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Abstract

Market makers have to continuously set bid and ask quotes for the stocks they have under
consideration. Hence they face a complex optimization problem in which their return, based
on the bid-ask spread they quote and the frequency they indeed provide liquidity, is chal-
lenged by the price risk they bear due to their inventory. In this paper, we provide optimal
bid and ask quotes and closed-form approximations are derived using spectral arguments.

Introduction

The optimization of the intra-day trading process on electronic markets was born with the
need to split large trades to make the balance between trading too fast (and possibly degrade
the obtained price via “market impact”) and trading too slow (and suffer from a too long
exposure to “market risk”). This “trade scheduling” viewpoint has been mainly formalized
in the late nineties by Bertsimas and Lo [8] and Almgren and Chriss [2]. More sophisticated
approaches involving the use of stochastic and impulse control have been proposed since
then (see for instance [9]). Another branch of proposals goes in the direction of modeling
the effect of the “aggressive” (i.e. liquidity consuming) orders at the finest level, for instance
via a martingale model of the behavior market depth and of its resilience (see [1]).

From a quantitative viewpoint, market microstructure is a sequence of auction games be-
tween market participants. It implements the balance between supply and demand, forming
an equilibrium traded price to be used as reference for valuation of the listed assets. The
rule of each auction game (fixing auction, continuous auction, etc), are fixed by the firm
operating each trading venue. Nevertheless, most of all trading mechanisms on electronic
markets rely on market participants sending orders to a “queuing system” where their open
interests are consolidated as “liquidity provision” or form transactions [3]. The efficiency of
such a process relies on an adequate timing between buyers and sellers, to avoid too many
non-informative oscillations of the transaction price (for more details and modeling, see for
example [19]).

To take profit of these oscillations, it is possible to provide liquidity to an impatient buyer
(respectively seller) and maintain an inventory until the arrival of the next impatient seller
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(respectively buyer). Market participants focused on this kind of liquidity-providing activity
are called “market makers”. On one hand they are buying at the bid price and selling at
the ask price they chose, taking profit of this “bid-ask spread”. On the other hand, their
inventory is exposed to price fluctuations mainly driven by the volatility of the market (see
[4, 7, 11, 13, 16, 23]).

The usual “market making problem” comes from the optimality of the quotes (i.e. the
bid and ask prices) that such agents provide to other market participants with respect to
the constraints on their inventory and their utility function as a proxy to their risk (see
[10, 15, 17, 20, 22, 25]).

The recent evolution of market microstructure and the financial crisis reshaped the nature
of the interactions of the market participants during electronic auctions, one consequence
being the emergence of “high-frequency market makers” who are said to be part of 70% of
the electronic trades and have a massively passive (i.e. liquidity providing) behavior. A
typical balance between passive and aggressive orders for such market participants is around
80% of passive interactions (see [21]).

Avellaneda and Stöıkov proposed in [5] an innovative framework for “market making in
an order book” and studied it using different approximations. In such an approach, the “fair
price” St is modeled via a Brownian motion with volatility σ, and the arrival of a buy or
sell liquidity-consuming order at a distance δ of St follows a Poisson process with intensity
A exp(−k δ). Our paper extends their proposal and provides results in two main directions:

• An explicit solution to the Hamilton-Jacobi-Bellman equation coming from the optimal
market making problem thanks to a non trivial change of variables and the resulting
expressions for the optimal quotes:

Main Result 1 (Proposition 2 - Theorem 4). The optimal bid and ask quotes can be
expressed as:

sb∗(t, q, s) = s−
(
1

k
ln

(
vq(t)

vq+1(t)

)
+

1

γ
ln
(
1 +

γ

k

))
sa∗(t, q, s) = s+

(
1

k
ln

(
vq(t)

vq−1(t)

)
+

1

γ
ln
(
1 +

γ

k

))
where γ is the risk aversion of the agent and where v is a family of strictly positive
functions (vq)|q|≤Q solution of the linear system of ODEs that follows:

∀q ∈ {−Q+ 1, . . . , Q− 1}, v̇q(t) = αq2vq(t)− η (vq−1(t) + vq+1(t))

v̇Q(t) = αQ2vQ(t)− ηvQ−1(t)

v̇−Q(t) = αQ2v−Q(t)− ηv−Q+1(t)

with ∀q ∈ {−Q, . . . , Q}, vq(T ) = 1, α = k
2γσ

2 and η = A(1 + γ
k )

−(1+ k
γ
)
, T being the

time horizon and Q a bound we impose on the inventory of the market marker, be it
short or long.

It means that to find an exact solution to the generic high-frequency market making
problem, it is enough to solve on the fly the companion ODEs in vq(t) provided by our
change of variables, and to plug the result in the upper equalities to obtain the optimal
quotes with respect to a given inventory and market state.

• Asymptotics of the solution that are numerically attained fast enough in most realistic
cases:
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Main Result 2 (Theorem 5 (asymptotics) and the associated approximation equa-
tions).

lim
T→∞

s− sb∗(0, q, s) = δb∗∞(q) ≃ 1

γ
ln
(
1 +

γ

k

)
+

2q + 1

2

√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

lim
T→∞

sa∗(0, q, s)− s = δa∗∞(q) ≃ 1

γ
ln
(
1 +

γ

k

)
− 2q − 1

2

√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

These results open doors to new directions of research involving the modeling and con-
trol of passive interactions with electronic order books. If some attempts have been made
that did not rely on stochastic control but on forward optimization (see for instance [24]
for a stochastic algorithmic approach for optimal split of passive orders across competing
electronic order books), they should be complemented by backward ones.

This paper starts in section 1 with the description of the model choices that had to be
made. Section 2 is dedicated to the presentation of the ideas underlying the results of this
paper. These ideas are developed in the framework of the initial Avellaneda and Stöıkov
setting. Section 3 then goes back to our model with bounds on the inventory and, after
having found the optimal quotes, exposes the asymptotics of the obtained dynamics along
with applications of the approximations developed in section 2. Section 4 carries out the
comparative statics. Section 5 extends the framework to trends in prices and costly terminal
liquidation. We finally discuss some issues with the hypotheses of the model in section 6
and end with an application to real data in section 7. Adaptations of our results are already
in use at Crédit Agricole Cheuvreux to optimize the brokerage trading flow.

In our framework, we follow Avellaneda and Stöıkov in using a Poisson process model
pegged on a “fair price” diffusion (see section 1). As it is discussed in section 6, it is
an arguable choice since it does not capture “resistances” that can be built by huge passive
(i.e. liquidity-providing) orders preventing the market price to cross their prices. Our results
cannot be used as such for large orders, but are perfectly suited for high-frequency market
making as it is currently implemented in the market, using orders of small size (close to the
average trade size, see [21]).

Moreover, to our knowledge, no quantitative model of “implicit market impact” of such
small passive orders has never been proposed in the literature, despite very promising studies
linking updates of quantities in the order books to price changes (see [12]). Its combination
with recent applications of more general point processes to capture the process of arrival
of orders (like Hawkes models, see [6]) should give birth to such implicit market impact
models, specifying dependencies between the trend, the volatility and possible jumps in
the “fair price” semi-martingale process with the parameters of the multi-dimensional point
process of the market maker fill rate. At this stage, the explicit injection of such path-
dependent approach (once they will be proposed in the literature) into our equations are
too complex to be handled, but numerical explorations around our explicit formulas will be
feasible. The outcomes of applications of our results to real data (section 7) show that they
are realistic enough so that no more that small perturbations should be needed.

1 Setup of the model

1.1 Prices, orders and objective function

We consider a small high-frequency market maker operating on a single stock1. For the sake
of simplicity and since we will basically only consider short horizon problems we suppose

1We suppose that this high-frequency market maker does not “make” the price in the sense that he has no
market power. In other words, we assume that his size is small enough to consider price dynamics exogenous.
Small high-frequency proprietary trader operating on both sides would be another way to describe our agent.
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that a fair price2 of the stock moves as an arithmetic brownian motion:

dSt = σdWt

The market maker under consideration will continuously propose bid and ask quotes denoted
respectively Sb

t and Sa
t and will hence buy and sell shares according to the rate of arrival of

aggressive orders at the quoted prices.
His inventory q, that is the (signed) quantity of shares he holds, is given by qt = N b

t −Na
t

where N b and Na are the jump processes giving the number of shares the market maker
respectively bought and sold. These jump processes are supposed to be Poisson processes
and to simplify the exposition (although this may be important, see the discussion part)
we consider that jumps are of constant size, scaled to 1. Arrival rates obviously depend on
the prices Sb

t = St − δbt and Sa
t = St + δat quoted by the market maker and we assume, in

accordance with most datasets3, that intensities λb and λa associated to N b and Na are of
the following form4:

λb(δb) = Ae−kδb = A exp(−k(s− sb)) λa(δa) = Ae−kδa = A exp(−k(sa − s))

This means for positive δb and δa that the closer to the fair price an order is quoted, the
faster it will be executed.

As a consequence of his trades, the market maker has an amount of cash whose dynamics
is given by:

dXt = (St + δat )dN
a
t − (St − δbt )dN

b
t

To this original setting introduced by Avellaneda and Stoikov (itself following Ho and
Stoll [18]) we add a bound Q on the inventory that a market maker is authorized to have. In
other words, we assume that a market maker with inventory Q (Q depending in practice on
risk limits) will never set a bid quote and symmetrically that a market maker with inventory
−Q, that is a short position of Q shares in the stock under consideration, will never set an
ask quote.

Now, coming to the objective function and as we said above, the market maker has a
time horizon T and his goal is to optimize the expected utility of his P&L at time T . In line
with [5], we will focus on CARA utility functions and we suppose that the market maker
optimizes:

sup
(δat )t,(δ

b
t )t∈A

E [− exp (−γ(XT + qTST ))]

where A is the set of predictable processes bounded from below, where γ is the absolute risk
aversion characterizing the market maker, where XT is the amount of cash at time T and
where qTST is the evaluation of the (signed) remaining quantity of shares in the inventory
at time T (liquidation at the fair price ST

5).

1.2 The (HJB) equation and the original Avellaneda-Stoikov
(AS-HJB) equation

To the optimization problem set up in the preceding section, one can associate a Hamilton-
Jacobi-Bellman (HJB) equation, or more exactly a system of HJB PDEs which consists in
the following equations

2This fair price for the stock can be thought of as a smoothed mid-price for instance.
3At least inside the limit order books.
4Some authors also used a linear form for the intensity functions – see [18] for instance.
5We will discuss other hypotheses below.
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∀q ∈ {−Q+ 1, . . . , Q− 1}, ∂tu(t, x, q, s) +
1

2
σ2∂2ssu(t, x, q, s)

+ sup
δb
λb(δb)

[
u(t, x− s+ δb, q + 1, s)− u(t, x, q, s)

]
+sup

δa
λa(δa) [u(t, x+ s+ δa, q − 1, s)− u(t, x, q, s)] = 0

∂tu(t, x,Q, s) +
1

2
σ2∂2ssu(t, x,Q, s)

+ sup
δa

λa(δa) [u(t, x+ s+ δa, Q− 1, s)− u(t, x,Q, s)] = 0

∂tu(t, x,−Q, s) +
1

2
σ2∂2ssu(t, x,−Q, s)

+ sup
δb
λb(δb)

[
u(t, x− s+ δb,−Q+ 1, s)− u(t, x,−Q, s)

]
= 0

with the final condition:

∀q ∈ {−Q, . . . , Q}, u(T, x, q, s) = − exp (−γ(x+ qs))

This system differs from the initial equation introduced by Avellaneda and Stoikov be-
cause of the bounds we imposed on the inventory. The original equation was indeed

(AS−HJB) 0 = ∂tu(t, x, q, s) +
1

2
σ2∂2ssu(t, x, q, s)

+ sup
δb
λb(δb)

[
u(t, x− s+ δb, q + 1, s)− u(t, x, q, s)

]
+sup

δa
λa(δa) [u(t, x+ s+ δa, q − 1, s)− u(t, x, q, s)]

with the final condition:
u(T, x, q, s) = − exp (−γ(x+ qs))

and we are going to solve this equation before solving our problem because the arguments
underlying our closed-form results are rooted to this equation on an unbounded domain and
can then be mutatis mutandis applied to our problem.

2 Solving the (AS-HJB) equation

The equation (AS-HJB) we introduced in the preceding section is not a simple 4-variable
PDE. Rather, because the variable q is discrete, it is an infinite system of 3-variable PDEs.
To solve it, we will use a rather non-intuitive change of variables that is different from the
one used in [5] and transform the system of PDEs in a system of linear ODEs.

Proposition 1 (A system of linear ODEs). Let us consider a family of strictly positive
functions (vq)q∈Z solution of the linear system of ODEs (S) that follows:

∀q ∈ Z, v̇q(t) = αq2vq(t)− η (vq−1(t) + vq+1(t))

with vq(T ) = 1, where α = k
2γσ

2 and η = A(1 + γ
k )

−(1+ k
γ
)
.

Then u(t, x, q, s) = − exp(−γ(x+ qs))vq(t)
− γ

k is solution of (AS-HJB).
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Theorem 1 (Well-posedness of the system (S)). There exists a unique solution of (S) in
C∞([0, T ), ℓ2(Z)) and this solution consists in strictly positive functions.

Theorem 2 (Expression of the maximizers). Let us consider the solution v of the system

(S) as in Theorem 1. Let u(t, x, q, s) = − exp(−γ(x+ qs))vq(t)
− γ

k as above.
Then, λb(δb)

[
u(t, x− s+ δb, q + 1, s)− u(t, x, q, s)

]
and λa(δa) [u(t, x+ s+ δa, q − 1, s)− u(t, x, q, s)]

are maximal for δb∗ and δa∗ given by:

δb∗(t, q) =
1

k
ln

(
vq(t)

vq+1(t)

)
+

1

γ
ln
(
1 +

γ

k

)
δa∗(t, q) =

1

k
ln

(
vq(t)

vq−1(t)

)
+

1

γ
ln
(
1 +

γ

k

)
Now, in addition to these new results on the (AS-HJB) equation, we will provide an ap-

proximation of δb∗(t, q) and δa∗(t, q) in two steps. The first step is to notice that the above
maximizers have an asymptotic behavior that can easily be characterized in a spectral way.
Then, using this spectral characterization, we provide in a second step a closed-form approx-
imation for these maximizers that will turn out to be quite accurate approximations for the
optimal quotes in our initial control problem.

The asymptotic behavior of the maximizers is the following – asymptotic meaning here
a time horizon T going to infinity:

Theorem 3 (Asymptotic behavior of the maximizers).

∀q ∈ Z, lim
T→∞

δb∗(0, q) = δb∗∞(q)

∀q ∈ Z, lim
T→∞

δa∗(0, q) = δa∗∞(q)

with

δb∗∞(q) =
1

γ
ln
(
1 +

γ

k

)
+

1

k
ln

(
f0q
f0q+1

)
δa∗∞(q) =

1

γ
ln
(
1 +

γ

k

)
+

1

k
ln

(
f0q
f0q−1

)

where f0 ∈ ℓ2(Z) is characterized by:

f0 ∈ argmin
∥f∥ℓ2(Z)=1

∑
q∈Z

αq2f2q + η
∑
q∈Z

(fq+1 − fq)
2

The challenge is now to provide an approximation for f0 that happens to fit the actual
figures and the approximation we propose is based on the continuous counterpart of f0,
namely f̃0 ∈ L2(R), a function that verifies:

f̃0 ∈ argmin
∥f̃∥L2(R)=1

∫ ∞

−∞

(
αx2f̃(x)2 + ηf̃ ′(x)2

)
dx

It can be proved6 that such a function f̃0 must be proportional to the probability distri-

bution function of a normal variable with mean 0 and variance
√

η
α . Hence, we expect f0q

6To prove this we need to proceed as in the proof of Theorems 1 and 3. In a few words, we introduce the positive,
compact and self-adjoint operator Lc defined for f ∈ L2(R) as the unique weak solution v of αx2v − ηv′′ = f
with

∫∞
−∞

(
αx2v(x)2 + ηv′(x)2

)
dx < +∞. Lc can be diagonalized and largest eigenvalue of Lc can be shown to

be associated to the eigenvector f(x) = exp
(
−1

2

√
α
η x

2
)
.
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to behave as exp
(
−1

2

√
α
η q

2
)
.

This heuristic viewpoint induces an approximation for the maximizers if we replace f0q

by exp
(
−1

2

√
α
η q

2
)
:

δb∗∞(q) ≃ 1

γ
ln
(
1 +

γ

k

)
+

1

2k

√
α

η
(2q + 1)

≃ 1

γ
ln
(
1 +

γ

k

)
+

2q + 1

2

√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

δa∗∞(q) ≃ 1

γ
ln
(
1 +

γ

k

)
− 1

2k

√
α

η
(2q − 1)

≃ 1

γ
ln
(
1 +

γ

k

)
− 2q − 1

2

√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

3 A solution to our control problem

As for the resolution of the (AS-HJB) equation, we can reduce the Hamilton-Jacobi-Bellman
(HJB) associated to our control problem to a linear system of ODEs. However the linear
system associated to this model will be simpler since it involves 2Q+ 1 equations only and
can be solved using linear algebra. Then, using a verification argument, we can prove that
our solution to (HJB) is indeed the value function of our control problem and find the opti-
mal quotes.

Proposition 2 (Resolution of (HJB)). Let us consider a family (vq)|q|≤Q of strictly positive
functions solution of:

∀q ∈ {−Q+ 1, . . . , Q− 1}, v̇q(t) = αq2vq(t)− η (vq−1(t) + vq+1(t))

v̇Q(t) = αQ2vQ(t)− ηvQ−1(t)

v̇−Q(t) = αQ2v−Q(t)− ηv−Q+1(t)

with ∀q ∈ {−Q, . . . , Q}, vq(T ) = 1, where α = k
2γσ

2 and η = A(1 + γ
k )

−(1+ k
γ
)
.

Then, u(t, x, q, s) = − exp(−γ(x+ qs))vq(t)
− γ

k is solution of (HJB).

Theorem 4 (Resolution of the control problem). Let us introduce the matrix M defined by:

M =



αQ2 −η 0 · · · · · · · · · 0

−η α(Q− 1)2 −η 0
. . .

. . .
...

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . . 0 −η α(Q− 1)2 −η
0 · · · · · · · · · 0 −η αQ2


where α = k

2γσ
2 and η = A(1 + γ

k )
−(1+ k

γ
)
.
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Then, if

v(t) = (v−Q(t), v−Q+1(t), . . . , v0(t), . . . , vQ−1(t), vQ(t))
′ = exp(−M(T − t))× (1, . . . , 1)′

u(t, x, q, s) = − exp(−γ(x+ qs))vq(t)
− γ

k is the value function of the control problem and the
optimal quotes are given by:

∀q ∈ {−Q, . . . , 0, . . . , Q− 1}, s− sb∗(t, q, s) = δb∗(t, q) =
1

k
ln

(
vq(t)

vq+1(t)

)
+

1

γ
ln
(
1 +

γ

k

)
∀q ∈ {−(Q− 1), . . . , 0, . . . , Q}, sa∗(t, q, s)− s = δa∗(t, q) =

1

k
ln

(
vq(t)

vq−1(t)

)
+

1

γ
ln
(
1 +

γ

k

)
and the bid-ask spread quoted by the market maker is given by:

∀q ∈ {−(Q− 1), . . . , 0, . . . , Q− 1}, ψ∗(t, q) = −1

k
ln

(
vq+1(t)vq−1(t)

vq(t)2

)
+

2

γ
ln
(
1 +

γ

k

)
To exemplify our findings and in order to justify the asymptotic approximation we shall

provide, let us present some graphs to understand the behavior in time and inventory of the
optimal quotes.
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Figure 1: Left: Behavior of the optimal quotes with time and inventory. Right: Behavior of the
optimal quotes with inventory, at time t = 0. σ = 0.3 Tick·s−1/2, A = 0.9 s−1, k = 0.3 Tick−1,
γ = 0.01 Tick−1, T = 600 s.

We clearly see that the optimal quotes are, after a few minutes, very close to their asymp-
totic values and this justifies the approximation of the optimal quotes by their asymptotic
limits obtained in the following theorem:
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Theorem 5 (Asymptotics for the optimal quotes). The optimal quotes have asymptotic
limits

lim
T→∞

δb∗(0, q) = δb∗∞(q)

lim
T→∞

δa∗(0, q) = δa∗∞(q)

that can be expressed as:

δb∗∞(q) =
1

γ
ln
(
1 +

γ

k

)
+

1

k
ln

(
f0q
f0q+1

)
δa∗∞(q) =

1

γ
ln
(
1 +

γ

k

)
+

1

k
ln

(
f0q
f0q−1

)

where f0 ∈ R2Q+1 is an eigenvector corresponding to the smallest eigenvalue of the matrix
M introduced in the preceding theorem.
The resulting bid-ask spread quoted by the market maker is asymptotically:

ψ∗
∞(q) = −1

k
ln

(
f0q+1f

0
q−1

f0q
2

)
+

2

γ
ln
(
1 +

γ

k

)
Now, these expressions for the limits depend on the spectral decomposition of the matrix

M introduced earlier. In fact, and this is the very reason why we first solved the (AS-HJB)
equation instead of heading directly to the Hamilton-Jacobi-Bellman equation of our prob-
lem, we are going to use the “gaussian” approximations introduced in the preceding section
and this approximation will turn out to be quite accurate except when q (or Q) is very large7.

We exhibit below the values of the optimal quotes, along with their associated approx-
imations8. Empirically, these approximations for the quotes are satisfactory in most cases
and are always very good for small values of the inventory q. The apparent difficulty to ap-
proximate the bid-ask spread comes from the chosen scale (the bid-ask spread being almost
uniform across values of the inventory).
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very good fit for the quotes when q is large because we are approximating an expression that depends on ratios of

the form
f0
q

f0
q+1

or
f0
q

f0
q−1

.
8For the bid-ask spread the approximation is

ψ∗
∞(q) ≃ 2

γ
ln
(
1 +

γ

k

)
+

√
σ2γ
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(
1 +

γ

k

)1+ k
γ
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Figure 2: Asymptotic behavior of optimal quotes and the bid-ask spread (bold line). Approxima-
tion (dotted line). Left: σ = 0.4 Tick · s−1/2, A = 0.9 s−1, k = 0.3 Tick−1, γ = 0.01 Tick−1,
T = 600 s. Right: σ = 1.0 Tick · s−1/2, A = 0.2 s−1, k = 0.3 Tick−1, γ = 0.01 Tick−1,
T = 600 s.

4 Comparative statics

Before starting with the comparative statics, we rewrite the approximations used in the
previous section to be able to have some intuition about the behavior of the optimal quotes
and bid-ask spread with respect to the parameters:

δb∗∞(q) ≃ 1

γ
ln
(
1 +

γ

k

)
+

2q + 1

2

√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

δa∗∞(q) ≃ 1

γ
ln
(
1 +

γ

k

)
− 2q − 1

2

√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

ψ∗
∞(q) ≃ 2

γ
ln
(
1 +

γ

k

)
+

√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

Now, from these approximations, we can “deduce” the behavior of the optimal quotes
and the bid-ask spread with respect to price volatility, trading intensity and risk aversion.

4.1 Dependence on σ2

From the above approximations we expect the dependence of optimal quotes on σ2 to be a
function of the inventory. More precisely, we expect:
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
∂δb∗∞
∂σ2 < 0, ∂δa∗∞

∂σ2 > 0, if q < 0
∂δb∗∞
∂σ2 > 0, ∂δa∗∞

∂σ2 > 0, if q = 0
∂δb∗∞
∂σ2 > 0, ∂δa∗∞

∂σ2 < 0, if q > 0

For the bid-ask spread we expect it to be increasing with respect to σ2:

∂ψ∗
∞

∂σ2
> 0

The rationale behind this is that a rise in σ2 increases the inventory risk. Hence, to
reduce this risk, a market maker that has a long position will try to reduce his exposure and
hence ask less for his stocks (to get rid of some of them) and accept to buy at a cheaper
price (to avoid buying new stocks). Similarly, a market maker with a short position tries to
buy stocks, and hence increases its bid quote, while avoiding short selling new stocks, and
he increases its ask quote to that purpose. Overall, due to the increase in risk, the bid-ask
spread widens as it is well instanced in the case of a market maker with a flat position (this
one wants indeed to earn more per trade to compensate the increase in inventory risk.

These intuitions can be verified numerically on Figure 3.
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Figure 3: Asymptotic optimal quotes and bid-ask spread for different inventories and different
values for the volatility σ. A = 0.9 s−1, k = 0.3 Tick−1, γ = 0.01 Tick−1, T = 600 s.

4.2 Dependence on A

Because of the above approximations, and in accordance with the form of the system (S),
we expect the dependence on A to be the exact opposite of the dependence on σ2, namely
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
∂δb∗∞
∂A > 0, ∂δa∗∞

∂A < 0, if q < 0;
∂δb∗∞
∂A < 0, ∂δa∗∞

∂A < 0, if q = 0
∂δb∗∞
∂A < 0, ∂δa∗∞

∂A > 0, if q > 0

For the same reason, we expect the bid-ask spread to be decreasing with respect to A.

∂ψ∗
∞

∂A
< 0

The rationale behind these expectations is that an increase in A reduces the inventory
risk. An increase in A indeed increases the frequency of trades and hence reduces the risk
of being stuck with a large inventory (either positive or negative). For this reason, a rise in
A should have the same effect as a decrease in σ2.

These intuitions can be verified numerically on Figure 4.
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Figure 4: Asymptotic optimal quotes and bid-ask spread for different inventories and different
values of A. σ = 0.3 Tick · s−1/2, k = 0.3 Tick−1, γ = 0.01 Tick−1, T = 600 s.

4.3 Dependence on k

From the above approximations we expect δb∗∞ to be decreasing in k for q greater than some
negative threshold. Below this threshold we expect it to be increasing. Similarly we expect
δa∗∞ to be decreasing in k for q smaller than some positive threshold. Above this threshold
we expect it to be increasing.
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Eventually, as far as the bid-ask spread is concerned, the above approximation indicates
that the bid-ask spread should be a decreasing function of k.

∂ψ∗
∞

∂k
< 0

In fact several effects are in interaction. On one hand, there is a “no-volatility” effect
that is completely orthogonal to any reasoning on the inventory risk: when k increases, in a
situation where δb and δa are positive, trades occur closer to the price St. For this reason,
and in absence of inventory risk, the optimal bid-ask spread has to shrink. However, an
increase in k also affects the inventory risk since it decreases the probability to be executed
(for δb, δa > 0). Hence, an increase in k is also, in some aspects, similar to a decrease in A.
These two effects explain the expected behavior.

Numerically, one of two effects dominates for the values of the inventory under consider-
ation:
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Figure 5: Asymptotic optimal quotes and bid-ask spread for different inventories and different
values of k. σ = 0.3 Tick · s−1/2, A = 0.9 s−1, γ = 0.01 Tick−1, T = 600 s.

4.4 Dependence on γ

Using the above approximations, we see that the dependence on γ is ambiguous. The
market maker faces two different risks that contribute to the inventory risk: (i) trades occur
at random times and (ii) the fair price is stochastic. But if risk aversion increases, the market
maker will mitigate the two risks: (i) he may set his quotes closer to one another to reduce
the randomness in execution and (ii) he may enlarge his spread to reduce price risk. The
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tension between these two roles played by γ explains the different behaviors we may observe,
as in the figures below:
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Figure 6: Asymptotic optimal quotes and bid-ask spread for different inventories and different val-
ues for the risk aversion parameter γ. Left: σ = 0.3 Tick · s−1/2, A = 0.9 s−1, k = 0.3 Tick−1,
T = 600 s. Right: σ = 0.6 Tick · s−1/2, A = 0.9 s−1, k = 0.9 Tick−1, T = 600 s

5 Different settings

In what follows we provide the settings of several variants of the initial model. We will
alternatively consider a model with a trend in prices and a model with a penalization term
for not having cleared one’s inventory.
For each model, we enounce the associated results and the general proofs are not repeated
since they can easily be derived from adaptations of the proofs of the initial model.
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5.1 Trend in prices

In the preceding setting, we supposed that the fair price of the stock followed a brownian
motion. However, we can also build a model in presence of a trend:

dSt = µdt+ σdWt

In that case we have the following proposition:

Proposition 3 (Resolution with drift). Let us consider a family of functions (vq)|q|≤Q

solution of the linear system of ODEs that follows:

∀q ∈ {−Q+ 1, . . . , Q− 1}, v̇q(t) = (αq2 − βq)vq(t)− η (vq−1(t) + vq+1(t))

v̇Q(t) = (αQ2 − βQ)vQ(t)− ηvQ−1(t)

v̇−Q(t) = (αQ2 + βQ)v−Q(t)− ηv−Q+1(t)

with ∀q ∈ {−Q, . . . , Q}, vq(T ) = 1, where α = k
2γσ

2, β = kµ and η = A(1 + γ
k )

−(1+ k
γ
)
.

Then, optimal quotes are given by:

s− sb∗(t, q, s) = δb∗(t, q) =
1

k
ln

(
vq(t)

vq+1(t)

)
+

1

γ
ln
(
1 +

γ

k

)
sa∗(t, q, s)− s = δa∗(t, q) =

1

k
ln

(
vq(t)

vq−1(t)

)
+

1

γ
ln
(
1 +

γ

k

)
and the bid-ask spread quoted by the market maker is :

ψ∗(t, q) = −1

k
ln

(
vq+1(t)vq−1(t)

vq(t)2

)
+

2

γ
ln
(
1 +

γ

k

)
Moreover,

lim
T→∞

δb∗(0, q) =
1

γ
ln
(
1 +

γ

k

)
+

1

k
ln

(
f0q
f0q+1

)

lim
T→∞

δa∗(0, q) =
1

γ
ln
(
1 +

γ

k

)
+

1

k
ln

(
f0q
f0q−1

)

lim
T→∞

ψ∗(0, q) = −1

k
ln

(
f0q+1f

0
q−1

f0q
2

)
+

2

γ
ln
(
1 +

γ

k

)
where f0 is an eigenvector corresponding to the smallest eigenvalue of:

αQ2 − βQ −η 0 · · · · · · · · · 0

−η α(Q− 1)2 − β(Q− 1) −η 0
. . .

. . .
...

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . . 0 −η α(Q− 1)2 − β(Q− 1) −η
0 · · · · · · · · · 0 −η αQ2 − βQ


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Using the same continuous approximation as in the initial model we find the following
approximations for the optimal quotes and the bid-ask spread:

δb∗∞(q) ≃ 1

γ
ln
(
1 +

γ

k

)
+

[
− µ

γσ2
+

2q + 1

2

]√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

δa∗∞(q) ≃ 1

γ
ln
(
1 +

γ

k

)
+

[
µ

γσ2
− 2q − 1

2

]√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

ψ∗
∞(q) ≃ 2

γ
ln
(
1 +

γ

k

)
+

√
σ2γ

2kA

(
1 +

γ

k

)1+ k
γ

5.2 Costly inventory liquidation

In the initial model we imposed a terminal condition based on the assumption that the
market maker liquidates his inventory at the fair price at time t = T . This hypothesis
is questionable and we propose to introduce an additional term to model liquidation cost
that can also be interpreted as a penalization term for having a non-zero inventory at time T .

From a mathematical perspective it means that the control problem is now:

sup
(δat )t,(δ

b
t )t∈A

E [− exp (−γ(XT + qTST − c|qT |))]

where c|q| represents the penalization term modeling the incurred cost at the end of the
period for not having cleared the inventory9.

The analysis can then be done in the same way as in the initial model and we get the
following result:

Proposition 4 (Resolution with inventory liquidation cost). Let us consider a family of
functions (vq)|q|≤Q solution of the linear system of ODEs that follows:

∀q ∈ {−Q+ 1, . . . , Q− 1}, v̇q(t) = αq2vq(t)− η (vq−1(t) + vq+1(t))

v̇Q(t) = αQ2vQ(t)− ηvQ−1(t)

v̇−Q(t) = αQ2v−Q(t)− ηv−Q+1(t)

with ∀q ∈ {−Q, . . . , Q}, vq(T ) = e−kc|q|, where α = k
2γσ

2 and η = A(1 + γ
k )

−(1+ k
γ
)
.

Then, optimal quotes are given by:

s− sb∗(t, q, s) = δb∗(t, q) =
1

k
ln

(
vq(t)

vq+1(t)

)
+

1

γ
ln
(
1 +

γ

k

)
sa∗(t, q, s)− s = δa∗(t, q) =

1

k
ln

(
vq(t)

vq−1(t)

)
+

1

γ
ln
(
1 +

γ

k

)
and the bid-ask spread quoted by the market maker is :

ψ∗(t, q) = −1

k
ln

(
vq+1(t)vq−1(t)

vq(t)2

)
+

2

γ
ln
(
1 +

γ

k

)
Moreover, the asymptotic behavior of the optimal quotes and the bid-ask spread does not
depend on the liquidation cost coefficient c and is the same as in the initial model.

9c is a positive number that represents the cost per share in the inventory at time T .
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6 Discussion on the model

6.1 Exogenous nature of prices

In our model, a fair price is introduced and modeled by a brownian motion independent
of the behavior of the agent. Since we are modeling a single market maker who operates
through limit orders, it seems natural to consider the price process exogenous in the medium
run. However, even if we neglect the impact of our market maker on the market, the very
notion of fair price must be clarified. The fair price we consider may be thought of as a
smoothed version of the current mid-price of the market. It is not the current mid-price
because it would in that case depend on the actions of the market maker. It is neither a
medium-run fair value for the stock (or fondamental value). The only important charac-
teristic, that in fact somehow defines S, is that the execution probabilities must be well
described as depending on the distance to the fair price we consider.

Another issue linked to the exogenous nature of prices is the absence of market impact or
more generally the independence between the Poisson processes and the brownian motion.
This issue is a deep one and, for a part of it, it points out the lack of market impact models
for passive orders in the financial literature.

6.2 Constant parameters

A related issue is that the parameters σ, A and k are constant. While models can be devel-
oped to take account of deterministic or stochastic variations of the parameters, the most
important point is to take account of the links between the different parameters. σ, A and
k should not indeed be considered independent of one another since, for instance, an in-
crease in A should induce an increase in the number of trades and hence an increase in price
volatility.
Some attempts have been made in this direction to model the link between volatility and
trades intensity. Hawkes processes (see [6]) for instance may provide good modeling per-
spectives to link the parameters but this has been left aside for future work.

6.3 Constant size of orders

Another apparent issue of the model is that market makers set orders of size 1 at all times.
A first remark is that, if this is an issue, it is only limited to the fact that orders are of
constant size since we can consider that the unitary orders stand for orders of constant size
δq or equivalently, though more abstractly, orders of size 1 on a bunch of δq stocks.

If all the orders are of size δq then the stochastic process representing cash is:

dX̃t = δq(Sa
t dN

a
t − Sb

tdN
b
t ) = δq × dXt

where the jump processes model the event of being hit by an aggressive order (of size δq).
Then, if we consider that an order of size δq is a unitary order on a bunch of δq stocks, we
can write q̃t = δq × qt and the optimization criterion becomes:

sup
(δat )t,(δ

b
t )t∈A

E
[
− exp

(
−γ(X̃T + q̃TST )

)]
= sup

(δat )t,(δ
b
t )t∈A

E [− exp (−γδq(XT + qTST ))]

Hence, we can solve the problem for orders of size δq using a modified risk aversion,
namely solving the problem for unitary orders, with γ multiplied by δq.
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However, if we can transform the problem with orders of constant size δq into the initial
problem where δq = 1, the parameters must be adjusted in accordance with the fact that
orders are of size δq. As such, it must be noticed that A has to be estimated to take account
of the expected proportion of an order of size δq filled by a single trade and approximations
must be made to take account of market making with orders of constant size. In fact, we
can consider that, after each trade that partially filled the order, the market maker sends a
new order so that the total size of his orders is δq, using a convex combination of the model
recommendations for the price10, since in that case the inventory is not a multiple of δq.

In our view, this issue is important but it should not be considered a problem to describe
qualitative market maker’s behavior and appropriate approximation on A allows us to believe
that the error made, as far as quantitative modeling results are concerned, is relatively small.

7 Applications

In spite of the limitations discussed above we used this model to backtest the strategy on
real data. We rapidly discuss the change that had to be made to the model to use it in
reality and the way backtests have been carried out. Then we present an instance of the
results on the French stock AXA.

7.1 Empirical use

Before using the above model in reality, we need to discuss some features of the model that
need to be adapted before any backtest is possible.
First of all, the model is continuous in both time and space while the real control problem
under scrutiny is intrinsically discrete in space, because of the tick size, and in time, because
orders have a certain priority and changing position too often reduces the actual chance to
be reached by a market order. Hence, the model has to be reinterpreted in a discrete way.
In terms of prices, quotes must not be between two ticks and we decided to ceil or floor the
optimal quotes with probabilities that depend on the respective proximity to the neighboring
quotes. In terms of time, an order is sent to the market and is not canceled nor modified
for a given period ∆t (say 20 or 60 seconds), unless a trade occurs and, though perhaps
partially, fills one of the market maker’s orders. Now, when a trade occurs and changes the
inventory or when an order stayed in the order book for longer than ∆t, then the optimal
quotes on both sides are updated and, if necessary, new orders are inserted.
Now, concerning the parameters, σ, A and k can be calibrated on trade-by-trade limit order
book data while γ has to be chosen. However, it is well known by practitioners that A and k
have to depend at least on the actual market bid-ask spread. Since we do not explicitly take
into account the underlying market, there is no market bid-ask spread in the model. Thus,
we simply chose to calibrate k and A as functions of the market bid-ask spread, making then
an off-model hypothesis.

Turning to the backtests, they were carried out with trade-by-trade data and we assumed
that our orders were entirely filled when a trade occurred above (resp. below) the ask (resp.
bid) price quoted by the market maker.

10If the optimal quote changed, the remaining part of the order is canceled before a new order is inserted.
Otherwise, the market maker may just insert a new order so that the cumulated size of his orders is δq.
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7.2 Results

To present the results, we chose to illustrate the case of the French stock AXA on November
2nd 2010.
We first show the evolution of the inventory and we see that this inventory mean-reverts
around 0.
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Figure 7: Inventory when the strategy is used on AXA (02/11/2010) from 10:00 to 16:00 with
γ = 0.05 Tick−1

Now, to better understand the very nature of the strategy, we focused on a subperiod
of 20 minutes and we plotted the state of the market both with the quotes of the market
maker. Trades occurrences involving the market maker are signalled by a dot.

12:30 12:32 12:34 12:36 12:38 12:40 12:42 12:44 12:46 12:48 12:50
13.2

13.21

13.22

13.23

13.24
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13.26

13.27

13.28

Figure 8: Details for the quotes and trades when the strategy is used on AXA (02/11/2010) with
γ = 0.05 Tick−1. Thin lines represent the market while bold lines represent the quotes of the
market maker. Dotted lines are associated to the bid side while plain lines are associated to the
ask side. Black points represent trades in which the market maker is involved.
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Figure 9: Details for the inventory when the strategy is used on AXA (02/11/2010) with γ =
0.05 Tick−1

Conclusion

In this paper we presented a model for the optimal quotes of a market maker. Starting from
a model in line with Avellaneda ans Stoikov [5] and rooted to Ho and Stoll [18], we intro-
duced a change of variables11 that allows to find exact expressions for the quotes. Then, we
exhibited the asymptotic value of the optimal quotes and argued that the asymptotic values
were very good approximations for the quotes even for rather small times. Closed-form ap-
proximations were then obtained using spectral arguments. The model is finally backtested
on real data and the results are promising.

11In a companion paper (see [14]) we used a change of variables similar to the one introduced above to solve
the Hamilton-Jacobi-Bellman equation associated to an optimal execution problem with passive orders.
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Appendix

Proof of Proposition 1 and Theorem 2:

Let us consider a strictly positive solution (vq)q of (S) and introduce u(t, x, q, s) =

− exp (−γ(x+ qs)) vq(t)
− γ

k .

Then:

∂tu+
1

2
σ2∂2ssu = −γ

k

v̇q(t)

vq(t)
u+

γ2σ2

2
q2u

Now, concerning the first part of the hamiltonian, we have:

sup
δb
λb(δb)

[
u(t, x− s+ δb, q + 1, s)− u(t, x, q, s)

]

= sup
δb
Ae−kδbu(t, x, q, s)

[
exp

(
−γδb

)(vq+1(t)

vq(t)

)− γ
k

− 1

]
The first order condition of this problem corresponds to a maximum (because u is nega-

tive) and writes:

(k + γ) exp
(
−γδb∗

)(vq+1(t)

vq(t)

)− γ
k

= k

Hence:

δb∗ =
1

k
ln

(
vq(t)

vq+1(t)

)
+

1

γ
ln
(
1 +

γ

k

)
and

sup
δb
λb(δb)

[
u(t, x− s+ δb, q + 1, s)− u(t, x, q, s)

]
= − γ

k + γ
A exp(−kδb∗)u(t, x, q, s)

= − γA

k + γ

(
1 +

γ

k

)− k
γ vq+1(t)

vq(t)
u(t, x, q, s)

Similarly, the maximizer for the second part of the hamiltonian is:

δa∗ =
1

k
ln

(
vq(t)

vq−1(t)

)
+

1

γ
ln
(
1 +

γ

k

)
and

sup
δa

λa(δa) [u(t, x+ s+ δa, q − 1, s)− u(t, x, q, s)]

= − γ

k + γ
A exp(−kδa∗)u(t, x, q, s)

= − γA

k + γ

(
1 +

γ

k

)− k
γ vq−1(t)

vq(t)
u(t, x, q, s)

Hence, putting the three terms together we get:

∂tu(t, x, q, s) +
1

2
σ2∂2ssu(t, x, q, s)

+ sup
δb
λb(δb)

[
u(t, x− s+ δb, q + 1, s)− u(t, x, q, s)

]
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+sup
δa

λa(δa) [u(t, x+ s+ δa, q − 1, s)− u(t, x, q, s)]

= −γ
k

v̇q(t)

vq(t)
u+

γ2σ2

2
q2u− γA

k + γ

(
1 +

γ

k

) k
γ

[
vq+1(t)

vq(t)
+
vq−1(t)

vq(t)

]
u

= −γ
k

u

vq(t)

[
v̇q(t)−

kγσ2

2
q2vq(t) +A

(
1 +

γ

k

)−(
1+ k

γ

)
(vq+1(t) + vq−1(t))

]
= 0

Now, noticing that the terminal condition for vq is consistent with the terminal condition
for u, we get that u verifies (HJB).

Proof of Theorem 1 and Theorem 3:

Before starting the very proof, let us introduce the necessary functional framework.

Let us introduce H =
{
u ∈ ℓ2(Z),

∑
q∈Z αq

2u2q + η(uq+1 − uq)
2 < +∞

}
. H is a Hilbert

space equipped with the scalar product:

⟨v, w⟩H =
∑
q∈Z

αq2vqwq + η(vq+1 − vq)(wq+1 − wq), ∀v, w ∈ H

The first preliminary lemma indicates that the ℓ2(Z)-norm can be controlled by the H-
norm.

Lemma 1.
∃C > 0, ∀w ∈ H, ∥w∥ℓ2(Z) ≤ C∥w∥H

Proof:

∀w ∈ H, ∥w∥2ℓ2(Z) = |w0|2 +
∑
q∈Z∗

|wq|2 ≤ |w0|2 +
1

α
∥w∥2H

≤ (|w1|+ |w0 − w1|)2 +
1

α
∥w∥2H ≤

(√ 1

α
+

√
1

η

)2

+
1

α

 ∥w∥2H

A second result that is central in the proof of our results is that H is compactly embedded
in ℓ2(Z).

Lemma 2. H is compactly embedded in ℓ2(Z)

Proof:

To prove the result we consider a bounded sequence (sk)k∈N in HN. For each k ∈ N we
introduce ŝk defined by:

ŝk0 = sk0, ∀q ∈ Z∗, ŝkq = qskq

For (sk)k∈N is a bounded sequence in HN, (ŝk)k∈N is a bounded sequence in ℓ2(Z)N. Hence,
we can find ŝ∞ ∈ ℓ2(Z) so that there exists a subsequence indexed by (kj)j∈N such that
(ŝkj )j∈N weakly converges toward ŝ∞ in ℓ2(Z).
Now, we can define s∞ ∈ H by the inverse transformation:

s∞0 = ŝ∞0 , ∀q ∈ Z∗, s∞q =
1

q
ŝ∞q
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and it is easy to check that (skj )N converges in the ℓ2(Z) sense toward s∞. Indeed,

∥skj − s∞∥2ℓ2(Z) ≤ |skj0 − s∞0 |2 +
∑
q∈Z∗

1

q2
|ŝkjq − ŝ∞q |2

= |ŝkj0 − ŝ∞0 |2 +
∑

q ̸=0,|q|≤N

1

q2
|ŝkjq − ŝ∞q |2 +

∑
|q|>N

1

q2
|ŝkjq − ŝ∞q |2

The first two terms tend to 0 because (ŝkj )N weakly converges in ℓ2(Z) towards ŝ∞. The
last one can be made smaller than any ϵ > 0 as N becomes large because

∑
|q|>N

1
q2

tends

to zero as N tends to infinity and (∥ŝkj − ŝ∞∥ℓ2(N))j∈N is a bounded sequence.

Now, we are going to consider a linear operator L that is linked to the system (S). L is
defined by

L : f ∈ ℓ2(Z) 7→ v ∈ H ⊂ ℓ2(Z)

where
∀q ∈ Z, αq2vq − η(vq+1 − 2vq + vq−1) = fq

We need to prove that L is well-defined and we use the weak formulation of the equation.

Lemma 3. L is a well-defined linear (continuous) operator.
Moreover ∀f ∈ ℓ2(Z), ∀w ∈ H, ⟨Lf,w⟩H = ⟨f, w⟩ℓ2(Z)

Proof:

Let us consider f ∈ ℓ2(Z).
Because of Lemma 1, w ∈ H 7→ ⟨f, w⟩ℓ2(Z) is continuous. Hence, by Riesz representation
Theorem there exists a unique v ∈ H such that ∀w ∈ H, ⟨v, w⟩H = ⟨f, w⟩ℓ2(Z).

This equation writes

∀w ∈ H,
∑
q∈Z

fqwq =
∑
q∈Z

αq2vqwq + η(vq+1 − vq)(wq+1 − wq)

= α
∑
q∈Z

q2vqwq + η
∑
q∈Z

(vq+1 − vq)wq+1 − η
∑
q∈Z

(vq+1 − vq)wq

= α
∑
q∈Z

q2vqwq + η
∑
q∈Z

(vq − vq−1)wq − η
∑
q∈Z

(vq+1 − vq)wq

This proves ∀q ∈ Z, αq2vq − η(vq+1 − 2vq + vq−1) = fq.
Conversely, if ∀q ∈ Z, αq2vq − η(vq+1 − 2vq + vq−1) = fq, then we have by the same
manipulations as before that:

∀w ∈ H, ⟨v, w⟩H = ⟨f, w⟩ℓ2(Z)

Hence L is well-defined, obviously linear and Lf ∈ H.

Now, if we take w = Lf we get

⟨Lf,Lf⟩H = ⟨f, Lf⟩ℓ2(Z) ≤ ∥f∥ℓ2(Z)∥Lf∥ℓ2(Z) ≤ C∥f∥ℓ2(Z)∥Lf∥H

so that ∥Lf∥H ≤ C∥f∥ℓ2(Z) and L is hence continuous.

Now, we are able to prove important properties about L.
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Lemma 4. L is a positive, compact, self-adjoint operator

Proof:

As far as the positiveness of the operator is concerned we just need to notice that, by
definition:

∀f ∈ ℓ2(Z), ⟨Lf, f⟩ℓ2(Z) = ∥Lf∥2H ≥ 0

For compactness, we know that ∥Lf∥H ≤ C∥f∥ℓ2(Z) and Lemma 2 allows to conclude.

Now, we prove that the operator L is self-adjoint.

Consider f1, f2 ∈ ℓ2(Z), we have:

⟨f1, Lf2⟩ℓ2(Z) = ⟨Lf1, Lf2⟩H = ⟨Lf2, Lf1⟩H = ⟨f2, Lf1⟩ℓ2(Z) = ⟨Lf1, f2⟩ℓ2(Z)

Now, we can go to the very proof of Theorem 1 and Theorem 3.

Step 1: Spectral decomposition and building of a solution when the terminal condition
is in ℓ2(Z).

We know that there exists an orthogonal basis (fk)k∈N of ℓ2(Z) made of eigenvectors of
L (that in fact belongs to H and we can take for instance ||fk||H = 1) and we denote λk > 0
the eigenvalue12 associated to fk (we suppose that the eigenvalues are ordered, λ0 being the
largest one). We have:

αq2fkq − η(fkq+1 − 2fkq + fkq−1) =
1

λk
fkq

Hence, if we want to solve (S ′) that is similar to (S) but with a terminal condition
v(T ) ∈ ℓ2(Z) instead of v(T ) = 1 (where 1 stands for the sequence equal to 1 for all indices),
classical argument shows that we can search for a solution of the form v(t) =

∑
k∈N µ

k(t)fk.
Since ∀q ∈ Z

v̇q(t) = αq2vq(t)− η (vq−1(t) + vq+1(t))

= αq2vq(t)− η (vq+1(t)− 2vq(t) + vq−1(t))− 2ηvq(t)

We must have dµk

dt (t) = ( 1
λk − 2η)µk(t) and hence, since λk → 0 we can easily define a

solution of (S ′) by:

v(t) =
∑
k∈N

⟨v(T ), fk⟩ℓ2(Z) exp
((

2η − 1

λk

)
(T − t)

)
fk

and the solution is in fact in C∞([0, T ], ℓ2(Z))

Step 2: Building of a solution when v(T ) = 1

The first thing to notice is that H ⊂ ℓ1(Z) (indeed, w ∈ H ⇒ (qwq)q ∈ ℓ2(Z) ⇒ (wq)q ∈
ℓ1(Z) by Cauchy-Schwarz inequality). Hence, the sequence v(T ) that equals 1 at each index

120 cannot be an eigenvalue. If indeed λk = 0 then ∀w ∈ H, ⟨fk, w⟩ℓ2(Z) = ⟨Lfk, w⟩H = 0. But because H is

dense in ℓ2(Z), fk = 0.
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is in H ′, the dual of H. As a consequence, to build a solution of (S), we can consider a
similar formula:

v(t) =
∑
k∈N

⟨1, fk⟩H′,H exp

((
2η − 1

λk

)
(T − t)

)
fk

Step 3: Uniqueness

Uniqueness follows easily from the ℓ2(Z) analysis. If indeed v(T ) = 0 we see that we
must have that

∀k ∈ Z, ⟨fk, v̇(t)⟩ℓ2(Z) =
d⟨fk, v(t)⟩ℓ2(Z)

dt
= (

1

λk
− 2η)⟨fk, v(t)⟩ℓ2(Z)

Hence, ∀k ∈ Z, ⟨fk, v(T )⟩ℓ2(Z) = 0 =⇒ ∀k ∈ Z, ∀t ∈ [0, T ], ⟨fk, v(t)⟩ℓ2(Z) = 0 and v = 0.

Step 4: Asymptotics

To prove Theorem 3, we will show that the largest eigenvalue λ0 of L is simple and that
the associated eigenvector f0 can be chosen so as to be a strictly positive sequence.

If this is true then we have ∀q ∈ Z, vq(0) ∼
T→∞

⟨1, f0⟩H′,Hf
0
q exp

(
(2η − 1

λ0 )T
)
so that the

result is proved with

δb∗∞(q) =
1

γ
ln
(
1 +

γ

k

)
+

1

k
ln

(
f0q
f0q+1

)
δa∗∞(q) =

1

γ
ln
(
1 +

γ

k

)
+

1

k
ln

(
f0q
f0q−1

)
Hence we just need to prove the following lemma:

Lemma 5. The eigenvalue λ0 is simple and any associated eigenvector is of constant sign
(in a strict sense).

Proof:

Let us consider the following characterization of λ0 and ofthe associated eigenvectors
(this characterization follows from the spectral decomposition):

1

λ0
= inf

f∈ℓ2(Z)

∥f∥2H
∥f∥2

ℓ2(Z)
= inf

∥f∥ℓ2(Z)=1
∥f∥2H = inf

∥f∥ℓ2(Z)=1

∑
q∈Z

αq2f2q + η(fq+1 − fq)
2

Let us consider f an eigenvector associated to λ0. We have that:∑
q∈Z

αq2|fq|2 + η(|fq+1| − |fq|)2 ≤
∑
q∈Z

αq2f2q + η(fq+1 − fq)
2

Hence, since |f | has the same ℓ2(Z)-norm as f , we know that |f | is an eigenvector asso-
ciated to λ0.

Now, since αq2|fq| − η(|fq+1| − 2|fq| + |fq−1|) = 1
λ0 |fq|, if |fq| = 0 at some point q, we

have −η(|fq+1|+ |fq−1|) = 0 and this induces |fq+1| = |fq−1| = 0, and |f | = 0 by immediate
induction. Since f ̸= 0, we must have therefore |f | > 0.

This proves that there exists a strictly positive eigenvector associated to λ0.
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Now, if the eigenvalue λ0 were not simple, there would exist an eigenvector g associated
to λ0 with ⟨|f |, g⟩ℓ2(Z) = 0. Hence, there would exist both positive and negative values in
the sequence g. But, in that case, since |g| must also be an eigenvector associated to λ0, we
must have equality in the following inequality:∑

q∈Z
αq2|gq|2 + η(|gq+1| − |gq|)2 ≤

∑
q∈Z

αq2g2q + η(gq+1 − gq)
2

In particular, we must have that ||gq+1| − |gq|| = |gq+1 − gq|, ∀q. This implies that ∀q,
either gq and gq+1 are of the same sign or at least one of the two terms is equal to 0. Thus,
since g cannot be of constant sign, there must exist q̂ so that gq̂ = 0. But then, because
|g| is also an eigenvector associated to λ0 we have by immediate induction, as above, that
g = 0.
This proves that there is no such g and that the eigenvalue is simple.

Step 5: Positiveness

So far, we did not prove that v, the solution of (S) was strictly positive. A rapid way to
prove that point is to use a Feynman-Kac-like representation of v. If (qs)s is a continuous
Markov chain on Z with intensities η to jump to immediate neighbors, then we have the
following representation for v:

vq(t) = E
[
exp

(
−
∫ T

t
(αq2s − 2η)ds

)∣∣∣∣ qt = q

]
This representation guarantees that v > 0.

This ends the proof of Theorems 1 and 3

Proof of Proposition 2:

The same computations as for Proposition 1 lead to the result.

Proof of Theorem 4:

Using Proposition 2, because the functions vqs are strictly positive as above, we see that
u is a solution of (HJB). Then, we are going to use a verification argument to prove that u
is the value function of the optimal control problem under consideration and prove subse-
quently that the optimal controls are as given in the Theorem.

Let us consider processes (νb) and (νa) ∈ A.
Let t ∈ [0, T ) and let us consider the following processes for τ ∈ [t, T ]:

dSt,s
τ = σdWτ , St,s

t = s

dXt,x,ν
τ = (Sτ + νaτ )dN

a
τ − (Sτ − νbτ )dN

b
τ , Xt,x,ν

t = x

dqt,q,ντ = dN b
τ − dNa

τ , qt,q,νt = q

where the point process N b has stochastic intensity (λbτ )τ with λbτ = Ae−kνbτ 1qτ−<Q and
where the point process Na has stochastic intensity (λaτ )τ with λaτ = Ae−kνaτ 1qτ−>−Q

13.

13These intensities are bounded since νb and νa are bounded from below.
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Now, since u is smooth, let us write Itô’s formula for u, between t and tn where tn =
T ∧ inf{τ > t, |Sτ − s| ≥ n or |Na

τ −Na
t | ≥ n or |N b

τ −N b
t | ≥ n} (n being a strictly positive

integer):

u(tn, X
t,x,ν
tn− , qt,q,νtn− , S

t,s
tn ) = u(t, x, q, s)

+

∫ tn

t

(
∂τu(τ,X

t,x,ν
τ− , qt,q,ντ− , St,s

τ ) +
σ2

2
∂2ssu(τ,X

t,x,ν
τ− , qt,q,ντ− , St,s

τ )

)
dτ

+

∫ tn

t

(
u(τ,Xt,x,ν

τ− + St,s
τ + νaτ , q

t,q,ν
τ− − 1, St,s

τ )− u(τ,Xt,x,ν
τ− , qt,q,ντ− , St,s

τ )
)
λaτdτ

+

∫ tn

t

(
u(τ,Xt,x,ν

τ− − St,s
τ + νbτ , q

t,q,ν
τ− + 1, St,s

τ )− u(τ,Xt,x,ν
τ− , qt,q,ντ− , St,s

τ )
)
λbτdτ

+

∫ tn

t
σ∂su(τ,X

t,x,ν
τ− , qt,q,ντ− , St,s

τ )dWτ

+

∫ tn

t

(
u(τ,Xt,x,ν

τ− + St,s
τ + νaτ , q

t,q,ν
τ− − 1, St,s

τ )− u(τ,Xt,x,ν
τ− , qt,q,ντ− , St,s

τ )
)
dMa

τ

+

∫ tn

t

(
u(τ,Xt,x,ν

τ− − St,s
τ + νbτ , q

t,q,ν
τ− + 1, St,s

τ )− u(τ,Xt,x,ν
τ− , qt,q,ντ− , St,s

τ )
)
dM b

τ

where M b and Ma are compensated processes associated respectively to N b and Na for the
intensity processes (λbτ )τ and (λaτ )τ .

Now, because v is strictly positive on a compact set, it has a strictly positive lower bound
and vqτ (τ)

− γ
k is bounded along the trajectory, independently of the trajectory. Also, because

νb and νa are bounded from below, and because of the definition of tn, all the terms in the
stochastic integrals are bounded and, local martingales being in fact martingales, we have:

E
[
u(tn, X

t,x,ν
tn− , qt,q,νtn− , S

t,s
tn )
]
= u(t, x, q, s)

+E
[∫ tn

t

(
∂τu(τ,X

t,x,ν
τ− , qt,q,ντ− , St,s

τ ) +
σ2

2
∂2ssu(τ,X

t,x,ν
τ− , qt,q,ντ− , St,s

τ )

)
dτ

+

∫ tn

t

(
u(τ,Xt,x,ν

τ− + St,s
τ + νaτ , q

t,q,ν
τ− − 1, St,s

τ )− u(τ,Xt,x,ν
τ− , qt,q,ντ− , St,s

τ )
)
λaτdτ

+

∫ tn

t

(
u(τ,Xt,x,ν

τ− − St,s
τ + νbτ , q

t,q,ν
τ− + 1, St,s

τ )− u(τ,Xt,x,ν
τ− , qt,q,ντ− , St,s

τ )
)
λbτdτ

]
Using the fact that u solves (HJB), we have that

E
[
u(tn, X

t,x,ν
tn− , qt,q,νtn− , S

t,s
tn )
]
≤ u(t, x, q, s)

with equality when the controls are taken equal the maximizers of the hamiltonians (these
controls being in A because v is bounded and has a strictly positive lower bounded).

Now, if we prove that limn→∞ E
[
u(tn, X

t,x,ν
tn− , qt,q,νtn− , S

t,s
tn )
]
= E

[
u(T,Xt,x,ν

T , qt,q,νT , St,s
T )
]
,

we will have that for all controls νb and νa in A:

E
[
− exp

(
−γ(Xt,x,ν

T + qt,q,νT St,s
T )
)]

= E
[
u(T,Xt,x,ν

T , qt,q,νT , St,s
T )
]
≤ u(t, x, q, s)

with equality for νbt = δb∗(t, qt−) and ν
a
t = δa∗(t, qt−).
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Hence:

sup
(νat )t,(ν

b
t )t∈A

E
[
− exp

(
−γ(Xt,x,ν

T + qt,q,νT St,s
T )
)]

= E
[
− exp

(
−γ(Xt,x,δ∗

T + qt,q,δ
∗

T St,s
T )
)]

and this will give the result.

It remains to prove that limn→∞ E
[
u(tn, X

t,x,ν
tn− , qt,q,νtn− , S

t,s
tn )
]
= E

[
u(T,Xt,x,ν

T , qt,q,νT , St,s
T )
]
.

First, we have, almost surely, that u(tn, X
t,x,ν
tn− , qt,q,νtn− , S

t,s
tn ) tends to u(T,X

t,x,ν
T− , qt,q,νT− , St,s

T ).
Then, in order to prove that the sequence is uniformly integrable we will bound it in L2.
However, because of the uniform lower bound on v already used early, it is sufficient to

bound exp
(
−γ
(
Xt,x,ν

tn− + qt,q,νtn− S
t,s
tn

))
in L2.

But,

Xt,x,ν
tn− + qt,q,νtn− S

t,s
tn = x+ qs+

∫ tn

t
νaτ dN

a
τ +

∫ tn

t
νbτdN

b
τ + σ

∫ tn

t
qt,q,ντ dWτ

≥ x+ qs− ∥νa−∥∞Na
T − ∥νb−∥∞N b

T ++σ

∫ tn

t
qt,q,ντ dWτ

Hence

E
[
exp(−2γ(Xt,x,ν

tn− + qt,q,νtn− S
t,s
tn ))

]
≤ e−2γ(x+qs)E

[
exp

(
2γ∥νa−∥∞Na

T

)
exp

(
2γ∥νa−∥∞N b

T

)
exp

(
−2γσ

∫ tn

t
qt,q,ντ dWτ

)]
≤ e−2γ(x+qs)E

[
exp

(
6γ∥νa−∥∞Na

T

)] 1
3 E[exp(6γ∥νb−∥∞N b

T )]
1
3E
[
exp

(
−6γσ

∫ tn

t
qt,q,ντ dWτ

)] 1
3

Now, since the intensity of each point process is bounded, the point processes have a
Laplace transform and the first three terms of the product are finite (and independent of n).
Concerning the last term, because |qt,q,ντ | is bounded by Q, we know (for instance applying
Girsanov’s theorem and Hölder’s inequality) that:

E
[
exp

(
−6γσ

∫ tn

t
qt,q,ντ dWτ

)]
≤ exp

(
3γ2σ2(tn − t)Q2

)
≤ exp

(
3γ2σ2Q2T

)
Hence, the sequence is bounded in L2, then uniformly integrable, and we have:

lim
n→∞

E
[
u(tn, X

t,x,ν
tn− , qt,q,νtn− , S

t,s
tn )
]
= E

[
u(T,Xt,x,ν

T− , qt,q,νT− , St,s
T )
]
= E

[
u(T,Xt,x,ν

T , qt,q,νT , St,s
T )
]

We have proved that u is the value function and that δb∗ and δa∗ are optimal controls.

Proof of Theorem 5:

The demonstration of the result and the characterization of f0 is the same as in Theorem
3 once it is noticed that the counterpart of L is now (M + 2ηI)−1.
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