(121)

j̃
l
,l2,n

, and ϖ′′′ ∼ ϖ̃′′′ ∈ G
(21)

j̃
l
,l+1,n

⊆ G
(121)

j̃
l
,l+1,n

. By Lemma

6.11, there exists a path contained in G
(121)

j̃
l
,l2,n

∪ G
(121)

j̃
l
,l+1,n

, thus contained in
( l+1∪
l=1

G
(4)

l,n

)
\(

G
(121)

j1,n ∪ G(121)

j2,n

)
, connecting ϖ̃′′ to ϖ̃′′′. We thus obtain a path connecting ϖ to ϖ′ in( l+1∪

l=1

G
(4)

l,n

)
\
(
G

(121)

j1,n ∪G(121)

j2,n

)
, and ii) is proved. We prove iii) by recursion on l. If l = 1,

then iii) follows from i). Suppose iii) holds for l′ = 1, ..., l, and let j1, j2 ∈
l+1∪
l=1

B̃′
l, j1 ̸= j2.

Then by Lemma 7.5, either j1, j2 ∈ B̃′
l for some l = 1, ..., l + 1, and iii) follows from i)

again, or (j1, j2) or (j2, j1) is an l′-pair for some l′ = 1, ..., l. If for example, (j1, j2) is an

l′-pair j1, j̃l′ ∈
l′∪
l=1

B̃′
l, and by the hypothesis there exist l1, l2 = 1, ..., l′ such that (j1, l1)

and (j̃l′ , l2) are l′-related. Also, as j̃l′ , j2 ∈ B̃′
l′+1, by i) (j̃l′ , l

′ + 1) and (j2, l
′ + 1) are

(l′ + 1, l′ + 1)-related. By ii) (j1, l1) and (j2, l
′ + 1) are (l + 1)-related, and iii) is proved.

As j1, j̃l ∈
l∪
l=1

B̃′
l, and j2, j̃l ∈ B̃′

l+1
, iv) is an immediate consequence of iii) and i) (it can

be also deduced by the argument of the proof of iii)).
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Now, in order to obtain a good bound from below for R{j1,j2}, we in fact will prove a
sort of reverse-triangular inequality, but where the effective effective resistance between
Pj1 and Pj2 is replaced by the effective resistance between M ′

j1,l1
and M ′

j2,l+1
, that only

slightly differs from it, and similarly for the other resistances in the formula (see (8.22) in
Lemma 8.10 for the precise statement). We obtain such an inequality using Lemma 3.7 i).
Lemmas 8.8 and 8.9 will assure that the hypothesis of Lemma 3.7 i) are satisfied in the
present case.

Lemma 8.8. Suppose (j1, j2) in an l-pair, and let l1 be as in Lemma 8.7 iv). Then the

sets G
(1217)

j1,l1,n, G
(1217)

j2,l+1,n
and G

(121)

j̃
l
,n are mutually separated.

Proof. We have to prove that, if ϖ ∈ G
(1217)

j1,l1,n, ϖ
′ ∈ G

(1217)

j2,l+1,n
, ϖ′′ ∈ G

(121)

j̃
l
,n , then

Vϖ ∩ Vϖ′ = Vϖ ∩ Vϖ′′ = Vϖ′ ∩ Vϖ′′ = ø .

Recalling the definitions of G
(1217)

j1,l1,n, G
(1217)

j2,l+1,n
, G

(121)

j̃
l
,n , in view of Lemma 6.8 the only

nontrivial cases are the following:

Vϖ ∩ Vϖ′ = ø, ϖ ∈ G
(1217)

j1,l1,n, ϖ
′ ∈ G

(1217)

j2,l+1,n
(8.4)

Vϖ ∩ Vϖ′′ = ø, ϖ ∈ G
(7)

j1,l1,n, ϖ
′′ ∈ G

(121)

j̃
l
,n (8.5)

Vϖ′ ∩ Vϖ′′ = ø, ϖ′ ∈ G
(7)

j2,l+1,n
, ϖ′′ ∈ G

(121)

j̃
l
,n . (8.6)

First of all, note that

G
(121)

j̃
l
,n ∩G(7)

j1,l1,n = G
(121)

j̃
l
,n ∩G(7)

j2,l+1,n
= ø . (8.7)

In fact, by Lemma 8.7, if ϖ ∈ G
(121)

j̃
l
,n , there exists a path connecting ϖ to points in

G
(4)

l1,n \G
(1)

j1,n in G
(5)

n \G(1)

j1,n, and, using simply Lemma 6.11 we see that there exists a path

connecting ϖ to ϖ′′ ∈ G
(4)

l+1,n
contained in G

(5)

n \ G(1)

j2,n, and (8.7) now follows from by

Remark 6.7. Now, every ϖ ∈ G
(1217)

j1,l1,n, by Lemma 6.11 is connected to any ϖ̃ ∈ G
(21)

j1,l1,n

by a path contained in G
(1217)

j1,l1,n, thus, in view of Lemma 6.3 i) and (8.7), contained in

G
(5)

n \ G(121)

j̃
l
,n . By Remark 8.6 and Lemma 8.7 we can choose ϖ̃ such that it is connected

in G
(5)

n \ G(121)

j̃
l
,n to some point in G

(21)

j̃
l
,l2,n

, where l2 is as in Lemma 8.7 iv. Thus, ϖ is

connected in G
(5)

n \ G(121)

j̃
l
,n to some point of G

(21)

j̃
l
,l2,n

. Similarly, every ϖ′ ∈ G
(1217)

j2,l+1,n
is

connected in G
(5)

n \G(121)

j̃
l
,n to some point of G

(21)

j̃
l
,l+1,n

. Now, (8.4) holds, as in the opposite

case, ϖ violates Lemma 8.5. In order to prove (8.5) and (8.6), it suffices to note that, by

Remark 6.7, if ϖ ∈ G
(7)

j1,l1,n (resp. ϖ′ ∈ G
(7)

j2,l+1,n
) and (8.5) (resp. 8.6) does not hold, then
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ϖ′′ ∈ G
(7)

j1,l1,n ∪G
(1)

j1,n (resp. ϖ′′ ∈ G
(7)

j2,l+1,n
∪G(1)

j2,n), but this is impossible in view of (8.7)

and Lemma 6.3.

Lemma 8.9. Let (j1, j2) be a l-pair and let l1 and l2 be as in Lemma 8.7 iv). Then

i) The set G
(22)

j1,l1,n is connected and contained in G
(5)

n \
(
G

(1217)

j1,l1,n∪G
(121)

j̃
l
,n

)
, thus is contained

in a component G1 of G
(5)

n \
(
G

(1217)

j1,l1,n ∪G(121)

j̃
l
,n

)
.

i′) The set G
(22)

j2,l+1,n
is connected and contained in G

(5)

n \
(
G

(1217)

j2,l+1,n
∪ G

(121)

j̃
l
,n

)
, thus is

contained in a component G2 of G
(5)

n \
(
G

(1217)

j2,l+1,n
∪G(121)

j̃
l
,n

)
.

i′′) G
(22)

j̃
l
,l2,n

is a connected set contained in G
(5)

n \
(
G

(1217)

j1,l1,n ∪G(121)

j̃
l
,n

)
i′′′) G

(22)

j̃
l
,l+1,n

is a connected set contained in G
(5)

n \G(1217)

j2,l+1,n
∪G(121)

j̃
l
,n

)
ii) We have

V (G1) ∩ V (G
(1217)

j1,l1,n) =M ′
j1,l1 (8.8)

V (G1) ∩ V (G
(121)

j̃
l
,l2,n

) = V (G1) ∩ V (G
(121)

j̃
l
,n ) =M ′

j̃
l
,l2

(8.9)

ii′) We have

V (G2) ∩ V (G
(1217)

j2,l+1,n
) =M ′

j2,l+1
(8.10)

V (G2) ∩ V (G
(121)

j̃
l
,l+1,n

) = V (G2) ∩ V (G
(121)

j̃
l
,n ) =M ′

j̃
l
,l+1

(8.11)

iii) The sets G1 ∪G
(1217)

j1,l1,n and G2 ∪G
(1217)

j2,l+1,n
are separated.

iv) We have G1 ⊆ G
(5)

n \
(
G

(1217)

j1,l1,n ∪G(1217)

j̃
l
,l2,n

)
iv′) We have G2 ⊆ G

(5)

n \
(
G

(1217)

j2,l+1,n
∪G(1217)

j̃
l
,l+1,n

)
Proof. Points i) and i′) follow from the definition of the sets involved here and Lemma

6.3. Prove i′′). The only nontrivial fact to prove is that if ϖ ∈ G
(22)

j̃
l
,l2,n

, then ϖ /∈ G
(7)

j1,l1,n.

Now, there exists a path connecting ϖ to some point of G
(22)

j1,l1,n contained in G
(5)

n \G(1)

j1,n

by Lemma 8.7 iv), and by Remark 6.7, ϖ /∈ G
(7)

j1,l1,n. Thus, i′′) is proved, and i′′′ can be
proved similarly.

We now prove ii). In order to prove (8.8), it suffices to note that the inclusion ⊆ follows

from the first part of Remark 6.12 and ⊇ holds as G1 ⊇ G
(22)

j1,l1,n and G
(1217)

j1,l1,n ⊇ G
(21)

j1,l1,n. In
order to prove (8.9), we prove

V (G1) ∩ V (G
(121)

j̃
l
,l2,n

) ⊆ V (G1) ∩ V (G
(121)

j̃
l
,n ) (8.12)

V (G1) ∩ V (G
(121)

j̃
l
,n ) ⊆M ′

j̃
l
,l2

(8.13)
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M ′
j̃
l
,l2

⊆ V (G1) ∩ V (G
(121)

j̃
l
,l2,n

) (8.14)

As (8.12) is trivial, we pass to prove (8.13). If Q ∈ V (G1)∩V (G
(121)

j̃
l
,n ), there exist ϖ ∈ G1,

ϖ′ ∈ G
(121)

j̃
l
,n such that

Q ∈ Vϖ ∩ Vϖ′ ̸= ø, (8.15)

and ϖ ∈ G
(5)

n \ G(121)

j̃
l
,n is connected to ϖ′ ∈ G

(121)

j̃
l
,s,n, in G

(5)

n \ G(121)

j̃
l
,n for some s such that

j̃l ∈ B̃′
s, but by the definition of G1, ϖ is connected by a path contained in G

(5)

n \ G(121)

j̃
l
,n

to a point of G
(22)

j1,l1,n which in turns, by Lemma 8.7 iv) and Remark 8.6, is connected to

some point of G
(121)

j̃
l
,l2,n

in G
(5)

n \
(
G

(121)

j̃
l
,n ∪G(121)

j1,n

)
, thus ϖ is connected in G

(5)

n \G(121)

j̃
l
,n to a

point of G
(121)

j̃
l
,l2,n

, and by Lemma 8.5, s = l2, and moreover, by (8.15) and the last part of

Remark 6.12, Q ∈M ′
j̃
l
,l2
, and (8.13) is proved. In order to prove of (8.14), we first prove

V (G1) ∩ V (G
(121)

j̃
l
,l2,n

) ̸= ø (8.16)

If ϖ ∈ G
(22)

j1,l1,n, then ϖ ∈ G1, and as seen above, ϖ is connected to ϖ̂ ∈ G
(121)

j̃
l
,l2,n

by a

path (ϖ0, ..., ϖm) in G
(5)

n \
(
G

(121)

j̃
l
,n ∪ G(121)

j1,n

)
. As ϖ0 = ϖ, ...,ϖm−1 ∈ G

(5)

n \ G(1)

j1,n, and

ϖ0 /∈ G
(7)

j1,l1,n, then ϖ0 = ϖ, ...,ϖm−1 /∈ G
(7)

j1,l1,n by Remark 6.7, hence the path is in

G
(5)

n \
(
G

(1217)

j1,l1,n ∪G(121)

j̃
l
,n

)
, and ϖm−1 ∈ G1, thus there exists

Q̃ ∈ Vϖm−1 ∩ Vϖ̂ ⊆ V (G1) ∩ V (G
(121)

j̃
l
,l2,n

) (8.17)

and (8.16) is proved. Note that, by (8.12) and (8.13), we have Q̃ ∈ M ′
j̃
l
,l2
. Suppose

Q ∈M ′
j̃
l
,l2
. Then, by (8.17) and the definition of M ′

j̃
l
,l2
, there exist

ϖ(1) ∈ G1, ϖ(2) ∈ G
(121)

j̃
l
,l2,n

(8.18)

ϖ(3) ∈ G
(22)

j̃
l
,l2,n

, ϖ(4) ∈ G
(21)

j̃
l
,l2,n

⊆ G
(121)

j̃
l
,l2,n

(8.19)

such that

Q̃ ∈ Vϖ(1)
∩ Vϖ(2)

(8.20)

Q ∈ Vϖ(3)
∩ Vϖ(4)

(8.21)

As G
(22)

j̃
l
,l2,n

is a connected set, and by i′′), contained in G
(5)

n \
(
G

(1217)

j1,l1,n ∪ G(121)

j̃
l
,n

)
, and by

(8.18), (8.20) and Remark 6.12, we have ϖ(1) ∈ G
(22)

j̃
l
,l2,n

, then G
(22)

j̃
l
,l2,n

⊆ G1. Thus, in view
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of (8.19) and (8.21), Q ∈ V (G1) ∩ V (G
(121)

j̃
l
,l2,n

), hence M ′
j̃
l
,l2

⊆ V (G1) ∩ V (G
(121)

j̃
l
,l2,n

), and

(8.14), thus ii) is proved. The proof of ii′) is completely analogous to that of ii).

We now prove iii). Note that, by (8.8) and (8.10), the sets G1∪G
(1217)

j1,l1,n and G2∪G
(1217)

j2,l+1,n

are connected. Thus, if ϖ ∈ G1∪G
(1217)

j1,l1,n, in view of Lemma 8.7 iv) and Remark 8.6, there

exists a path connecting ϖ to some point of G
(21)

j̃
l
,l2,n

, and if ϖ′ ∈ G2∪G
(1217)

j2,l+1,n
, there exists

a path connecting ϖ′ to some point of G
(21)

j̃
l
,l+1,n

, and, in view also of Lemma 8.8, both the

paths are in G
(5)

n \G(121)

j̃
l
,n , thus, if G1 ∪G

(1217)

j1,l1,n and G2 ∪G
(1217)

j2,l+1,n
are not separated, this

contradicts Lemma 8.5, and iii) is proved.

To prove iv), we have only to show that, if ϖ ∈ G1, then ϖ /∈ G
(7)

j̃
l
,l2,n

. But, as seen

in the proof of iii), there exists a path connecting ϖ to some point ϖ̂ of G
(21)

j̃
l
,l2,n

, and the

path (ϖ0, ..., ϖm) is in G
(5)

n \G(121)

j̃
l
,n . In this way all ϖs ∈ G

(5)

n for all s, and all ϖs /∈ G
1

j̃
l
,n,

and, as ϖ̂ ∈ G
(4)

l2,n, by Remark 6.7 ϖ /∈ G
(7)

j̃
l
,l2,n

, thus iv) is proved, and iv′) can be proved

in the same way.

We are now ready to prove the reverse-triangular inequality (Lemma 8.10), and then, in
Lemma 8.11, we will prove that the effective resistances between Pj1 and Pj2 approximates

R̃{j1,j2}.

Lemma 8.10. Let (j1, j2) be a l-pair and let l1 and l2 be as in Lemma 8.7 iv).Then

R̂
(
Sr(g,η,n),A{j1,l1;j2,l+1}

(q)
)
M ′

j1,l1
,M ′

j2,l+1

≥

R̂
(
Sr(g,η,n),A{j1,l1;j̃

l
,l2}

(q)
)
M ′

j1,l1
,M ′

j̃
l
,l2

+ R̂
(
Sr(g,η,n),Aj2,l+1;j̃

l
,l+1

(q)
)
M ′

j̃
l
,l+1

,M ′
j2,l+1

(8.22)

R̂
(
S
r(g,η,n),G

(5)

n

(q)
)
{Pj1

},{Pj2
} ≥ R̂

(
Sr(g,η,n),A{j1,l1;j2,l+1}

(q)
)
M ′

j1,l1
,M ′

j2,l+1

(8.23)

A{j,l;j′,l′} := G
(5)

n \
(
G

(1217)

j,l,n ∪G(1217)

j′,l′,n

)
, j ∈ B̃′

l, j
′ ∈ B̃′

l′ .

Proof. We use Lemma 3.7 i) with

B1 = G1, B2 = G2, B3 = G
(121)

j̃
l
,n , B4 = G

(5)

n \
(
G

(121)

j̃
l
,n ∪G(1217)

j1,l1,n ∪G
(1217)

j2,l+1,n
∪G1 ∪G2

)
In this way, B1, B2, B3, B4 are mutually disjoint subsets of A3,n by their definition and
Lemma 8.9 iii) Moreover, their union A = B1 ∪ B2 ∪ B3 ∪ B4 is given by
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A = G
(5)

n \
(
G

(1217)

j1,l1,n ∪G(1217)

j2,l+1,n

)
= A{j1,l1;j2,l+1} (8.24)

In fact, we use Lemma 8.8 and Lemma 8.9 iii) to prove the inclusion ⊆ in (8.24) and the
inclusion ⊇ is trivial. Moreover, B1, B2 are separated by Lemma 8.9 ii), and they are
separated from B4 by their definition. Thus, we can use Lemma 3.7 i) with A1 = M ′

j1,l1
,

A2 =M ′
j2,l+1

, and we have M1 =M ′
j̃
l
,l2
, M2 =M ′

j̃
l
,l+1

, and the hypothesis of Lemma 3.7

i) is satisfied also in view of (8.8), (8.9), (8.10), (8.11). We thus obtain

R̂
(
Sr(g,η,n),A{j1,l1;j2,l+1}

(q)
)
M ′

j1,l1
,M ′

j2,l+1

≥

R̂
(
Sr(g,η,n),G1(q)

)
M ′

j1,l1
,M ′

j̃
l
,l2

+ R̂
(
Sr(g,η,n),G2(q)

)
M ′

j̃
l
,l+1

,M ′
j2,l+1

≥

R̂
(
Sr(g,η,n),A{j1,l1;j̃

l
,l2}

(q)
)
M ′

j1,l1
,M ′

j̃
l
,l2

+ R̂
(
Sr(g,η,n),Aj2,l+1;j̃

l
,l+1

(q)
)
M ′

j̃
l
,l+1

,M ′
j2,l+1

where the second inequality holds by Lemma 8.9, iv) and iv′), and Remark 3.6. We have
thus proved (8.22) and we are going to prove (8.23). Given v ∈ LV (A

j1,l1;j2,l+1
),M ′

j1,l1
,M ′

j2,l+1

we define ṽ ∈ L
V (G

(5)

n ),{Pj1},{Pj2}
, which extends v on V (G

(5)

n ) putting ṽ = 0 on V (G
(1217)

j1,l1,n)

and ṽ = 1 on V (G
(1217)

j2,l+1,n
). Note that ṽ is well-defined as, by Lemma 8.8, the sets

V (G
(1217)

j1,l1,n) and V (G
(1217)

j2,l+1,n
) are disjoint, and as, by Remark 6.12,

V (G
(1217)

j1,l1,n) ∩ V (A{j1,l1;j2,l+1}) ⊆M ′
j1,l1 , V (G

(1217)

j2,l+1,n
) ∩ V (A{j1,l1;j2,l+1}) ⊆M ′

j2,l+1
.

We have S′
r(g,η,n),G

(5)

n

(q)(ṽ) = S′
r(g,η,n),A{j1,l1;j2,l+1}

(q)(v), and (8.23) immediately follows

from the definition of R̂.

We say that g as above is (n, η, q)-normal, q ∈ K̃, if it satisfies the hypothesis of Lemma

8.4, that is, if g = t̃1,n on C
(1)

j , g = t̃2,n on C
(21)

j,l , g = t̃3,n on C
(3)

l for every l = 1, ..., h′,

g = t2,q,j,l,n on C
(22)

j,l . In this way we can formulate Lemma 8.4 in the following way:

For every η ∈
]
0,min

{
1

#(B̃′
l
)

}]
, n ≥ n1,η and q ∈ K̃, if g is (n, η, q)-normal, then for

every l = 1, ..., h′, j1, j2 ∈ B̃′
l with j1 ̸= j2

i)
2

#(B̃′
l)

− 3η < R̂
(
S
r(g,η,n),G

(5)

n

(q)
)
{Pj1 ,Pj2}

<
2

#(B̃′
l)

+ 3η.

ii) R̂
(
Sr(g,η,n),A{j1,l;j2,l}(q)

)
{M ′

j1,l
,M ′

j2,l
} ≥ 2

#(B̃′
l)

− η.

Lemma 8.11. There exists H1 > 0, independent of η, n, such that, for every η ∈]
0,min

{
1

#(B̃′
l
)

}]
, n ≥ n1,η and q ∈ K̃, if g is (n, η, q)-normal, then for every j1, j2 =

1, ..., N , j1 ̸= j2 we have
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R̃j1,j2 −H1η < R̂
(
S
r(g,η,n),G

(5)

n

(q)
)
{Pj1},{Pj2}

< R̃j1,j2 +H1η . (8.25)

Proof. We prove by recursion that, if j1, j2 ∈
l∪
l=1

B̃′
l, l = 1, ..., h′, then

R̂
(
S
r(g,η,n),G

(5)

n

(q)
)
{Pj1},{Pj2}

< R̃j1,j2 +H2,l η (8.26)
∃l1, l2 = 1, ..., l : (j1, l1), (j2, l2) are l − related,

R̃j1,j2 −H3,l η < R̂
(
Sr(g,η,n),A{j1,l1;j2,l2}(q)

)
M ′

j1,l1
,M ′

j2,l2

R̃j1,j2 −H4,l η < R̂
(
S
r(g,η,n),G

(5)

n

(q)
)
{Pj1},{Pj2}

(8.27)

The case l = h′ gives (8.25). Note that, if j1, j2 lie in a common B̃′
l, then (8.26) and (8.27)

hold with H2,l = 3, H3,l = 2, H4,l = 3 and l2 = l1 = l by Lemmas 8.4, 8.7 i) and 7.6 i).

Hence, (8.26) and (8.27) hold if l = 1. Suppose (8.26) and (8.27) hold for l < h′ and prove

it holds for l + 1. Given j1, j2 ∈
l+1∪
l=1

B̃′
l, by Lemma 7.5, either j1, j2 ∈ B̃′

l+1
and (8.26),

(8.27) hold as seen above, or j1, j2 ∈
l∪
l=1

B̃′
l, and (8.26) and (8.27) hold with Hi,l+1 = Hi,l,

for i = 1, 2, 3, or one of (j1, j2), (j2, j1) is an l-pair. In the last case, suppose for example
(j1, j2) is an l-pair. Then, by the recursive hypothesis, we have

R̂
(
S
r(g,η,n),G

(5)

n

(q)
)
{Pj1},{Pj̃

l
} < R̃j1,j̃l

+H2,l η, R̂
(
S
r(g,η,n),G

(5)

n

(q)
)
{Pj̃

l
},{Pj2}

< R̃j̃
l
,j2

+3η

and, as R̂
(
S
r(g,η,n),G

(5)

n

(q)
)
is a metric on V (G

(5)

n ), and by Lemma 7.6 ii), (8.26) holds with

H2,l+1 = H2,l + 3. In conclusion, (8.26) holds for l + 1 in any case. Moreover, by the

recursive hypothesis (8.27) holds with j̃l in place of j2, and Lemma 8.7 i) with j̃l in place

of j1 and l+1 in place of l, in view of Lemma 8.7 ii), (j1, l1) and (j2, l+1) are (l+1)-related,
and, by (8.22) and (8.23) we have

R̂
(
S
r(g,η,n),G

(5)

n

(q)
)
{Pj1},{Pj2}

≥ R̂
(
Sr(g,η,n),A{j1,l1;j2,l+1}

(q)
)
M ′

j1,l1
,M ′

j2,l+1

≥

R̂
(
Sr(g,η,n),A{j1,l1;j̃

l
,l2}

(q)
)
M ′

j1,l1
,M ′

j̃
l
,l2

+ R̂
(
Sr(g,η,n),Aj2,l+1;j̃

l
,l+1

(q)
)
M ′

j̃
l
,l+1

,M ′
j2,l+1

> R̃j1,j̃l
−H3,lη + R̃j̃

l
,j2

− 2η = R̃j1,j2 − (H3,l + 2)η

and (8.27) holds for l + 1, with l + 1 in place of l2, H4,l+1 = H3,l+1 = H3,l + 2.
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We will now prove that the map q 7→ Λ̂(r(g,η,n), q), using the following Lemma.

Lemma 8.12. There exist η > 0 and n2,η ≥ n1,η such that, if n ≥ n2,η and q ∈ K̃, and g

is (n, η, q)-normal, and g(ϖ) = t
η for every ϖ ∈ C

(6)
, then R

(
Λ̂(r(g,η,n), q)

)
∈ U .

Proof. By Lemma 3.3 we have

R
(
Λ̂(r(g,η,n), q)

)
{j1,j2}

= R̂
(
Sr(g,η,n),A3,n(q)

)
{Pj1},{Pj2}

(8.28)

On the other hand, putting g̃ = η

t
g, we can write r(g,η,n) as

r(g,η,n)(ϖ,ϖ
′′) = g̃(ϖ)r′′ϖ(ϖ

′′),

r′′ϖ(ϖ
′′) :=


t
2

η2t̃
if (ϖ,ϖ′′) = j(n)

t
η otherwise

, ϖ ∈ A3,n2 , ϖ
′′ ∈ A3,n−n2

By Lemma 7.10 we have

R̂
(
Sr(g,η,n),A3,n

(q)
)
{Pj1},{Pj2}

= R̂
(
Sg̃,A3,n2

(
Λ̂r′′ϖ(q)

))
{Pj1},{Pj2}

, (8.29)

R̂
(
S
r(g,η,n),G

(5)

n

(q)
)
{Pj1},{Pj2}

= R̂
(
S
g̃,C

(5)

(
Λ̂r′′ϖ (q)

))
{Pj1},{Pj2}

. (8.30)

Moreover, by Lemma 3.9, as A3,n2 = C
(5) ∪ C(6)

, we have

0 ≤ (1/R̂)
(
Sg̃,A3,n2

(
Λ̂r′′ϖ (q)

))
{Pj1

},{Pj2
}
− (1/R̂)

(
S
g̃,C

(5)

(
Λ̂r′′ϖ (q)

))
{Pj1

},{Pj2
}

≤ kn2 max
{∣∣Λ̂r′′ϖ (q)

∣∣ : ϖ ∈ C
(6)}

= kn2
t

η

∣∣Λ̂n−n2
1 (q)

∣∣ −→
n→+∞

0

uniformly for q ∈ K̃ by Corollary 7.9. In fact, when ϖ ∈ C
(6)

we have r′′ϖ = t
η and, by

(7.2), Λ̂1;n−n2 = Λ̂n−n2
1 . Since the quantity R̂

(
S
g̃,C

(5)

(
Λ̂r′′ϖ (q)

))
{Pj1},{Pj2}

, by Lemma 8.11

and (8.29), is uniformly bounded, we have∣∣∣R̂(Sg̃,A3,n2

(
Λ̂r′′ϖ (q)

))
{Pj1},{Pj2}

− R̂
(
S
g̃,C

(5)

(
Λ̂r′′ϖ (q)

))
{Pj1},{Pj2}

∣∣∣ < η

for sufficiently large n, say n ≥ n2,η. Thus, by Lemma 8.11, (8.28), (8.29) and (8.30),
putting r = r(g,η,n), for such n, we have∣∣∣R(Λ̂(r, q)){j1,j2} − R̃{j1,j2}

∣∣∣ ≤∣∣R(Λ̂(r, q)){j1,j2} − R̂
(
S
r,G

(5)

n

(q)
)
{Pj1},{Pj2}

∣∣+ ∣∣R̂(S
r,G

(5)

n

(q)
)
{Pj1},{Pj2}

− R̃{j1,j2}
∣∣

<
∣∣R(Λ̂(r, q)){j1,j2} − R̂

(
S
r,G

(5)

n

(q)
)
{Pj1},{Pj2}

∣∣+H1η
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=
∣∣∣R̂(Sg̃,A3,n2

(
Λ̂r′′ϖ (q)

))
{Pj1},{Pj2}

− R̂
(
S
g̃,C

(5)

(
Λ̂r′′ϖ (q)

))
{Pj1},{Pj2}

∣∣∣+H1η < (H1 + 1)η .

So far, we have kept η fixed. Now, for sufficiently small η we have R
(
Λ̂(r(g,η,n), q)

)
∈ U .

Corollary 8.13. Put W̃n := {r ∈]0,+∞[A3,n : rj(n)
≤ rϖ ∀ j = 1, ..., N,ϖ ∈ A3,n}. Then

for sufficiently large n there exists a continuous function r : K̃ → W̃n such that, for every
q ∈ K̃, we have Λ̂(r(q), q) ∈ K̃ .

Proof. Let η be as in Lemma 8.12 and n ≥ n2,η. For every q ∈ K̃ define gq : A3,n2 →]0,+∞[
by

gq(ϖ) =



t̃1,n if ϖ ∈ C
(1)

j

t̃2,n if ϖ ∈ C
(21)

j,l

t2,q,j,l,n if ϖ ∈ C
(22)

j,l

t̃3,n if ϖ ∈ C
(3)

l

t
η if ϖ ∈ C

(6)

Let r(q) = r(gq,η) for every q ∈ K̃. We easily see that r is continuous and takes values in

W̃n. Moreover, gq is (n, η, q)-normal for every q ∈ K̃, so that, by Lemma 8.12, we have

R
(
Λ̂(r(q), q)

)
∈ U , and therefore, by Lemma 7.7, Λ̂(r(q), q) ∈ K̃ for every q ∈ K̃.

Theorem 8.14. For sufficiently large n, there exists a regular G-eigenform on Fn.
Proof. The map q 7→ Λ̂(r(q), q) is continuous from the nonempty convex compact K̃ into

itself, thus it has a fixed point q1. In other words there exists q1 ∈ K̃ ⊆ Q̃ such that

q1 = Λ̂(r(q1), q1) = Λ̂r(q1)(q1)

Taking E = I(q1), we have Λr(q1)(E) = E, so that E is a G-eigenform. On the other hand,

as r := r(q1) ∈ W̃n, the G-eigenform E is regular by Remark 4.4.
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