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Control and mixing for 2D Navier–Stokes

equations with space-time localised noise

Armen Shirikyan∗

Abstract

We consider randomly forced 2D Navier–Stokes equations in a bounded

domain with smooth boundary. It is assumed that the random perturba-

tion is non-degenerate, and its law is periodic in time and has a support

localised with respect to space and time. Concerning the unperturbed

problem, we assume that it is approximately controllable in infinite time

by an external force whose support is included in that of the random force.

Under these hypotheses, we prove that the Markov process generated by

the restriction of solutions to the instants of time proportional to the

period possesses a unique stationary distribution, which is exponentially

mixing. The proof is based on a coupling argument, a local controllability

property of the Navier–Stokes system, an estimate for the total variation

distance between a measure and its image under a smooth mapping, and

some classical results from the theory of optimal transport.
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1 Introduction

The main results of this paper can be summarised as follows: first, suitable con-
trollability properties of a non-linear PDE imply the uniqueness and exponential
mixing for the associated stochastic dynamics and, second, these properties are
satisfied for 2D Navier–Stokes equations with space-time localised noise. To be
precise, let us consider from the very beginning the 2D Navier–Stokes system
in a bounded domain D ⊂ R

2 with smooth boundary ∂D:

u̇+ 〈u,∇〉u− ν∆u +∇p = f(t, x), div u = 0, x ∈ D, (1.1)

u
∣∣
∂D

= 0. (1.2)

Here u = (u1, u2) and p are unknown velocity and pressure of the fluid, ν > 0
is the viscosity, and f is an external force. Let us assume that f is represented
as the sum of two functions h and η, the first of which is a given function that
is H1 smooth in space and time and has a locally bounded norm, while the
second is either a control or a random force:

f(t, x) = h(t, x) + η(t, x). (1.3)

In both cases, we assume that η is sufficiently smooth and bounded, and its
restriction to any cylinder of the form Jk ×D with Jk = [k− 1, k] is localised in
both space and time (see below for a more precise description of this hypothesis).
Let us denote by n the outward unit normal to the boundary ∂D and introduce
the space

H = {u ∈ L2(D,R2) : div u = 0 in D, 〈u,n〉 = 0 on ∂D}, (1.4)

which will be endowed with the usual L2 norm ‖ · ‖. It is well known that for
any u0 ∈ H problem (1.1), (1.2) supplemented with the initial condition

u(0, x) = u0(x) (1.5)
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has a unique solution u = u(t;u0, f), which is a continuous function of time
valued in H .

Our main result concerns the property of exponential mixing for the discrete-
time Markov process in H associated with (1.1)–(1.3), and we now present a
simplified version of the hypotheses under which it is valid. We assume that the
deterministic force h is a 1-periodic function of time whose restriction to any
bounded subset of R×D is H1-regular. As for the random force η, we assume
that it satisfies the four conditions below. Let Q ⊂ J1 ×D be an open set and
let Qk = {(t, x) : (t− k + 1, x) ∈ Q}.

Localisation. For any integer k ≥ 1, the restriction of η to the cylinder Jk ×D
is supported by Qk.

Let us denote by ηk(t, x) the restriction of η(t+ k− 1, x) to the domain J1 ×D.

Independence. The functions ηk form a sequence of i.i.d. random variables
in H1(J1 ×D,R2) with a law λ.

Non-degeneracy. The measure λ is decomposable in the following sense: there is
an orthonormal basis {ej} in the space L2(Q,R2) such that ej ∈ H1

0 (Q,R
2)

for all j ≥ 1, and

ηk(t, x) =

∞∑

j=1

bjξjkej(t, x),

where ξjk are independent random variables valued in [−1, 1] and {bj} are
positive numbers such that

∑
j bj‖ej‖H1 < ∞. Moreover, the laws of ξjk

possess a C1-smooth densities with respect to the Lebesgue measure on R.

Approximate controllability. There is û ∈ H such that problem (1.1)–(1.3) is
approximately controllable to û with a control function η̃ such that, for
any k ≥ 1, the restriction of η̃(t + k − 1, x) to J1 ×D belongs to suppλ,
and the time of control can be chosen the same for the initial functions u0
from a given bounded subset of H .

The 1-periodicity of h and the second of the above hypotheses imply that the
restrictions of solutions for (1.1)–(1.3) to integer times form a family of Markov
chains in H . The following theorem, which is the main result of the paper,
describes the long-time asymptotics of this chain.

Main Theorem. Under the above hypotheses, the Markov chain associated

with problem (1.1)–(1.3) has a unique stationary measure µ. Moreover, there

are positive constants C and γ such that, for any 1-Lipschitz function F : H → R

and any u0 ∈ H, we have

∣∣∣∣EF
(
u(k;u0, h+ η)

)
−

∫

H

F (v)µ(dv)

∣∣∣∣ ≤ C
(
1 + ‖u0‖

)
e−γk, k ≥ 0. (1.6)
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We refer the reader to Section 2.1 for a more general result on uniqueness of
a stationary measure and exponential mixing. The proof of the above theorem
is based on a detailed study of controllability properties1 of problem (1.1)–(1.3)
(in which η plays the role of a control), a general criterion for mixing of Markov
chains, and a result on the image of measures on a Hilbert space under finite-
dimensional transformations; see Section 2.2 for more details.

Let us mention that the problem of ergodicity for the 2D Navier–Stokes
system was studied intensively in the last twenty years. First results in this
direction were established in [FM95, KS00, EMS01, BKL02], and we refer the
reader to the book [KS12] for further references and description of the methods
used in various works. Most of the results established so far concern the situation
in which the random force is non-degenerate in a set of determining modes of
the problem. In the case when the equation is studied on the torus and the
deterministic force is zero, it was proved in [HM06, HM08] that the Navier–
Stokes dynamics is exponentially mixing for any ν > 0, provided that the noise is
white in time and has a few non-zero Fourier modes as a function of x (thus, it is
finite-dimensional in x, infinite-dimensional in time, and localised in the Fourier
space). This result was extended to the case of 2D sphere in the paper [HM11],
which also fixes an error in [HM06]. The main theorem stated above is valid for
all ν > 0 and, to the best of our knowledge, provides a first result on mixing
properties for Navier–Stokes equations with a space-time localised noise.

In conclusion, let us mention that the results of this paper remain valid in the
case when the noises act through the boundary of the domain. This situation
will be addressed in a subsequent publication.

The paper is organised as follows. In Section 2, we formulate the main result
of this paper on exponential mixing for the Navier–Stokes system with space-
time localised noise, outline its proof, and discuss some examples. Section 3 is
devoted to studying a control problem associated with the stochastic system in
question. The details of proof of the main result are given in Section 4. The
appendix gathers some auxiliary results used in the main text.

Acknowledgment. The author is grateful to Lihu Xu for stimulating dis-
cussion. This research was developed within the MME-DII Center of Excellence
(ANR-11-LABX-0023-01) and supported by the ANR grant STOSYMAP (ANR
2011 BS01 015 01).

Notation

For an open set Q of a Euclidean space, a closed interval J ⊂ R, and Banach
spaces X ⊂ Y , we introduce the following function spaces.

Lp = Lp(Q) is the Lebesgue space of measurable scalar or vector functions
on Q whose pth power is integrable. We shall sometimes write Lp(Q,Rd) to

1Note, however, that we do not deal at all with the Gramian of the control problem in
question, and the property we use may be called squeezing by a finite-dimensional modifica-

tion.
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emphasise the range of functions. In the case p = 2, the corresponding norm
will be denoted by ‖ · ‖.

Hs = Hs(Q) is the Sobolev space of order s with the usual norm ‖ · ‖s. As
in the previous case, we use the same notation for spaces of scalar and vector
functions.

Hs
0 = Hs

0(Q) is the closure in Hs of the space of infinitely smooth functions
with compact support.

BX(R) stands for the ball in X of radius R centred at zero.

Lp(J,X) is the space of Borel-measurable functions u : J → X such that

‖u‖Lp(J,X) =

(∫

J

‖u(t)‖pXdt

)1/p

<∞ ;

in the case p = ∞, this norm should be replaced by ‖u‖∞ = ess supJ ‖u(t)‖X .

W 1,p(J,X) is the space of functions u ∈ Lp(J,X) whose derivative belongs to
Lp(J,X). It is endowed with a natural norm.

W (J,X, Y ) is the space of functions u ∈ L2(J,X) such that ∂tu ∈ L2(J, Y ).

L(X,Y ) is the space of continuous linear operators fromX to Y with the natural
norm. In the case X = Y , we write L(X).

Cb(X) stands for the space of bounded continuous functions F : X → R; it is
endowed with the norm

‖F‖∞ = sup
u∈X

|F (u)|.

Lb(X) denotes the space of functions F ∈ Cb(X) such that

‖F‖L := ‖F‖∞ + sup
u6=v

|F (u)− F (v)|

‖u− v‖X
<∞.

P(X) is the set of probability Borel measures on X . The space P(X) is endowed
with the topology of weak convergence, which is generated by the dual-Lipschitz
metric

‖µ1 − µ2‖
∗
L := sup

‖F‖L≤1

|(F, µ1)− (F, µ2)|,

where (F, µ) stands for the integral of F over X with respect to µ.

We denote by D a bounded domain with C2 boundary ∂D. For T > 0, we set
JT = [0, T ] and DT = JT × D. The following functional spaces arise in the
theory of Navier–Stokes equations:

V = H ∩H1
0 (D), XT =W (JT , V, V

∗),

Yδ,T =
{
u ∈ XT : u|(δ,T ) ∈ W ((δ, T ), V ∩H3, V )

}
,

where δ ∈ (0, T ), H is defined by (1.4), and V ∗ denotes the dual space of V
(identified with a quotient space in H−1(D,R2) with the help of the scalar
product in L2). These spaces are endowed with natural norms.
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2 Main result and scheme of its proof

2.1 Exponential mixing

Let D ⊂ R
2 be a bounded domain with a C2-smooth boundary ∂D and let

D1 = J1 × D. Consider the Navier–Stotes system (1.1) with the Dirichlet
boundary condition (1.2) and an external force of the form (1.3). We assume
that h ∈ H1

loc(R+ ×D,R2) is a given function which is 1-periodic in time and η
is a stochastic process of the form

η(t, x) =

∞∑

k=1

Ik(t)ηk(t− k + 1, x), t ≥ 0, (2.1)

where Ik is the indicator function of the interval (k−1, k) and {ηk} is a sequence
of i.i.d. random variables in L2(D1,R

2) that are continued by zero for t /∈ J1.
It is well known that the Cauchy problem for (1.1)–(1.3) is globally well posed.
Namely, for any initial function u0 ∈ H there is a unique random process (u, p)
whose almost every trajectory satisfies the inclusions

u ∈ C(R+, H) ∩ L2
loc(R+, V ),

∫ ·

0

p dt ∈ L∞
loc(R+, L

2),

Equations (1.1), and the initial condition

u(0, x) = u0(x), x ∈ D. (2.2)

In what follows, we shall drop the p component of solutions and write sim-
ply u(t). Let us denote by S : H × L2(D1,R

2) → H the operator that takes a
pair of functions (u0, f) to u(1), where u(t) is the solution of (1.1), (1.2), (2.2).
Well-known properties of 2D Navier–Stokes equations imply that S is a contin-
uous mapping. Moreover, the range of S is contained in V , and the mapping
S : H ×L2(D1,R

2) → V is uniformly Lipschitz continuous on bounded subsets;
e.g., see Chapter III in [Tem79].

Let us consider a solution u(t) of (1.1)–(1.3) and denote uk = u(k). What
has been said implies that

uk = S(uk−1, h+ ηk), k ≥ 1. (2.3)

Since ηk are i.i.d. random variables in L2(D1,R
2), Eq. (2.3) defines a homoge-

neous family of Markov chains in H , which is denoted by (uk,Pu), u ∈ H . Let
Pk(u,Γ) be the transition function for (uk,Pu).

Let us fix an open set Q ⊂ D1 and denote by {ϕj} ⊂ H1(Q,R2) an or-
thonormal basis in L2(Q,R2). Let χ ∈ C∞

0 (Q) be a non-zero function and let
ψj = χϕj . In what follows, we shall assume that {ψj} are linearly independent2,

2The assumption on the linear independence of {ψj} is not really needed, and Theorem 2.1
below remains true without it. We make, however, this assumption to simplify the proof of
Proposition 2.6.
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and the function h and random process η satisfy hypotheses (H1) and (H2) for-
mulated below. Note that if {ϕj} is a complete set of eigenfunctions of the
Dirichlet Laplacian in Q, then the functions ψj are linearly independent for
any choice of χ. This is an immediate consequence of the unique continuation
property of solutions for elliptic equations; see Theorem 8.9.1 in [Hör63].

(H1) Structure of the noise. The random variables ηk can be represented
in the form

ηk(t, x) =

∞∑

j=1

bjξjkψj(t, x), (2.4)

where ξjk are independent scalar random variables such that |ξjk| ≤ 1
with probability 1, and {bj} ⊂ R is a non-negative sequence such that

B :=

∞∑

j=1

bj‖ψj‖1 <∞. (2.5)

Moreover, the law of ξjk possesses a C1-smooth density ρj with respect to
the Lebesgue measure on the real line.

Let us denote by K ⊂ L2(Q,R2) the support of the law of ηk. The hypotheses
imposed on ηk imply that K is a compact subset in H1

0 (Q,R
2). Continuing

the elements of K by zero outside Q, we may regard K as a compact subset
of H1

0 (D1,R
2).

(H2) Approximate controllability. There is û ∈ H such that for any pos-
itive constants R and ε one can find an integer l ≥ 1 with the following
property: given v ∈ BH(R), there are ζ1, . . . , ζl ∈ K such that

‖Sl(v, ζ1, . . . , ζl)− û‖ ≤ ε, (2.6)

where Sl(v, ζ1, . . . , ζl) stands for the vector ul defined by (2.3) with ηk = ζk
and u0 = v.

The following theorem, which is the main result of this paper, establishes the
uniqueness and exponential mixing of a stationary distribution for the Markov
family generated by (2.3).

Theorem 2.1. Assume that h ∈ H1
loc(R+ ×D,R2) is 1-periodic in time, and

Conditions (H1) and (H2) are satisfied. In this case, there is an integer N ≥ 1,
depending on ‖h‖H1(D1), B, and ν, such that if

bj 6= 0 for j = 1, . . . , N, (2.7)

then the following assertions hold.

Existence and uniqueness. The Markov family (uk,Pu) has a unique sta-

tionary distribution µ ∈ P(H).
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Exponential mixing. There are positive constants C and γ such that

‖Pk(u, ·)− µ‖∗L ≤ C(1 + ‖u‖)e−γk for all u ∈ H, k ≥ 0. (2.8)

Note that condition (2.7) expresses the space-time non-degeneracy of the
noise. Thus, the property of exponential mixing holds true even for noises
whose space-time dimension is finite.

The general scheme of the proof of Theorem 2.1 is outlined in Section 2.2,
and the details are given in Sections 3 and 4. Here we consider two examples for
which Condition (H2) is fulfilled and discuss a counterexample showing that, in
general, the approximate controllability of (1.1)–(1.3) is not likely to hold for
all ν > 0 with the same control set K.

Example 2.2. We claim that there is δ > 0 such that if the 1-periodic function h
satisfies the inequality ‖h‖L2(D1) ≤ δ, then Condition (H2) is fulfilled, provided
that K contains the zero element.

Indeed, if ‖h‖L2(D1) is sufficiently small, then problem (1.1), (1.2) with f = h
has a unique solution ũ(t, x) defined throughout the real line and 1-periodic in
time. To see this, it suffices to take a sequence {un} of solutions for the problem
in question such that un(−n) = 0 and to prove that it converges as n→ ∞ in the
spaceW ([−N,N ], V, V ∗) for any N > 0. The limiting function ũ is the required
1-periodic solution. Using standard estimates for Navier–Stokes equations, it is
easy to prove that

‖ũ‖W (J1,V,V ∗) ≤ c(δ) → 0 as δ → 0.

This implies that ũ is globally exponentially stable as t → +∞. Therefore, for
any positive constants R and ε one can find an integer l ≥ 1 such that (2.6)
holds with ζ1 = · · · = ζl = 0 and û = ũ(0). Since K contains the zero element,
we see that Condition (H2) is satisfied.

Example 2.3. Suppose that h is represented in the form h(t, x) = h0(λt, x),
where h0 is a continuous 1-periodic function of time with range in V such

that
∫ 1

0
h0(s) ds = 0. We claim that, for sufficiently large integers λ > 0,

Condition (H2) is satisfied, provided that K contains the zero element.
Indeed, let us represent a solution of Eq. (1.1) with f = h in the form

u = w + g, where g(t) =
∫ t

0 h(s) ds. Then the function w must satisfy the
equations

ẇ + 〈w + g,∇〉(w + g)− ν∆w +∇p = −∆g, divw = 0. (2.9)

The condition imposed on h imply that g is a V -valued 1-periodic function such
that

sup
t∈R

‖g(t)‖V → 0 as λ→ ∞.

Combining this with an argument similar to that used in Example 2.2, one can
prove that Eq. (2.9) has a unique 1-periodic solution w̃, which is globally expo-
nentially stable as t→ ∞. It follows that ũ = w̃ + g is a globally exponentially
stable solution for problem (1.1), (1.2) with f = h. As in Example 2.2, we
conclude that the function û = ũ(0) satisfies the required property.
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In both examples considered above, Condition (H2) was satisfied due to
the fact that the unperturbed problem had a globally stable stationary point.
The following simple example of an ordinary differential equation suggests that,
in the general case, it is unreasonable to expect the property of approximate
controllability in infinite time for the Navier–Stokes system with an arbitrary
ν > 0 and a fixed control set.

Counterexample 2.4. Let g : R → R be an arbitrary smooth function vanishing
at zero such that

|u|−ag(u) sgn(u) ≥ c > 0 for |u| ≥ 1, (2.10)

where a < 1 and c are positive numbers and sgn(u) denotes the sign of u. Let
us consider the equation

u̇ = −νu+ g(u) + η(t), (2.11)

where ν > 0 is a parameter and η(t) is a control taking values in an interval
[−K,K] ⊂ R. We claim that there is ν0 > 0 depending on K, a, and c such
that the following property holds for 0 < ν ≤ ν0: for any û ∈ R there is u0 ∈ R

such that, for any measurable function η(t) defined on the positive half-line and

taking values in [−K,K], we have

inf
t≥0

|u(t)− û| > 0, (2.12)

where u(t) stands for the solution of (2.11) issued from u0. Indeed, let us fix
any û ∈ R and any function η(t) with range in [−K,K]. We shall assume that
4K ≥ c and û ≤ 0 (the other case can be treated by a similar argument). Let
us denote by V (t, u) the right-hand side of (2.11). Setting ū = (4Kc−1)1/a and
ν0 = c/(2ū1−a), we see from (2.10) that

V (t, ū) > 0 for 0 < ν ≤ ν0.

It follows that if u0 ≥ ū, then u(t) ≥ ū for all t ≥ 0, whence we conclude
that (2.12) holds.

2.2 General criterion for mixing and application

In this section, we outline the proof of Theorem 2.1, which is based on two key
ingredients: a coupling approach developed in [KS01, Mat02, KPS02, MY02,
Hai02, Shi04] in the context of stochastic PDE’s and a property of stabilisation
to a non-stationary solution of Navier–Stokes equations [BRS11]. We first recall
an abstract result established in [Shi08].

Let X be a compact metric space with a metric dX and let (uk,Pu), u ∈ X ,
be a family of Markov chains inX . We denote by Pk(u,Γ) its transition function.
Let (uk,Pu ) be another family of Markov chains in the extended phase space
X = X ×X such that

Π∗Pk(u , ·) = Pk(u, ·), Π′
∗Pk(u , ·) = Pk(u

′, ·) for u = (u, u′) ∈ X , k ≥ 0,
(2.13)
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where Pk(u ,Γ) denotes the transition function for (uk,Pu) and Π,Π′ : X → X
stand for the natural projections to the components of a vector u = (u, u′).
In other words, relations (2.13) mean that, for any integer k ≥ 1, the random
variable uk considered under the law Pu with u = (u, u′) is a coupling for the
pair of measures (Pk(u, ·), Pk(u

′, ·)). We shall say that (uk,Pu) satisfies the
mixing hypothesis if there is a closed subset B ⊂ X and positive constants C
and β such that the following properties hold.

Recurrence. Let τ (B) be the first hitting time of the set B :

τ (B) = min{k ≥ 0 : uk ∈ B}.

Then τ (B) is Pu -almost surely finite for any u ∈ X , and there are positive
constants C1 and δ1 such that

Eu exp
(
δ1τ (B)

)
≤ C1 for u ∈ X . (2.14)

Exponential squeezing. Let us set

σ = min{k ≥ 0 : dX(uk, u
′
k) > C e−βk}. (2.15)

Then there are positive constants C2, δ2, and δ3 such that, for any u ∈ B ,
we have

Pu{σ = ∞} ≥ δ3, (2.16)

Eu

(
I{σ<∞} exp(δ2σ)

)
≤ C2. (2.17)

The following proposition is a particular case of a more general result estab-
lished3 in [Shi08] (see Theorem 2.3).

Proposition 2.5. Let (uk,Pu) be a family of Markov chains for which there

exists another Markov family (uk,Pu) in the extended space X that satisfies

relation (2.13) and the mixing hypothesis. Then (uk,Pu) has a unique stationary

distribution µ ∈ P(X), and there are positive constants C and γ such that

‖Pk(u, ·)− µ‖∗L ≤ C e−γk for u ∈ X, k ≥ 0. (2.18)

To prove Theorem 2.1, we first observe that the Markov family (uk,Pu)
possesses a compact absorbing invariant set X ⊂ H , and it suffices to study
its restriction to X , for which we retain the same notation. We shall prove
that (uk,Pu) satisfies the hypotheses of Proposition 2.5. A crucial point of our
construction is the following result, which says, roughly speaking, that if two
points u, u′ ∈ X are sufficiently close, then the pair (P1(u, ·), P1(u

′, ·)) admits
a coupling whose components are close with high probability; cf. Lemma 3.3
in [KS01].

3In [Shi08], the proof is carried out in the particular case when B = B ×B; however, the
same argument applies in the general situation.
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Proposition 2.6. Under the hypotheses of Theorem 2.1, there exists a constant

d > 0 such that for any points u, u′ ∈ X satisfying the inequality ‖u − u′‖ ≤ d
the pair (P1(u, ·), P1(u

′, ·)) admits a coupling (V (u, u′), V ′(u, u′)) such that

P
{
‖V (u, u′)− V ′(u, u′)‖ > 1

2‖u− u′‖
}
≤ C ‖u− u′‖, (2.19)

where C > 0 is a constant not depending on u, u′ ∈ X.

The proof of this proposition is based on a controllability property for the
Navier–Stokes system and application of a concept of optimal coupling; see
Sections 3 and 5.1. We now define a coupling operator R = (R,R′) by the
relation

R(u, u′) =

{ (
V (u, u′), V ′(u, u′)

)
for ‖u− u′‖ ≤ d,(

S(u, ζ), S(u′, ζ′)
)

for ‖u− u′‖ > d,
(2.20)

where ζ and ζ′ are independent random variables whose law coincides with that
of η1. Without loss of generality, we can assume that ζ and ζ′ are defined on
the same probability space as V and V ′, and to emphasise the dependence on ω,
we shall sometimes write R(u, u′;ω) instead of R(u, u′). The required Markov
family (uk,Pu) is constructed by iterations of R. Namely, let (Ωk,Fk,Pk),
k ≥ 1, be countably many copies of the probability space on which R is defined
and let (Ω,F ,P) be the direct product of these spaces. We set

u0 = (u, u′), uk = R(uk−1, ωk), k ≥ 1. (2.21)

The recurrence property will follow from approximate controllability (see Hy-
pothesis (H2) in Section 2.1), while the exponential squeezing will be implied
by Proposition 2.6.

3 Control problem

3.1 Squeezing

In this section, we consider the controlled Navier–Stokes system (1.1)–(1.3) on
the time interval J1 = [0, 1]. We assume that the function h belongs to the space
H1(D1) (where D1 = J1 × D) and denote by {ψj} the sequence of functions
entering Hypothesis (H1) of Section 2.1. Extending the functions ψj by zero
outside Q, we may regard them as elements of H1

0 (D1). We denote by Em
the vector span of ψ1, . . . , ψm endowed with the L2 norm and by BR the ball
in H1(D1) of radius R centred at origin. The following theorem whose weaker
version was established in [BRS11] is a key step in the proof of Theorem 2.1.

Theorem 3.1. Under the above hypotheses, for any R > 0 and q ∈ (0, 1) there
is an integer m ≥ 1, positive constants d and C, and a continuous mapping

Φ : BR ×BH(R) → L(H, Em), (h, û0) 7→ η,

such that the following properties hold.
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Contraction. For any functions h ∈ BR and û0, u0 ∈ BH(R) satisfying the

inequality

‖u0 − û0‖ ≤ d, (3.1)

we have

∥∥S
(
û0, h

)
− S

(
u0, h+ Φ(h, û0)(u0 − û0)

)∥∥ ≤ q ‖u0 − û0‖. (3.2)

Regularity. The mapping Φ is infinitely smooth in the Fréchet sense.

Lipschitz continuity. The mapping Φ is Lipschitz continuous with the con-

stant C. That is,

∥∥Φ(h1, û1)− Φ(h2, û2)
∥∥
L
≤ C

(
‖h1 − h2‖H1 + ‖û1 − û2‖

)
, (3.3)

where ‖ · ‖L stands for the norm in the space L(H, Em).

An immediate consequence of this theorem is a refinement of a result es-
tablished in [BRS11] on stabilisation of a non-stationary for the Navier–Stokes
system. Since that result is not necessary for proving Theorem 2.1, we postpone
its formulation and proof until Section 3.4.

The proof of Theorem 3.1 repeats essentially the argument used in [BRS11].
However, since the finite-dimensionality in time for the control and the regularity
and Lipschitz properties of Φ are important for the stochastic part of this work,
we present a rather complete proof of Theorem 3.1. We begin with a description
of the main steps and give the details in the next two subsections.

Step 1: Reduction to the linearised problem. Denote by û(t, x) the solution
of (1.1), (1.3) issued from û0 and corresponding to η ≡ 0. In view of the
regularising property of the Navier–Stokes system, for any interval J = (δ, 1)
with δ > 0 we have

û ∈ L2(J,H3 ∩ V ), ∂tû ∈ L2(J, V ), (3.4)

and the corresponding norms are bounded by a constant depending only on δ
and R. In particular, the truncated observability inequality holds for the adjoint
of the Navier–Stokes system linearised around û; see Section 5.2.

A solution with a non-zero control η is sought in the form u = û+v. Then v
must be a solution of the problem

v̇ + 〈v,∇〉v + 〈û,∇〉v + 〈v,∇〉û− ν∆v +∇p = η(t, x), div v = 0, (3.5)

v
∣∣
∂D

= 0, v(0) = v0, (3.6)

where v0 = u0 − û0. Together with Eq. (3.5), consider its linearisation around
zero:

v̇ + 〈û,∇〉v + 〈v,∇〉û− ν∆v +∇p = η(t, x), div v = 0. (3.7)

12



Suppose that we have constructed η ∈ Em such that the solution w(t, x) of (3.7),
(3.6) satisfies the inequalities

‖w(1)‖ ≤
q

2
‖v0‖, ‖w‖X1 ≤ C1‖v0‖. (3.8)

A standard perturbative argument shows that if ‖v0‖ is sufficiently small, then
the solution of (3.5), (3.6) satisfies the inequality ‖v(1)‖ ≤ q‖v0‖, whence it fol-
lows that (3.2) holds. Thus, it suffices to construct a continuous linear operator
Φ(h, û0) : H → Em such that the solution w ∈ X1 of problem (3.7), (3.6) with
η = Φ(h, û0)v0 satisfies inequalities (3.8).

Step 2: Application of the Foiaş–Prodi property. Let {ej} be an orthonor-
mal basis in H formed of the eigenfunctions of the Stokes operator L = −Π∆,
where Π stands for the Leray projection in L2(D,R2) (onto the closed sub-
space H), let {αj} be the corresponding (non-decreasing) sequence of eigenval-
ues for L, and let ΠN be the orthogonal projection in H on the vector space HN

spanned by e1, . . . , eN . Denote by Rû : H × L2(D1) → X1 a linear operator
that takes (v0, η) to the solution w of (3.7), (3.6) and by Rû

t its restriction to
the time t.

Suppose that for any integer N ≥ 1 and any δ > 0 we have constructed an
integer m ≥ 1 and a family of linear operators Φ = Φ(h, û0) : H → Em which is
a Lipschitz function of its arguments and is such that

∥∥ΠNRû
1 (v0, Φ(h, û0)v0)

∥∥ ≤ C2δ‖v0‖, ‖Φ(h, û0)‖L ≤ C2, (3.9)

where C2 > 0 is a constant not depending on N and δ. In this case, the Poincaré
inequality and the regularising property of (3.7) imply that

‖Rû
1 (v0, Φ(h, û0)v0)‖ = ‖(I −ΠN )Rû

1 (v0, Φ(h, û0)v0)‖+ C2δ ‖v0‖

≤ α
−1/2
N+1 ‖R

û
1 (v0, Φ(h, û0)v0)‖1 + C2δ ‖v0‖

≤ C3α
−1/2
N+1

(
‖v0‖+ ‖Φ(h, û0)v0‖L2(D1)

)
+ C2δ ‖v0‖

≤
(
C3(C2 + 1)α

−1/2
N+1 + C2δ

)
‖v0‖.

Choosing N sufficiently large and δ sufficiently small, we obtain the first in-
equality in (3.8). The second is an immediate consequence of the continuity
of Rû and the boundedness of Φ.

Step 3: Minimisation problem. The construction of Φ is based on a study of
a minimisation problem for solutions of (3.7) with a cost functional penalising
the term ‖ΠNw(1)‖. Namely, let us consider the following problem.

Problem 3.2. Given a constant δ > 0, an integer N ≥ 1, and functions v0 ∈ H
and û ∈ X1 satisfying (3.4), minimise the functional

J(w, ζ) =
1

2

∫ 1

0

‖ζ(t)‖2dt+
1

δ
‖ΠNw(1)‖

2

13



over the set of functions (w, ζ) ∈ X1 × L2(D1,R
2) satisfying the equations

ẇ+〈û,∇〉w+〈w,∇〉û−ν∆w+∇p = χ(Pmζ), divw = 0, w(0) = v0, (3.10)

where p = p(t, x) is a distribution in D1 and Pm stands for the orthogonal
projection in L2(D1) onto Em.

We shall show that Problem 3.2 has a unique solution (w, ζ), which satisfies
the inequality

1

δ
‖ΠNw(1)‖

2 + ‖ζ‖2L2(D1)
≤ C3‖v0‖

2, (3.11)

where C3 > 0 is a constant not depending on N and δ. This will imply the
required inequalities (3.9), in which Φv0 = χ(Pmζ). Further analysis shows
that the mapping û 7→ ζ is smooth from X1 to L2(D1) and uniformly Lipschitz
continuous on bounded balls. Since û is an analytic function of (h, û0), this will
complete the proof of the theorem.

3.2 Minimisation problem

Step 1: Existence, uniqueness, and linearity. Let us prove that Problem 3.2 has
a unique optimal solution (w, ζ) in the space X := X1 × L2(D1). Indeed, the
function J : X → R is non-negative and therefore has an infimum on any affine
subspace of X . Denote by Xv0 the affine subspace of X defined by (3.10) and
by J∗ the infimum of J on Xv0 . Let (wn, ζn) ∈ Xv0 be an arbitrary minimising
sequence. Then {ζn} is a bounded sequence in L2(D1), and without loss of
generality we can assume that it converges weakly to a limit ζ. It follows that
the sequence of solutions wn ∈ X1 of problem (3.10) with ζ = ζn converges in
the space X1 to a limit w, which satisfies (3.10). The lower semi-continuity of
the norm of a Hilbert space now implies that

J(w, ζ) ≤ lim inf
n→∞

J(wn, ζn) = J∗.

Recalling the definition of J∗, we conclude that J(w, ζ) = J∗.

To prove the uniqueness, note that any affine subspace is a convex set in X .
Combining this property with the strict convexity of the norm of a Hilbert space,
we see that if (wi, ζi), i = 1, 2, are two optimal solutions, then ζ1 = ζ2. Since
the solution of problem (3.10) with a given ζ ∈ L2(D1) is unique, we conclude
that w1 = w2.

Finally, it is a standard fact of the optimisation theory that the unique
minimum of a quadratic functional under a linear constraint can be expressed
as a linear function of the problem data (e.g., see Section III.1 in [Zab08] for
a general theory and Section A.2 of [BRS11] for a simple proof of the result
we need). In the case under study, the corresponding operator depends on the
reference solution û. We shall denote by Ψ(û) the linear operator that takes v0
to ζ, where (w, ζ) is the optimal solution for Problem 3.2.
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Step 2: Regularity and Lipschitz continuity. We now prove that the map-
ping Ψ regarded as an application from H to L(H,L2(D1)) is infinitely dif-
ferentiable and uniformly Lipschitz continuous on balls. Let us denote by
w0 = w0(û, v0) ∈ X1 the solution of problem (3.10) with ζ ≡ 0. The linear
constraint of Problem 3.2 is equivalent to the relation

w = w0 +Rû(0, χ(Pmζ)). (3.12)

Setting A(û)ζ = Rû
1 (0, χ(Pmζ)), we see that (w, ζ) ∈ X is a solution of Prob-

lem 3.2 if and only if w is the global minimum of the function F : L2(D1) → R

defined by

F (ζ; û, v0) =
1

2

∫ 1

0

‖ζ(t)‖2dt+
1

δ

∥∥ΠN

(
w0 +A(û)ζ

)∥∥2.

Using standard methods of the theory of 2D Navier–Stokes equations, we can
prove that A(û) is an analytic function from X1 to L(H) which is uniformly
Lipschitz continuous on bounded sets; e.g., see [Kuk82] or Chapter 1 in [VF88].
It follows that F satisfies the hypotheses of Proposition 5.5 in which U = L2(D1)
and Y = X1 × H . Thus, the unique minimum ζ of F is a smooth function
of (û, v0) valued in L2(D1), and it is Lipschitz continuous on bounded subsets.
Recalling relation (3.12), we conclude that the unique solution (w, ζ) ∈ X of
Problem 3.2 is a smooth function on X1 ×H which is Lipschitz continuous on
bounded subsets. Since (w, ζ) linearly depends on v0, it is straightforward to
derive the required properties of Ψ .

Step 3: A priori estimate. From now on, we fix R, δ > 0 and assume that
û ∈ BYδ,1

(R). We claim that there is an integer m ≥ 1 depending on R and N ,
and a constant C > 0 depending only on R such that, if û ∈ BYδ,1

(R), then
inequality (3.11) holds. Indeed, note that the constraint given by (3.10) is
equivalent to the equations

ẇ + νLw +B(û, w) +B(w, û) = Π
(
χ(Pmζ)

)
, w(0) = v0, (3.13)

where we set B(u1, u2) = Π(〈u1,∇〉u2). Thus, the pair (w, ζ) ∈ X constructed
in Step 1 is the minimiser of J under constraint (3.11). Applying the Kuhn–
Tucker theorem (see Chapter I in [IT79]), we can find functions λ ∈ H and
θ ∈ L2(J1, V ) such that, for any (r, ξ) ∈ X , we have

∫ 1

0

(ζ, ξ) dt+
2

δ

(
ΠNw(1), r(1)

)
+
(
λ, r(0)

)

+

∫ 1

0

(
θ, ṙ + νLr +B(û, r) +B(r, û)− χ(Pmξ)

)
dt = 0.

It follows that

θ̇ − νLθ −B∗(û)θ = 0, (3.14)

θ(1) = −
2

δ
ΠNw(1), ζ = Pm(χθ), (3.15)
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where B∗(û) denotes the (formal) adjoint of the operator B(û, ·)+B(·, û) in H ,
and Eq. (3.14) holds in the sense of distributions. Multiplying Eq. (3.14) by w
and the first equation in (3.13) by θ, adding together the resulting relations,
and integrating over D1, we derive

2

δ
‖ΠNw(1)‖

2 +

∫ 1

0

‖ζ(t)‖2dt = −(θ(0), v0), (3.16)

where we used relations (3.15) and the initial condition in (3.13). Now note
that (3.14) is equivalent to the backward Navier–Stokes equations (5.12). There-
fore, by Proposition 5.4, the function θ must satisfy the truncated observability
inequality (5.13). Combining it with (3.16), we obtain (3.11). We have thus
shown that (cf. (3.9))

∥∥ΠNRû
1

(
v0, χPm(Ψ(û)v0)

)∥∥ ≤ Cδ‖v0‖, ‖Ψ(û)v0‖L2(D1) ≤ C‖v0‖. (3.17)

3.3 Proof of Theorem 3.1

Let us define Φ(h, û0) as the linear operator taking v0 to χ(PmΨ(û)v0), where
û ∈ X1 is the solution of problem (1.1), (3.20) with f = h and u0 = û0. Standard
regularity results for 2D Navier–Stokes equations imply that û ∈ Yδ,1 for any
δ ∈ (0, 1) (see Theorem 3.5 in Chapter III of [Tem79]), so that Ψ(û) is well
defined. Moreover, the norm ‖û‖Yδ,1

is bounded by a constant depending only
on R and δ. We claim that Φ(h, û0) satisfies the contraction property stated
in the theorem. If this assertion is proved, then the regularity and Lipschitz
continuity of Ψ combined with similar properties of the resolving operator for
the 2D Navier–Stokes system will imply the remaining assertions on Φ.

Inequalities (3.17) imply that the solution (w, ζ) of Problem 3.2 satisfies (3.11).
Therefore, choosing N and δ−1 sufficiently large, we ensure that the func-
tion w = Rû(v0, Φ(h, û0)v0) satisfies (3.8). Let us represent a solution of the
non-linear problem (3.5), (3.6) with the right-hand side η = Φ(h, û0)(u0 − û0)
in the form v = w + z. Then z ∈ X1 must be a solution of the problem

ż + 〈z,∇〉z + 〈û + w,∇〉z + 〈z,∇〉(û + w)− ν∆z +∇p = −〈w,∇〉w, (3.18)

div z = 0, z
∣∣
∂D

= 0, z(0) = 0. (3.19)

Taking the scalar product of (3.18) with 2z inH and carrying out some standard
transformations, we derive

∂t‖z‖
2 + 2ν‖∇z‖2 ≤ C1

(
‖û+ w‖1‖z‖+ ‖w‖1‖w‖

)
‖∇z‖.

It follows that

∂t‖z‖
2 + ν‖∇z‖2 ≤ C2

(
‖û+ w‖21‖z‖

2 + ‖w‖21‖w‖
2
)
.

Applying the Gronwall inequality and using the initial condition in (3.19), we
obtain

‖z(t)‖2 ≤

∫ t

0

exp

(
C2

∫ t

s

‖û+ w‖21dr

)
‖w‖21‖w‖

2ds.
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Recalling that ‖û‖X1 is bounded by a constant depending only on R and using
the second inequality in (3.8), we derive

sup
0≤t≤1

‖z(1)‖ ≤ C3(R)‖w‖
2
X1

≤ C4(R)‖u0 − û0‖
2.

Since ‖u0 − û0‖ ≤ d, choosing d > 0 sufficiently small ensures that

‖z(1)‖ ≤
q

2
‖u0 − û0‖.

Combining this with the first inequality of (3.8) in which v0 = u0 − û0, we
get (3.2). This completes the proof of the theorem.

3.4 Stabilisation of a non-stationary solution

In this section, we prove a simple corollary of Theorem 3.1 on stabilisation of
a non-stationary solution for the Navier–Stokes system by a finite-dimensional
localised control. This result is not necessary for the proof of Theorem 2.1, and
the reader not interested in the control problem may safely skip this section.
Recall that we denote by u(t;u0, f) the solution of (1.1), (1.2), (1.5).

Proposition 3.3. For any ρ > 0 and α > 0 there is a finite-dimensional

subspace E ⊂ H1
0 (Q,R

2) and positive constants C and d such that the following

assertions hold for any functions û0 ∈ H and h ∈ H1
loc(R+ ×D,R2) satisfying

the inequalities

‖û0‖ ≤ ρ, ‖h‖H1(Jk×D) ≤ ρ for all k ≥ 1.

(i) For any u0 ∈ H satisfying the condition ‖u0− û0‖ ≤ d there is a control η
such that the restriction of η(t+ k − 1, x) to J1 ×D belongs to E for any

integer k ≥ 1 and

‖u(t;u0, h+ η)− u(t; û0, h)‖ ≤ Ce−αt‖u0 − û0‖, t ≥ 0. (3.20)

(ii) The mapping (û0, u0, h) 7→ η is Lipschitz continuous in the sense specified

below. Moreover,

‖η‖L2(Qk,R2) ≤ Ce−αk‖u0 − û0‖, k ≥ 1. (3.21)

As was mentioned Section 3.1, a similar result was proved earlier in [BRS11]
for the 3D Navier–Stokes system (see also [Fur04, Bar03, BT04] for some results
on stabilisation to a stationary solution). Proposition 3.3 establishes some ad-
ditional properties of the control. Namely, we show that it is finite-dimensional
in both space and time and can be chosen to be a smooth function with respect
to the force and the initial state corresponding to the reference solution.

Proof of Proposition 3.3. Let us fix positive constants ρ and α and take an
initial function û0 ∈ BH(ρ). The boundedness of the resolving operator for
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the Navier–Stokes system implies that the corresponding solution û satisfies the
inequality

‖û(t)‖ ≤ R for all t ≥ 0, (3.22)

where R is a constant depending only on ρ. Let q ∈ (0, 1) be such that e−α = q.
Denote by d, C, and m the parameters constructed in Theorem 3.1. Let us take
any u0 ∈ H satisfying the inequality ‖u0 − û0‖ ≤ d and construct a control
function η consecutively on the intervals Jk, k ≥ 1. To this end, we denote
by hk the restriction of the function h(t− k + 1) to D1 and set

η(t) = Φ(û0, h1)(u0 − û0) for 0 ≤ t ≤ 1.

Then, by Theorem 3.1, we have

‖u(1)− û(1)‖ ≤ q‖u0 − û0‖ = e−α‖u0 − û0‖,

where u(t) denotes the solution of (1.1)–(1.3), (1.5) on the interval J1. Assume
we have constructed a control η on the interval (0, k) with k ≥ 1, and the
corresponding solution u satisfies the inequality

‖u(l)− û(l)‖ ≤ e−αl‖u0 − û0‖ (3.23)

for l = 1, . . . , k. In this case, setting

η(k + t) = Φ(û(k), hk+1)
(
u(k)− û(k)

)
for 0 ≤ t ≤ 1, (3.24)

we see that (3.23) remains valid for l = k + 1. Thus, we can construct η on the
half-line R+, and the corresponding solution will satisfy (3.23) for all integers
l ≥ 1. Combining this with the Lipschitz continuity of the resolving operator
of the Navier–Stokes system, we see that (3.20) holds. Inequality (3.21) is a
straightforward consequence of (3.24) and (3.23). Finally, it is not difficult to
check that if η1 and η2 are two controls corresponding to (ui0, û

i
0, h

i), i = 1, 2,
then

∥∥η1k − η2k
∥∥
L2(Dk)

≤ Ck
1

(
‖u10 − u20‖+ ‖û10 − û20‖+ max

1≤l≤k
‖h1l − h2l ‖H1(Dl)

)
,

where C1 > 0 depends only on ρ and α, ηil stands for the restriction of ηi to Dl,
and hil are defined in a similar way. This completes the proof.

4 Proof of Theorem 2.1

We first outline the main steps. A well-known dissipativity argument shows
that the random dynamical system defined by (2.1) has a compact invariant
absorbing set X ⊂ H . Therefore it suffices to prove the uniqueness of an
invariant measure and the property of exponential mixing for the restriction
of (uk,Pu) to X . This will be done with the help of Proposition 2.5. Namely, we
shall prove Proposition 2.6 and use relations (2.19) and (2.20) to define a Markov
chain (uk,Pu ) in the extended phase space X = X ×X . This Markov chain is
an extension of (uk,Pu) and possesses the recurrence and exponential squeezing
properties of Section 2.2, and therefore the hypotheses of Proposition 2.5 are
satisfied. This will complete the proof of Theorem 2.1.
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4.1 Reduction to a compact phase space

Well-known properties of the resolving operator for the Navier–Stokes system
imply that S satisfies the inequality

‖S(u, f)‖ ≤ κ ‖u‖+ C1‖f‖L2(D1) for u ∈ BH(R), f ∈ L2(D1)

where κ < 1 and C1 > 0 are some universal constants. Let r > 0 be so large
that ‖h+ ηk‖L2(D1) ≤ r almost surely. Then, with probability 1, we have

‖S(u, h+ ηk)‖ ≤ κρ+ C1r for u ∈ BH(ρ). (4.1)

It follows that if R ≥ C1r
1−κ

, then the ball BH(R) is invariant for the Markov

chain (uk,Pu). Let us take R = 2C1r
1−κ

and denote by X the image of the set
BH(R) × BL2(D1)(r) under the mapping S. Then X is an invariant subset for
(uk,Pu), and the regularising property of the Navier–Stokes dynamics implies
that X is compact in H . Iterating (4.1), we see that

Pu{uk ∈ X for k ≥ k0(ρ)} = 1 for any u ∈ BH(ρ),

where k0(ρ) = (ln ρ + C2)/ lnκ
−1 with a large constant C2 > 0. It follows

that (uk,Pu) has at least one stationary measure µ, and any such measure is
supported by X . It is easy to see that to prove (2.8), it suffices to establish
inequality (2.18). The latter is proved in the next three subsections.

4.2 Proof of Proposition 2.6

We shall apply Proposition 5.3 to construct a measurable coupling (V, V ′) and
Proposition 5.2 to prove (2.19). Namely, fix R > 0 so large that X ⊂ BH(R−1)
and max{‖ηk‖H1(D1), ‖h+ηk‖H1(D1)} ≤ R−1 almost surely. Denote by C, d > 0
and m ≥ 1 the parameters constructed in Theorem 3.1 with q = 1/4, define the
Polish space

Z = {(u, u′) ∈ X ×X : ‖u− u′‖ ≤ d},

and introduce the function ε(u, u′) = 1
2‖u−u′‖ on the space Z. Let us consider

the pair of measures (P1(u, ·), P1(u
′, ·)). By Proposition 5.3 with θ = 1

2 , there
is a probability space (Ω,F ,P) and measurable functions V, V ′ : Ω × Z → H
such that for any (u, u′) ∈ Z the pair (V (u, u′), V ′(u, u′)) is a coupling for
(P1(u, ·), P1(u

′, ·)) and

P
{
‖V (u, u′)− V ′(u, u′)‖ > 1

2‖u− u′‖
}
≤ C‖u−u′‖/4

(
P1(u, ·), P1(u

′, ·)
)
, (4.2)

where the function Cε(µ1, µ2) is defined in Section 5.1. In view of (5.6), to
estimate the right-hand side of this inequality, it suffices to bound the function
K‖u−u′‖/4(P1(u, ·), P1(u

′, ·)).

To this end, we shall apply Propositions 5.2, 5.6 and Theorem 3.1. Let us
endow the ball BR ⊂ H1(D1) with the law λ of the random variables ηk. Then
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P1(u, ·) is the image of λ under the mapping η 7→ S(u, h + η) acting from BR

to H . Let Em be the subspace entering Theorem 3.1 and let

Φ : BR ×BH(R) → L(H, Em)

be a smooth C-Lipschitz mapping such that

∥∥S
(
u, h+ η

)
− S

(
u′, h+ η + Φ(h+ η, u)(u− u′)

)∥∥ ≤
1

4
‖u− u′‖ (4.3)

for any η ∈ BR and any u, u′ ∈ BH(R) satisfying the inequality ‖u − u′‖ ≤ d.
The existence of such mapping was established in Theorem 3.1. Let us define a
transformation Ψ = Ψu,u′ of the space H1(D1) by the relation

Ψ(η) = η + χ
(
‖h+ η‖1

)
Φ(h+ η, u)(u− u′),

where χ : R+ → R+ is a smooth function such that χ(r) = 1 for r ≤ R− 1 and
χ(r) = 0 for r ≥ R. The choice of the constant R and inequality (4.3) imply
that

∥∥S
(
u, h+ η

)
− S

(
u′, h+ Ψu,u′(η)

)∥∥ ≤
1

4
‖u− u′‖ for λ-a.e. η ∈ H1(D1).

Therefore, by Proposition 5.2, we have

K‖u−u′‖/4(P1(u, ·), P1(u
′, ·)) ≤ 2 ‖λ− Ψ∗(λ)‖var. (4.4)

Now note that the mapping Ψ satisfies the hypotheses of Proposition 5.6 with
a constant κ proportional to ‖u − u′‖. Combining (4.2), (4.4), and (5.22), we
arrive at the required inequality (2.19).

4.3 Recurrence

Let us recall that the probability space (Ω,F ,P) and the X -valued Markov
chain {uk = (uk, u

′
k)} on it were defined in Section 2.2. We shall denote by Pu

the probability measure associated with the initial condition u . Let us set

B = {u = (u, u′) ∈ X : ‖u− u′‖ ≤ d},

where d > 0 is a small constant to be chosen later. In this and next subsections,
we shall prove that the recurrence and exponential squeezing properties are
satisfied for (uk,Pu ) with the above choice of B .

To prove that τ (B) is Pu -almost surely finite and satisfies (2.14), it suffices
to show that

p := sup
u∈X

Pu{τ (B) > ℓ} < 1, (4.5)

where ℓ ≥ 1 is an integer. Indeed, if this inequality is proved, then using the
Markov property, for any integer m ≥ 1 we can write

Pu{τ (B) > mℓ} = EuPu{τ (B) > mℓ |F(m−1)ℓ}

= Eu

(
I
τ (B)>(m−1)ℓ Pu(m−1)ℓ

{τ (B) > ℓ}
)

≤ pPu{τ (B) > (m− 1)ℓ},
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where {Fk} stands for the filtration generated by the Markov family (uk,Pu ).
By iteration, the above inequality implies that

Pu{τ (B) > mℓ} ≤ pm for all m ≥ 1. (4.6)

A simple application of the Borel–Cantelli lemma now implies τ (B) is Pu -almost
surely finite. Furthermore, inequality (4.6) immediately implies that τ (B) sat-
isfies (2.14).

We now prove (4.5). Let η and η′ be the random variables entering the
definition of the coupling operator R (see (2.20)) and let

ζk(ω) = η(ωk), ζ′k(ω) = η′(ωk), k ≥ 1.

Then {ζk, ζ
′
k, k ≥ 1} is a family of i.i.d. random variables in L2(D1) whose law

coincides with that of ηk. Let û ∈ H be the point defined in Hypothesis (H2).
Since X is a closed absorbing subset, we have û ∈ X . Using the definitions of R
and τ , we can write

Pu{τ (B) > ℓ} = Pu{τ (B) > ℓ, ‖uℓ − u′ℓ‖ > d}

= Pu{τ (B) > ℓ, ‖Sℓ(u, ζ1, . . . , ζℓ)− Sℓ(u, ζ
′
1, . . . , ζ

′
ℓ)‖ > d}

≤ P{‖Sℓ(u, ζ1, . . . , ζℓ)− Sℓ(u
′, ζ′1, . . . , ζ

′
ℓ)‖ > d}

= 1− P{‖Sℓ(u, ζ1, . . . , ζℓ)− Sℓ(u
′, ζ′1, . . . , ζ

′
ℓ)‖ ≤ d}

≤ 1− P (ℓ, d)2,

where the operator Sl is defined in Hypothesis (H2), and we set

P (ℓ, d) = inf
v∈X

P{‖Sℓ(v, ζ1, . . . , ζℓ)− û‖ ≤ d/2}.

Thus, inequality (4.5) will be established if we show that P (ℓ, d) > 0 for a
sufficiently large integer ℓ.

To this end, let us denote by ℓ the integer defined in Hypothesis (H2) with
ε = d/4 and R > 0 so large that X ⊂ BH(R). We fix v ∈ X and denote by
ζk = ζvk ∈ K some vectors for which (2.6) holds. Let δ > 0 be so small that for

any ζ̃k ∈ K, k = 1, . . . , ℓ, satisfying the inequalities ‖ζ̃k − ζvk‖ < δ we have

‖Sℓ(v, ζ̃1, . . . , ζ̃ℓ)− û‖ ≤ d/2.

Define the event Γ(v, ℓ) = {‖ζk − ζvk‖ < δ, k = 1, . . . , ℓ} ⊂ Ω. What has been
said implies that

‖Sℓ(v, ζ1, . . . , ζℓ)− û‖ ≤ d/2 for ω ∈ Γ(v, ℓ).

We see that

P (ℓ, d) ≥ inf
v∈X

P
(
Γ(v, ℓ)

)
≥ inf

v∈X

ℓ∏

k=1

P{‖ζk − ζvk‖ < δ}

≥
(
inf
ξ∈K

P{‖ζ1 − ξ‖ < δ}
)ℓ

, (4.7)
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where we used the fact that ζk are i.i.d. random variables. It remains to note
that the function ξ 7→ P{‖ζ1 − ξ‖ < δ} is lower semicontinuous and strictly
positive on K, and therefore the right-hand side of (4.7) is a positive constant.
This completes the verification of the recurrence property.

4.4 Exponential squeezing

Let us take arbitrary initial points u, u′ ∈ X such that (u, u′) ∈ B . Then,
by (2.19) and (2.20), we have

Pu

{
‖u1 − u′1‖ ≤ 1

2‖u− u′‖
}
≥ 1− C ‖u− u′‖. (4.8)

For any integer n ≥ 1, let us set

Γn = {‖uk − u′k‖ ≤ 1
2‖uk−1 − u′k−1‖ for 1 ≤ k ≤ n}.

Note that ‖uk − u′k‖ ≤ 2−k‖u0 − u′0‖ for 1 ≤ k ≤ n on the set Γn. Combining
this observation with inequality (4.8) and the Markov property, we derive

Pu (Γn) = Eu

(
IΓn−1Pu

{
‖un − u′n‖ ≤ 1

2‖un−1 − u′n−1‖ |Fn−1

})

= Eu

(
IΓn−1Pun−1

{
‖u1 − u′1‖ ≤ 1

2‖u0 − u′0‖
})

≥
(
1− 21−nC‖u− u′‖

)
Pu(Γn−1).

Iterating this inequality, for any n ≥ 1 we obtain

Pu(Γn) ≥

n∏

k=1

(
1− 21−kC‖u− u′‖

)
≥ 1− C1‖u− u′‖. (4.9)

Let us define the Markov time σ by relation (2.15) with C = d and β = ln 2.
Then, for any u ∈ B , with Pu -probability 1 we have

{σ = ∞} = {‖uk − u′k‖ ≤ 2−kd for k ≥ 1}

⊃ {‖uk − u′k‖ ≤ 1
2‖uk−1 − u′k−1‖ for k ≥ 1} =

∞⋂

n=1

Γn,

whence it follows that

Pu{σ = ∞} = lim
n→∞

Pu(Γn) ≥ 1− C1‖u− u′‖.

Choosing d > 0 sufficiently small, we arrive at (2.16).
To prove inequality (2.17), it suffices to show that

Pu{σ = n} ≤ C22
−n for n ≥ 1, u ∈ B , (4.10)

where the positive constant C does not depend on u . To this end, note that

{σ = n} = {σ > n− 1} ∩ {‖un − u′n‖ > 2−nd}.
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Using the Markov property, inequality (4.8), and the fact that ‖uk−u
′
k‖ ≤ 2−kd

on the set {σ > k}, we derive

Pu{σ = n} = Eu

(
I{σ>n−1}Pu{‖un − u′n‖ > 2−nd |Fn−1}

)

= Eu

(
I{σ>n−1}Pun−1

{‖u1 − u′1‖ > 2−nd}
)

≤ Eu

(
I{σ>n−1}Pun−1{‖u1 − u′1‖ >

1
2‖u0 − u′0‖}

)

≤ 21−nCdPu{σ > n− 1}.

We thus obtain inequality (4.10) with C2 = Cd. The proof of Theorem 2.1 is
complete.

5 Appendix

5.1 Optimal coupling

Let X be a Polish space with a metric d and let µ1, µ2 ∈ P(X). Recall that
a pair of X-valued random variables (ξ1, ξ2) is called a coupling for (µ1, µ2) if
D(ξi) = µi, i = 1, 2. We denote by Π(µ1, µ2) the set of all couplings for (µ1, µ2).
Let us fix ε ≥ 0 and define a symmetric function dε : X×X → R by the relation

dε(u1, u2) =

{
1 if d(u1, u2) > ε,

0 if d(u1, u2) ≤ ε.
(5.1)

Definition 5.1. We shall say that a coupling (ξ1, ξ2) ∈ Π(µ1, µ2) is ε-optimal

if it minimizes the function (ζ1, ζ2) 7→ E dε(ζ1, ζ2) defined on the set of all
couplings for (µ1, µ2). That is,

E dε(ξ1, ξ2) = inf
(ζ1,ζ2)∈Π(µ1,µ2)

E dε(ζ1, ζ2). (5.2)

In particular, for ε = 0 we obtain the usual concept of maximal coupling of
measures; e.g., see [Tho00].

Let us denote by Cε(µ1, µ2) the quantity defined by the right-hand side
of (5.2) and call it the ε-optimal cost for the pair (µ1, µ2). Note that, in view
of (5.1) and (5.2), for any ε-optimal coupling (ξ1, ξ2) we have

P{d(ξ1, ξ2) > ε} = Cε(µ1, µ2). (5.3)

Thus, to estimate the probability of the event that the distance between the
components of an ε-optimal coupling for (µ1, µ2) is larger than ε it suffices to
estimate the corresponding ε-optimal cost. We now establish a simple result
that enables one to do it. Let us introduce the following function on the space
P(X)× P(X):

Kε(µ1, µ2) = sup
f,g

(
(f, µ1)− (g, µ2)

)
, (5.4)
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where the supremum is taken over all functions f, g ∈ Cb(X) satisfying the
inequality

f(u1)− g(u2) ≤ dε(u1, u2) for u1, u2 ∈ X. (5.5)

Then, by the Kantorovich duality (see Theorem 5.10 in [Vil09]), we have

Kε(µ1, µ2) = Cε(µ1, µ2) (5.6)

Thus, to estimate the ε-optimal cost it suffices to estimate the function Kε. The
following proposition reduces this question to a “control” problem.

Proposition 5.2. Let X be a compact metric space with metric d, let U1, U2

be two X-valued random variables defined on a probability space (Ω,F ,P), and
let µ1, µ2 be their laws. Suppose there is a measurable mapping Ψ : Ω → Ω such

that

d
(
U1(ω), U2(Ψ(ω))

)
≤ ε for almost every ω ∈ Ω, (5.7)

where ε > 0 is a constant. Then

Kε(µ1, µ2) ≤ 2 ‖P− Ψ∗(P)‖var. (5.8)

In particular, any ε-optimal coupling (ξ1, ξ2) for the pair (µ1, µ2) satisfies the

inequality

P{d(ξ1, ξ2) > ε} ≤ 2 ‖P− Ψ∗(P)‖var. (5.9)

Proof. Inequality (5.9) is a straightforward consequence of (5.8), (5.6), and (5.3).
To prove (5.8), we use an argument applied in the proof of Lemma 11.8.6
in [Dud02]. Namely, note that if f, g ∈ Cb(X) are such that (5.5) holds, then
the function h(u) = supv∈X(f(v)− dε(u, v)) satisfies the inequalities h ≤ g and

f(u1)− h(u2) ≤ dε(u1, u2), |h(u1)− h(u2)| ≤ 1 for u1, u2 ∈ X.

It follows that

(f, µ1)− (g, µ2) = E
(
f(U1)− g(U2)

)

≤ E
(
f(U1)− h(U2 ◦ Ψ)

)
+ E

(
h(U2 ◦ Ψ)− h(U2)

)

≤ E dε(U1, U2 ◦ Ψ) + (h ◦ U2, Ψ∗(P)) − (h ◦ U2,P)

≤
∣∣(h ◦ U2,P)− (h ◦ U2, Ψ∗(P))

∣∣.

It remains to take the supremum over f, g and to note that right-hand side of
this inequality does not exceed that of (5.8).

We now study the question of existence and measurability of an ε-optimal
coupling. Let (Z,B) be a measurable space and let {µz

i , z ∈ Z}, i = 1, 2, be two
families of probability measures on X such that the mapping z 7→ µz

i is measur-
able from Z to the space P(X) endowed with the topology of weak convergence
and the corresponding σ-algebra. The following proposition establishes the ex-
istence of an “almost” ε-optimal coupling that is a measurable function of z,
provided that X is a subset of a Banach space.
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Proposition 5.3. In addition to the above hypotheses, assume that X is a

compact subset of a Banach space Y . Then for any positive measurable func-

tion ε(z), z ∈ Z, and any θ ∈ (0, 1) there is a probability space (Ω,F ,P) and

measurable functions ξzi (ω) : Ω×Z → Y , i = 1, 2, such that, for any z ∈ Z, the
pair (ξz1 , ξ

z
2 ) is a coupling for (µz

1, µ
z
2) and

E dε(z)(ξ
z
1 , ξ

z
2 ) ≤ Cθε(z)(µ

z
1, µ

z
2). (5.10)

Proof. The existence of a measurable optimal ε(z)-coupling would be an imme-
diate consequence of Corollary 5.22 in [Vil09] if the function dε(z)(u1, u2) was
continuous and independent of z. Since this is not the case, we now outline the
modifications that are needed to prove the existence of a measurable coupling
satisfying (5.10).

Let us write Z as the union of countably many disjoint measurable subset Zk

such that the image of the restriction of ε(z) to any of them is contained in a
bounded interval separated from zero. For instance, we can take Zk = {z ∈ Z :
(k + 1)−1 < ε(z) ≤ k−1} with k ≥ 1 and use a similar partition for (1,+∞). If
we construct measurable couplings on each set Zk for which (5.10) holds with
Z = Zk, then by gluing them together, we get the required random variables ξzi ,
i = 1, 2.

To construct a measurable coupling on Zk, we first reduce the problem to
the case when ε ≡ 1. Let us consider stretched measures µ̃z

i defined by the
formula µ̃z

i (Γ) = µz
i (ε(z)Γ) for Γ ∈ BY . The measures µ̃z

i are supported by a
compact set Xk ⊂ Y , and if (ξ̃z1 , ξ̃

z
2 ) is a measurable coupling such that

E d1(ξ̃
z
1 , ξ̃

z
2) ≤ Cθ(µ̃

z
1, µ̃

z
2) for any z ∈ Zk,

then ε(z)(ξ̃z1 , ξ̃
z
2) is a measurable coupling for the original measures that satis-

fies (5.10). Thus, we can assume from the very beginning that ε ≡ 1.
Let d : X×X → R be an arbitrary continuous symmetric function such that

d1(u1, u2) ≤ d(u1, u2) ≤ dθ(u1, u2) for all u1, u2 ∈ X. (5.11)

By Corollary 5.22 in [Vil09], there is a probability space (Ω,F ,P) and measur-
able functions ξzi : Z × Ω → X such that (ξz1 , ξ

z
2) is a coupling for (µz

1, µ
z
2) for

any z ∈ Z, and
E d(ξz1 , ξ

z
2) = inf

(ζ1,ζ2)∈Π(µz
1,µ

z
2)
E d(ζ1, ζ2).

Combining this relation with (5.11), we arrive at (5.10) with ε ≡ 1.

5.2 Truncated observability inequality

Let δ ∈ (0, 1) and let û ∈ Yδ,1 be an arbitrary function. Consider the adjoint
equation for the Navier–Stokes system linearised around û:

ġ + 〈û,∇〉g + 〈∇g, û〉+ ν∆g +∇π = 0, div g = 0. (5.12)

Let us fix an open set Q ⊂ (δ, 1)×D, an orthonormal basis {ϕj} ⊂ L2(Q,R2),
and a function χ ∈ C∞

0 (Q) and denote by Pm the orthogonal projection in
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L2(Q,R2) onto the m-dimensional subspace spanned by ϕj , j = 1, . . . ,m. Re-
call thatHN stands for the vector span of the firstN eigenfunctions of the Stokes
operator. The following result is a simple consequence of the observability in-
equality for the linearised Navier–Stokes system (see [FE99, Ima01, FCGIP04]).

Proposition 5.4. For any δ, ρ > 0 and any integer N ≥ 1 there is an integer

m ≥ 1 such that if û ∈ BYδ,1
(ρ), then any solution g ∈ X1 of Eq. (5.12) with

g(1) ∈ HN satisfies the inequality

‖g(0)‖ ≤ C
∥∥Pm(χg)

∥∥
L2(D1)

, (5.13)

where C > 0 is a constant depending only on δ and ρ.

Proof. We essentially repeat the argument used in the paper [BRS11] in which
inequality (5.13) is proved for a time-independent function χ and a projec-
tion Pm acting in the space variables. We claim that if g ∈ X1 is a solution
of (5.12) with g(1) ∈ HN , then

∥∥χg
∥∥
H1(D1)

≤ C1

∥∥χg
∥∥
L2(D1)

, (5.14)

where C1 > 0 is a constant depending on δ, ρ, and N . Once this inequality is
established, the required result can be derived by using the fact that

‖(I − Pm)v‖ ≤ δm‖v‖1 for any v ∈ H1
0 (Q,R

2),

where {δm} is a sequence going to zero as m→ ∞; cf. proof of Proposition 5.3
in [BRS11].

Suppose that (5.14) is false. Then there are functions ûn ∈ BYδ,1
(ρ) and

solutions gn ∈ X1 of (5.12) with û = ûn such that

gn(1) ∈ HN , ‖gn(1)‖ = 1, (5.15)
∥∥χgn

∥∥
H1(D1)

≥ n
∥∥χgn

∥∥
L2(D1)

. (5.16)

Now note that ‖gn(1)‖H2 ≤ C2 for all n ≥ 1, whence it follows, by standard
estimates for the 2D Navier–Stokes system, that

‖gn‖X1 + ‖gn‖L2(J,H3) + ‖∂tgn‖L2(J,V ) ≤ C3, n ≥ 1.

Passing to a subsequence, we can assume that {ûn} and {gn} converge weakly
(in appropriate functional spaces) to some functions û and g, respectively, such
that û ∈ BYδ,1

(ρ), g ∈ X1 is a solution of (5.12), and ‖g(1)‖ = 1. Moreover, it
follows from (5.16) that χg ≡ 0. Let us show that the latter is impossible.

Indeed, let an interval (a, b) ⊂ J and a ball B ⊂ D be such that

χ(t, x) ≥ α > 0 for (t, x) ∈ (a, b)×B.

Then, by the observability inequality (see Lemma 1 in [FCGIP04]), we obtain

‖g(a)‖ ≤ C4‖g‖L2((a,b)×D) ≤ C4α
−1‖χg‖L2(D1) = 0.

The backward uniqueness for the linearised Navier–Stokes system (see Sec-
tion II.8 in [BV92]) implies that g(t) = 0 for a ≤ t ≤ 1. This contradicts
the fact that ‖g(1)‖ = 1. The proof is complete.
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5.3 Minima of second-order polynomials on Hilbert spaces

Let U and Y be real separable Hilbert spaces and let F : U × Y → R be a
function of the form

F (u, y) = (Qyu, u)U + (ay, u)U + by,

where Qy ∈ L(U) is a self-adjoint operator, ay, by ∈ U for all y ∈ Y , and (·, ·)U
stands for the scalar product in U . We assume that

(Qyu, u)U ≥ c‖u‖2U for all u ∈ U , y ∈ Y . (5.17)

In this case, it is easy to see that for any y ∈ Y the function u 7→ F (u, y)
has a unique global minimum u∗ = u∗(y). The following simple proposition
establishes some properties of u∗.

Proposition 5.5. Let us assume that the functions

y 7→ Qy, y 7→ (ay, by) (5.18)

are infinitely smooth from Y to the spaces L(U) and U × U , respectively. Then

the unique minimum u∗(y) is an infinitely smooth function of y ∈ Y . Moreover,

this implication remains true if the property of infinite smoothness is replaced

by Lipschitz continuity on bounded balls.

Proof. Inequality (5.17) implies that u∗(y) is the only solution of the linear
equation

(∂uF )(u, y) = 0. (5.19)

Therefore, the required smoothness of u∗ will be established if we show that
the implicit function theorem can be applied to (5.19). This is a straightfor-
ward consequence of the fact that ∂uF is an infinitely smooth function of its
arguments, and its derivative in u coincides with 2Qy.

We now prove that if ay, by, and Qy are Lipschitz continuous on bounded
balls, then so is u∗(y). Indeed, fix R > 0 and take two points y1, y2 ∈ BY (R).
It follows from (5.19) and the explicit form of the derivative ∂uF that

Qy1

(
u∗(y1)− u∗(y2)

)
=

(
Qy2 −Qy1

)
u∗(y2) +

1

2

(
ay2 − ay1

)
.

Taking the scalar product of this equation with u∗(y1) − u∗(y2) and using in-
equality (5.17) and the Lipschitz continuity Qy and ay, we obtain the required
result.

5.4 Image of measures under finite-dimensional transfor-

mations

Let X be a separable Banach space endowed with a norm ‖ · ‖ and represented
as the direct sum

X = E ∔ F, (5.20)
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where E ⊂ X is a finite-dimensional subspace. Denote by PE and PF the pro-
jections corresponding to decomposition (5.20). Let λ ∈ P(X) be a measure
that can be written as the tensor product of its projections λE = (PE)∗λ and
λF = (PF )∗λ. Assume also that λ has a bounded support and that λE possesses
a C1-smooth density ρ with respect to the Lebesgue measure on E. The follow-
ing simple result gives an estimate for the total variation distance between the
measure λ and its image under a diffeomorphism of X acting only along E.

Proposition 5.6. Under the above hypotheses, let Ψ : X → X be a transfor-

mation that can be written in the form

Ψ(u) = u+ Φ(u), u ∈ X,

where Φ is a C1-smooth map such that the image of Φ is contained in E and

‖Φ(u1)‖ ≤ κ, ‖Φ(u1)− Φ(u2)‖ ≤ κ ‖u1 − u2‖ for all u1, u2 ∈ X. (5.21)

Then the total variation distance between λ and its image under Ψ admits the

estimate

‖λ− Ψ∗(λ)‖var ≤ Cκ, (5.22)

where C > 0 is a constant not depending on κ.

This proposition is a simple particular case of more general results presented
in Chapter 10 of [Bog10]. However, for the reader’s convenience, we give a
complete proof of Proposition 5.6.

Proof. Inequality (5.22) needs to be proved for κ ≪ 1, because it is trivial if κ
is separated from zero. Furthermore, since λ has a bounded support, there is
no loss of generality in assuming that Φ vanishes outside a large ball.

We first note that if f ∈ Cb(X), then

(f, λ) =

∫

F

λF (dw)

∫

E

f(v + w)ρ(v) dv.

Since v 7→ v + Φ(v + w) is a C1-diffeomorphism of E for |κ| ≪ 1, we see that

(f, Ψ∗(λ)) =

∫

F

λF (dw)

∫

E

f
(
v + w + Φ(v + w)

)
ρ(v) dv

=

∫

F

λF (dw)

∫

E

f(v′ + w)ρ(Θw(v
′))

det
(
I + (DΦ)(Θw(v′) + w)

) dv′,

where Θw(v
′) denotes the solution of the equation v + Φ(v + w) = v′ and DΦ

stands for the Fréchet derivative of Φ. Combining the above formulas, we get

δ(f, λ) := (f, Ψ∗(λ)) − (f, λ) =

∫

F

λF (dw)

∫

E

f(v + w)∆(v, w) dv, (5.23)

where we set

∆(v, w) =
ρ(Θw(v))

det
(
I + (DΦ)(Θw(v) + w)

) − ρ(v).
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The κ-Lipschitz continuity of Φ implies that

∣∣det
(
I + (DΦ)(Θw(v) + w)

)−1
− 1

∣∣ = O(κ) for all v ∈ E, w ∈ F ,

where O(κ) denotes any function whose absolute value can be estimated by Cκ
(uniformly with respect to all other variables). It follows that

∆(v, w) =
ρ(Θw(v))− ρ(v)

det
(
I + (DΦ)(Θw(v) + w)

) + ρ(v)O(κ). (5.24)

Furthermore, using inequalities (5.21), we derive

‖Θw(v)‖ ≤ 1
1−κ

(
‖v‖+ κ‖w‖

)
, ‖Θw(v)− v‖ ≤ κ

1−κ

(
‖v‖+ ‖w‖

)
. (5.25)

Substituting (5.24) into (5.23) and using inequalities (5.25), we obtain

|δ(f, λ)| ≤

∫

F

λF (dw)

∫

E

|f(v + w)|
|ρ(Θw(v)) − ρ(v)|

det
(
I + (DΦ)(Θw(v) + w)

) dv +O(κ)

≤ ‖f‖∞

∫

F

λF (dw)

∫

E

∣∣ρ(v)− ρ(v + Φ(v + w))
∣∣ dv +O(κ).

Taking the supremum over f ∈ Cb(X) satisfying ‖f‖∞ ≤ 1 and noting that the
integrals on the right-hand side can be taken over sufficiently large balls, we
obtain

‖λ− Ψ∗(λ)‖var ≤
1

2

∫

BF (R)

λF (dw)

∫

BF (R)

∣∣ρ(v)− ρ(v + Φ(v + w))
∣∣ dv +O(κ)

≤
κ

2

∫

BF (R)

λF (dw)

∫

BF (R)

∫ 1

0

∣∣∇ρ(v + θΦ(v + w))
∣∣ dθ dv + O(κ),

where we used the first inequality in (5.21). It is straightforward to see that the
right-hand side of the above inequality can be estimated by Cκ.
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