
HAL Id: hal-00628492
https://hal.science/hal-00628492v1

Submitted on 3 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Computing with the Pi-calculus
Frédéric Peschanski

To cite this version:
Frédéric Peschanski. Parallel Computing with the Pi-calculus. Declarative Aspects of Mul-
ticore Programming, DAMP 2011, Jan 2011, Austin, Texas, United States. pp.45-54,
�10.1145/1926354.1926363�. �hal-00628492�

https://hal.science/hal-00628492v1
https://hal.archives-ouvertes.fr

Parallel Computing with the Pi-calculus

Frédéric Peschanski

Université Pierre & Marie Curie UPMC - LIP6 - Paris, France

first.last@lip6.fr

Abstract

To tackle the multi-core programming challenge, we investigate the
design and implementation of concurrency-oriented programming
languages. Our approach mimics the evolution from lambda-calculi
to functional programming languages, but with the pi-calculus as
a starting point. To fill the gap between the abstract calculus and
its implementations, we introduce the pi-threads: an intermediate
language and its abstract machine.The stackless architecture of the
abstract machine makes the underlying algorithms both simple and
naturally concurrent. The scheduling, for instance, can be operated
in a completely decentralized way. Another remarkable feature of
the abstract machine is its garbage collector. We adopt a reference
counting scheme that can be characterized formally using only two
semantic rules. Moreover, it provides original solutions to the usual
shortcomings of reference counting: the overhead caused by the
maintenance of the reference counts - we only track global refer-
ences - and the complex issue of collecting cyclic structures - rein-
terpreted as the (in our case, much simpler) problem of detecting
partial terminations.

1. Introduction

The democratization of multi-core technologies has a profound im-
pact on the design of programming languages [18]. There is the
pragmatic way of adding extra layers of abstractions and associated
mechanisms to existing languages. We favor the complementary
way of establishing the language principles on minimal and solid
theoretical foundations. Indeed, our approach mimics the evolution
from abstract λ-calculi to functional programming languages, but
taking the π-calculus [9, 17] as a starting point. The choice of the
π-calculus is mainly driven by the following considerations: (1) it
is a minimal language with concurrency at its core, (2) it is very ex-
pressive in that many computational structures (functions, objects,
etc.) can be encoded in a concise way and (3) it benefits from a large
body of theoretical works. However, despite the success of the the-
ory, there is a surprising lack of practical tools both for software
engineering (modeling, verification, etc.) and programming based
on the π-calculus.

In this paper we introduce the π-threads, an intermediate lan-
guage and associated abstract machine to fill the gap between the
abstract calculus and the implementations. This applied calculus
is realized as a virtual machine named the Parallel Commitment
Machine (PCM). In this paper we focus on the abstract machine

[Copyright notice will appear here once ’preprint’ option is removed.]

but we also present more informally the basic algorithms driving
the PCM. One remarkable characteristic of these machines is their
stackless architecture. The stack is a support for sequential compu-
tations, and it is always troublesome to deal with it in a concurrent
setting. The common possibilities are to either share or distribute
the stack. Our approach is radical: we simply remove the (need for
a) stack ! Indeed, a stack is only required for a language involving
nested scopes. And the unbounded size of the stack comes from
non-tail recursive calls. Our intermediate language - and indeed the
π-calculus itself - has none of these. Of course, we do not say we
avoid completely the stack, only we have complete freedom about
how it may be employed (cf. chain reactions in [13]). The gain
is important: we can design very simple - and naturally parallel -
scheduling and resource management algorithms. The scheduler,
for instance, operates in a completely decentralized way. This is
thanks to the use of explicit commitments describing why the wait-
ing processes are waiting, and how they can be awaken. Another
remarkable feature of the abstract machine is its garbage collector.
We adopt a reference counting scheme that can be characterized
formally using only two semantic rules. Moreover, it provides orig-
inal solutions to the usual shortcomings of reference counting: the
overhead caused by the maintenance of the reference counts - we
only track global references - and the complex issue of collecting
cyclic structures - reinterpreted as the (in our case, much simpler)
problem of detecting partial terminations.

The outline of the paper is as follows. In Section 2 we introduce
the π-calculus variant that we use as an intermediate language in
our compilation toolchain. In Section 3 we describe the π-threads
abstract machine and its operational semantics. Some critical prop-
erties of the semantics are also discussed. By lack of space, we only
provide proof outlines. An overview of the PCM virtual machine is
proposed in Section 4. In particular, we describe its overall archi-
tecture, the principles of the scheduling algorithm and its garbage
collector. The related works are discussed in Section 5.

2. The π-calculus as an intermediate language

Definition def D(x1,. . .,xn) = P

Process P ::= end Termination
|
∑

i
[gi]αi,Pi Guarded choice

| D(v1,. . .,vn) Call

Prefix α ::= tau Silent
| c!v Output
| c?(x) Input
| new(c) Channel creation
| spawn{P } Thread creation

Table 1. Syntax of the π-threads language

The syntax of the π-threads calculus is summarized in Table 1. It
corresponds to an applied variant of the π-calculus, biased towards
efficient operationalization. The atomic actions of the languages are

1 2010/10/18

the creation of communication channel c as new(c), the output c!v
of value v on channel c and the input c?(x) on channel c of a value
bound to variable x. We adopt a CSP-like syntax because of its
elegant textual representation. Note, however, the extra parentheses
around variables to emphasis their use as binders. The tau action
is silent, like a no-operation instruction. The creation of a new
process is also an atomic action spawn{P } where P is the process
expression to run in parallel.

The construct [g] α.P + [h] β.Q is the non-deterministic choice
between two execution branches, with boolean guards g on the
left, or h on the right. Each possible branch of execution must
begin with an atomic action, followed by a continuation (a process
expression). The informal semantics - slightly different from the
original π-calculus - is as follows. First, the left branch is tried and

for this the guard g is evaluated1. If it evaluates to true then the
atomic action α is tried. If the latter is a tau, a new or a spawn,
then it is executed right away and the whole process continues as
P . If it is an output c!v then the action is only executable if there is
a process running in parallel, itself ready for receiving on channel
c, e.g. c?(x).R. In this case the choice process will continue as P
and the parallel process will continue as R but with x bound to
the evaluation of the sent value, which we will note v. If either the
guard g evaluates to false or the action α is not executable, then
the second branch is tried instead following the same principles. If
both branches are disabled - i.e. not executable - then the whole
choice is blocking until one of the branch become executable. The
choice operator is generalized to an arbitrary (albeit finite) number
of branches, as

∑

i
[gi].Pi. As a convenience we will write [g]α.P

a choice with only one branch, and also often abbreviate [true] α.P
as α.P .

In the π-calculus there is no termination construct per se, how-
ever we need the end terminator to take care of some clean-up in
the operational semantics. Note that in many examples we omit the
terminator and implicitly assume its presence.

Finally we provide an explicit construct for parametric defini-
tions and (possibly recursive) terminal calls. For example, the fa-
mous Fibonacci function can be expressed as follows:

def Fib(n m p : int, r : chan<int>) =
[n=0] r!m,end + [true] tau,Fib(n-1,m+p,m,r)

The Fib definition is parameterized by three integer and a chan-
nel r conveying the return value as an integer. Note that we added
extra type annotations in the example, which helps the understand-
ing. The type system, quite standard, will not be detailed for the
sake of concision. As explained previously, the choice is locally
ordered in that the leftmost branch will be tested before the right
one. This makes very easy the encoding of alternatives :

[

if C then P else Q
def

= [C]tau,P + [true] tau,Q

if C then P
def

= [C]tau,P

Thanks to this derived syntax, we can give a more classical defini-
tion of Fibonacci :

def Fib(n m p : int, r : chan<int>) =
if n=0 then r!m else Fib(n-1,m+p,m,r)

1 In this paper, we do not detail the syntax and formal semantics for
boolean expressions used in guards, and more generally for values of ba-
sic datatypes: integers, etc. The reason is that this is an orthogonal issue
and there is nothing significantly remarkable at that level.

The syntax enforces all the calls to be in tail position2. Non-tail
calls must be encoded using channels and processes. We illustrate
the principles with the other famous Ackermann function :

def Ack(n p : int, r : chan<int>) =
if n=0 then r!(p+1) else if p=0 then Ack(n-1,1,r)
else new(r1:chan<int>), [Ack(n,p-1,r1) || r1?(pp),Ack(n-1,pp,r)]

The third branch of the choice corresponds to the “doubly”
recursive case of the famous function. The nested call is spawned
in parallel with the process that waits for the result of the inner

computation, which enables the continuation of the computations3.
We use here a composition operator || that can be easily derived
from spawn and prefixing. It might seem quite inefficient to encode
such a deterministic computation using processes and channels.
In [13] we explain how to compile such forms - named chain
reactions - so that they can exploit the processor stack.

Beyond functions, there are many programming abstractions
that can be encoded concisely using the π-calculus. An example
is the domain of dataflow systems. A dataflow for computing Fi-
bonacci numbers can be written as follows:

def FFib(r : chan<int>) = r!1,r!1,FFib’(1,1,r)
def FFib’(n m : int, r :chan<int>) = r!(n+m),FFib’(m,n+m,r)

Here the definition FFib generates a flow of integers on the
channel r, which incrementally returns the terms of the Fibonacci
suite: 1 1 2 3 5 8, etc. Another classical example is the (concurrent)
computation of prime numbers:

def Gen(i n p : int, gen : chan<int>) =
if i<n then gen!i,Gen(i+p,n,p,gen)

def PrimeFilter(n : int, in out : chan<int>) =
in?(x), if (x % n) = 0 then PrimeFilter(n,in,out)

else out!x,PrimeFilter(n,in,out)

def EndFilter(in primes : chan<int>) =
in?(x), primes!x, new(out:chan<int>),
[EndFilter(out,primes) || PrimeFilter(in,x,out)]

def Primes(primes : chan<int>, nb : int) =
new(gen:chan<int>),
[gen!2,Gen(3,nb,2,gen) || EndFilter(gen,primes)]

In dataflows, it is very easy to obtain modular systems, here a
stream of even integers is produced (definition Gen), which is con-
nected to a chain of PrimeFilter processes, terminated by an EndFil-
ter process. The is one filter for each prime number discovered so
far. Any odd integer going through the whole chain of filters is thus
a prime number. Actually we could stop at the filter for the smallest
prime greater than the square root of the candidate, but the structure
would be slightly more complex. The interest of such an architec-
ture is that it is indeed highly concurrent: multiple candidates can
be tested in parallel, forming a pipeline along the chain of filters.

More classical patterns for concurrency can be of course en-
coded in the proposed language. As an example consider the im-
plementation of critical sections running in mutual exclusion (e.g.
to ensure the exclusive access to a given channel). The primitive
mean of synchronization in the π-calculus is the communication
channel. The synchronous semantics of communications allow to
encode concurrent locking very easily. A channel is basically a

2 Allowing only non-tail calls in the language might appear as quite a
restriction. It is important to remind, though, that this constraint only applies
at the level of the intermediate language. It is easy to offer non-tail calls as
a derived construct.
3 The structure of a functional continuation corresponds to a process waiting
on a private channel that marks the end of the previous step of the compu-
tation.

2 2010/10/18

lock. In order to “acquire” the lock, one must read on the chan-
nel, which will block until someone writes on it (or vice-versa).
Such a write operation allows to“release” the lock. Following these
principles we can provide a canonical structure for critical sections:

def SectCrit(lock : chan<>) = lock?,/* Crit. Sect. */ ,lock!

The type chan<> is used for “pure” synchronization as in CCS,
the ancestor of π. Note that the critical section is executed in mutual
exclusion only if the lock channel is used correctly. For example, if
a process releases the lock twice, then two critical sections could
be executed in parallel. A more robust version of the protocol can
be obtained by encapsulating the lock in a process, for example as
follows:

def Lock(lock : chan<chan<>>) =
new(release),lock!release,release?,Lock(lock)

The definition for critical sections is modified accordingly:

def SafeSectCrit(lock : chan<chan<>>) =
lock?(release),/* Critical Section */ ,release!

When the lock is acquired (synchronization on the lock chan-
nel), a private channel release is received by the client. The com-
munication of private channels is the most distinctive feature of the
π-calculus. The type of the channel lock is emblematic of this fea-
ture: chan<chan<>>. The protocol is more robust because there is
less sharing, but one still has to be careful not to communicate the
private channel, which can be enforced by a type discipline [17].

It is also very natural to encode active objects using the + op-
erator as a method selector. We illustrate this with another clas-
sical concurrent programming pattern. The principle is to allow a
bounded number of tasks to run in parallel. If the pool is full, then
the other tasks must wait. The definition is as follows:

def TaskPool(nb : int, enter :chan<chan<>>, leave : chan<>) =
leave?,TaskPool(nb+1,enter,leave)
+ [nb>0] enter?(release),spawn{release?,leave!},

TaskPool(nb-1,enter,leave)]

The idea of the construction is to use distinct channels to dis-
criminate the methods to select. Here we implement two methods:
the enter method to gain access to the task pool, and the comple-
mentary leave method. The choice is locally ordered, and we exploit
this to put a priority on leaving the task pool. In order to enter the
pool, one must obtain a permit between 0 and nb. A permit is given
back to the task pool using a private channel release provided by the
tasks, which must also follow the acquire/release protocol:

def Task(enter : chan<>) =
new(rel:chan<>),enter!(rel), /* task behavior */ , rel!

Once again we exploit the distinguishing feature of the π-
calculus: passing (private) channel references among processes.

As a summary, the proposed language - an applied variant of
the π-calculus - allows consise encodings of various computational
structures: functions, (active) objects, dataflows and concurrency
patterns. Of course, this is still quite a low-level language and we
only motivate its use as an intermediate language in a compiler
toolchain.

3. The π-threads abstract machine

We introduce in this section the abstract machine that provides the
operational semantics of the π-threads calculus. We adopt a process
calculus presentation of the abstract machine to remain close the
π-calculus. The syntax of the process expressions is the one of
Table 1, with the extension of a wait prefix for internal usage.

The terms manipulated in the semantics are parallel processes –
the π-threads – put in the context of an agent (i.e. a scheduler). The
latter has the following form:

∆ ⊢ Π1 ‖ . . . ‖ Πn

where each Πi is a π-thread of the form [Γi; δi] : Pi . A little bit
more concisely, we will denote an agent as follows:

∆ ⊢
∏

i

[Γi; δi] : Pi

The ∆ component represents the global environment of the
π-threads. This is the set of unique channel identities, the only
globally shared information. Each π-thread is associated to a cor-

responding process expression4 Pi. The latter evolves in a local
context composed of a set of commitments Γi and a lexical envi-
ronment δi, which as usual binds injectively variables to values.
Note that as announced there is no nesting allowed: there can be at

most one binding for a given variable5.
A fundamental characteristic of the semantics is the explicit ad-

vertising by the processes of their commitments regarding their po-
tential interactions. This is how we can “play one move in advance”
to implement the choice operator. Each element of the commitment
set Γi is either:

• an output commitment ĉ⇚v:Q of the process to emit the value
v on the channel identified as ĉ with the continuation Q, or

• an input commitment ĉ⇛x:Q to receive on channel ĉ with the
received value bound to variable x in the continuation Q.

It is possible to compute static bounds for the sizes of the
local environment and the commitment set of a π-thread using
the functions defined in Table 4. The function esize computes the
(tight) bound for the size of the local environment required to call
a given definition. The principle, roughly, is to count the number of
free variables in the body of the definitions. For the choice operator
we take the maximal size of the different branches. The size of
its commitment set can be obtained in a similar (but simpler) way
using the function csize. Informally, the number of commitments is
bound by the number of input/output prefixes of the largest choice.

PROPOSITION 1. The pre-allocated sizes of the local environment
and the commitment set can be computed statically

This is thanks to the purely syntax-driven definition of the
functions esize and csize. Practically, we calculate the bounds
at compile-time and attach them (in the generated code) to the
definitions of the compiled program. When spawning a new π-
thread, we can preallocate its environment and commitment set
using the bounds calculated for the definitions it references.

3.1 Basic rules

The basic rules for the operational semantics of the calculus are
summarized in Table 2. Unlike the traditional structured opera-
tional semantics (SOS) presentation, all the rules take place in the
global context of a whole agent. The first rule (par) is a purely
formal artifact: it simulates in the semantics the independence of
concurrent processes. In the rule A and B represent an arbitrary

4 Precisely, a process is a well-formed expression according to the rules
of Table 1. A π-thread is the adjunct of such a process expression to a
local environment and a set of commitments. It is thus a process in its
running environment. However, this distinction is not very important so
in the remaining of the paper we use interchangeably the terms π-thread,
thread and process to roughly express the same thing.
5 The lack of nesting in environments makes the π-calculus, in a way,
simpler than its main inspirator the λ-calculus.

3 2010/10/18

∆ ⊢ A ‖ B → ∆′ ⊢ A′ ‖ B

∆ ⊢ B ‖ A → ∆′ ⊢ B ‖ A′
(par)

g = true

∆ ⊢ [Γ; δ] : [g]tau,P +
∑

i
Qi ‖ B → ∆ ⊢ [∅, δ] : P ‖ B

(step)

g = true

∆ ⊢ [Γ; δ] : [g]new(c),P +
∑

i
Qi ‖ B → ∆, ĉ ⊢ [∅; δ, c ⊲ ĉ] : P ‖ B

(new)

g = true

∆ ⊢ [Γ; δ] : [g]spawn{P },Q+
∑

i
Ri ‖ B → ∆ ⊢ [∅; δ] : P ‖ [∅; δ] : Q ‖ B

(spawn)

g = false ∆ ⊢ [Γ; δ] :
∑

i
Qi ‖ B → ∆′ ⊢ [Γ′; δ′] : R ‖ B′

∆ ⊢ [Γ; δ] : [g]P +
∑

i
Qi ‖ B → ∆′ ⊢ [Γ′; δ′] : R ‖ B′

(next)

def D(x1, . . . ,xn) = P

∆ ⊢ [Γ; δ] : D(v1, . . . ,vn) ‖ B → ∆ ⊢ [∅;x1⊲v1, . . . , xn⊲vn] : P ‖ B
(call)

∆ ⊢ [Γ; δ] : end → ∆ ⊢ ∅
(inert)

Table 2. Operational semantics: basic rules

g = true δ(c) = ĉ

∆ ⊢ [Γ; δ] : [g]c!v,P +
∑

i
Qi ‖ [Γ′, ĉ⇛x:R; δ′] : S ‖ B → ∆ ⊢ [∅; δ] : P ‖ [∅; δ′, x⊲v] : R ‖ B

(send)

g = true δ(c) = ĉ ∄ĉ⇛x:S ∈
⋃

j
Γj

∆ ⊢ [Γ; δ] : [g]c!v,P +
∑

i
Qi ‖

∏

j
[Γj ; δj] : Rj → ∆ ⊢ [Γ, ĉ⇚v:P ; δ] :

∑

i
Qi + wait ‖

∏

j
[Γj ; δj] : Rj

(out)

g = true δ(c) = ĉ

∆ ⊢ [Γ; δ] : [g]c?(x),P +
∑

i
Qi ‖ [Γ′, ĉ⇚v:R; δ′] : S ‖ B → ∆ ⊢ [∅; δ, x ⊲ v] : P ‖ [∅; δ′] : R ‖ B

(recv)

g = true δ(c) = ĉ ∄ĉ⇚v:S ∈
⋃

j
Γj

∆ ⊢ [Γ; δ] : [g]c?(x),P +
∑

i
Qi ‖

∏

j
[Γj ; δj] : Rj → ∆ ⊢ [Γ, ĉ⇛x:P ; δ] :

∑

i
Qi + wait ‖

∏

j
[Γj ; δj] : Rj

(in)

Table 3. Operational semantics: rules for communication

esize(def D(x1, . . . , xn) = P)
def

= esizen{x1,...,xn}(P)

esizenV (end)
def

= n

esizenV (
∑

i
[gi]αi, Pi)

def

= maxi{esize
n
V (αi, Pi)}

esizenV (E(v1, . . . , vm)
def

= max(n, esize(def E(y1, . . . , ym) = Q))

esizenV (c?(x),P)
def

=

{

esizen+1

V ∪{x}(P) if x 6∈ V

esizenV (P) otherwise

esizenV (new(c),P)
def

=

{

esizen+1

V ∪{c}(P) if c 6∈ V

esizenV (P) otherwise

esizenV (α, P)
def

= esizenV (P) otherwise

csize(def D(x1, . . . , xn) = P)
def

= csize(P)

csize(end)
def

= 0

csize(
∑

i
[gi]αi, Pi)

def

= max(
∑

i
csize(αi),maxi{csize(Pi)})

csize(E(v1, . . . , vm)
def

= csize(def E(y1, . . . , ym) = Q))

csize(c?(x))
def

= 1

csize(c!v,)
def

= 1

csize(α)
def

= 0 otherwise

Table 4. Compile-time bounds

number of π-threads. Thanks to (par), it is possible to define all
the other rules assuming the redexes to be located at the leftmost
part of the terms. The rule (step) gives an interpretation for the
tau action as the first branch of a choice. The only condition to
start executing the continuation P is that the associated guard must
evaluate to true. Because it is an orthogonal issue, we do not dis-
cuss the evaluator for expressions of the basic data-types (booleans,
integers, etc.). We simply denote e the evaluation of an expression
e. If the guard is enabled, the tau itself is a non-blocking operation
so the continuation is simply started. Since the thread is actually
running, it is important to ensure it makes no commitment so the

corresponding set Γ is emptied. Similarly to (step), many of the se-
mantic rules are explained in the context of a choice. The particular
case of an isolated prefix can be encoded by a choice with a unique
branch. The empty choice corresponds to end (0 in the π-calculus).

The rule (new) explains the creation of a new communication
channel. Its effect is to create a new global identifier ĉ which is
bound to the variable c in the local environment δ. The creation
of a new thread is interpreted by the rule (spawn). The behavior
is standard: a new child thread is started in parallel and inherits
the local environment from its parent. The rule (next) allows to
skip a branch protected by a guard evaluating to false. As explained

4 2010/10/18

previously, the proposed semantics implement a local notion of
priority, which is reflected by this rule.

The calling conventions are implemented by the rule (call) of
the semantics. Since call sites can only be in terminal positions,
the principle is to simply “jump” to the definition and overwrite
the local environment with the arguments of the call (here we
use a strict evaluation but a lazier variant could be proposed). As
illustrated in e.g. [17], it is possible to encode the definitions and
calls using the other constructs of the π-calculus, in particular the
communication primitives and the parallel operator. However, the
primitive tail-calls can be implemented directly in a much more
efficient way. Moreover, the calls remain within the boundaries of a
single thread. Last but not least, the (call) rule is also an important
GC barrier because all the bindings except the ones captured by
the call arguments are removed. The rule (inert) explains the end

action corresponding to the normal termination of a thread. It is
also an important GC barrier.

3.2 Communication

The communication and synchronization primitives are most crit-
ical in the calculus. Their semantics are described by the rules of
Table 3. For the emission, we distinguish two cases. In the first one,
corresponding to the (send) rule, the emission/synchronization can
be performed immediately. There are two conditions for this. First,
the guard protecting the branch of execution must evaluate to true.
Moreover, there must exist an input commitment made by another
process (S in the rule) on the same channel. The local environ-
ment in the receiver is updated so that the input variable is bound
to the received value. The notation δi, x ⊲ v must be interpreted as
an update: the variable x is bound to the value v and any previ-
ous binding is simply discarded. We remind that there is no nesting
allowed, and thus no stack implied.

The (out) rule explains the case when there is no thread avail-
able with a matching input commitment. Consequently, a new out-
put commitment is recorded and the next branch of the choice is
promoted to a redex position. The injection of the wait action en-
sures that if all the branches are disabled, then the thread is ulti-
mately suspended (a situation denoted

∑

wait). If the guard eval-
uates to false, then the (next) rule is employed. Here we evaluate
the guards before resolving the choice. An alternative would be to
record the symbolic expression of the guards so that they may be
lazily evaluated. However, we remark that in the proposed seman-
tics the lexical environment can never be updated before a branch
is activated in a choice. Put in other terms, it is useless to postpone
the evaluation of the guards because they cannot change until the
choice is resolved. The case for reception is characterized by the
rules (recv) and (in). In the proposed semantics, the communi-
cated values are evaluated in a lazy way. This can be seen in the
(recv) rule: the value v is recorded as a symbolic expression in the
output commitment, and it is only evaluated at the time of synchro-
nization. In most situations , when there is more than one way to
synchronize, this “evaluate-by-need” scheme is most efficient.

The interactions between the communication rules (and also
(next)) are clearly not trivial, mainly because they underlie a no-
tion of (local) transaction. We may study a few important properties
of the protocol.

PROPOSITION 2. In an agent ∆ ⊢
∏

i
[Γi; δi] : Pi, ∄ĉ ∈ ∆ s.t.

∃j, k(j 6= k) with ĉ⇚vj :Qj ∈ Γj and ĉ⇛xk:Qk ∈ Γk

Informally, this states that all the commitments made to a chan-
nel in a given global state are of a single polarity, i.e. there are
either output or input commitment(s) but not both at the same time.
Put in other terms, the rule (send) works exclusively with (in),
and (out) with (recv).

To study the interaction between the choice construct and the
communication primitives, consider the following term:

[true] a!v,P+ [true] b!w,Q ‖ [true] b?(x),R+ [true] a?(y),S

In the "classical" π-calculus (the reduction semantics), there are
exactly two possible executions of the previous term: synchronizing
either on a or b. With a global prioritized choice (as e.g. [14]), the
situation is generally interpreted as a deadlock. In the interpretation
we propose, the left branch of the choice is only locally prioritized,
which means we have the following possible outcomes:

• The left-hand process first records the commitment â⇚v:P
and then b̂⇚w:Q using the rule (out) of the semantics. It next
switches to a waiting mode. The right-hand process then tries
its leftmost branch and finds a partner so the synchronization
on b is allowed through the rule (recv). Since the guard does
not evaluate to false, the (next) rule cannot apply and there
is no other possibility. The symmetric case, i.e. the right-hand
process records its two commitments in a row, leads to the
synchronization on a.

• The left-hand process records its first commitment â⇚v:P but
a context switch gives the token to the right-hand process. The

latter records its first commitment b̂⇛x:R with two possibili-
ties in the next step: either we infer through (recv) a synchro-
nization on a for the right-hand process, or a synchronization
on b initiated using (send) by the left-hand process. We must
also account for the remaining two symmetric cases.

By summarizing all the possibilities of executions for the exam-
ple, we can see that the non-deterministic nature of the construct is
preserved at the global level, even if there is some priority involved
locally. Of course, the reductions involved operate at a lower-level
of abstraction if we compare to the π-calculus, which is not a sur-
prise since it is an abstract machine for the calculus.

When there is no synchronization involved, for example in the
case of the tau prefix, the proposed semantics are more determin-
istic because of the local priority of the left branch of the choice.
Consider as an illustration the following term:

[true] tau,P+[true] tau,Q

Here, there is no alternative but to take the leftmost branch, which
would be only one of the two possibilities in the π-calculus. A
purely internal choice is only interesting at the level of specifica-
tions because it is a way to abstract away from the implementa-
tions. The local priority scheme is much easier to understand from
a programming perspective and its implementation is more natu-
ral and efficient. Strictly speaking, the π-threads represent more a
refinement than a variant of the π-calculus semantics.

3.3 Garbage collection

Our work on garbage collection principles for the π-calculus started
with [13]. The major step we recently achieved was to down-size
the formal model of the GC to only two semantic rules, as de-
fined in Table 5. We use a principle of reference counting which
is best known for its easy parallelization [10] but also its non-
trivial handling of cyclic collections and the usually higher con-
sumption of resources (CPU and memory) if compared to tracing
algorithms [4], mostly because of the need to maintain the refer-
ence counts.

Central to our model is the knows predicate of Table 5, which
tells if a given process owns at least one reference to the specified
channel. This allows to calculate the number globalrc of processes
who actually know about the channel c. This global reference count
is the only information we retain in the GC model and we do not
track the total number of references to the channels (induced by
aliasing in the local environments).

5 2010/10/18

knows(ĉ, [Γ; δ] : P)
def

= ∃x ∈ dom(δ), δ(x) = ĉ globalrc(ĉ,∆ ⊢
∏

i

[Γi; δi] : Pi)
def

=
∑

i

{

1 if knows(ĉ, [Γi; δi] : Pi)
0 otherwise

globalrc(ĉ, A) = 0

∆, ĉ ⊢ A → ∆ ⊢ A
(reclaim)

∀ĉ ∈
⋃

i
Γi, globalrc(ĉ,

∏

j
[Γj ; δj] : Qj) = 0

∆ ⊢
∏

i
[Γi; δi] :

∑

wait ‖
∏

j
[Γj ; δj] : Qj → ∆ ⊢

∏

j
[Γj ; δj] : Qj

(stuck)

Table 5. Operational semantics: rules for garbage collection

The first GC rule (reclaim) is self-speaking: if a given channel
is not referenced by any process - a situation occurring when the
globalrc for the channel is zero - then it can be safely reclaimed.

The second rule (stuck) provides a general solution for the
garbage collection of threads. The correct understanding of the rule
requires to change the way we generally consider the garbage col-
lection problem. The reason is that the resources we manipulate are
not memory cells, pointers, etc. but only channels and processes.
From this point of view, the GC problem can be reinterpreted as
a partial termination detection issue, which is exactly what is per-
formed by the (stuck) rule. The idea really is simple: if in the
global context there exists a clique of processes, all of them wait-
ing for external commitments on channels only referenced by the
clique itself, then the whole structure (including all its processes)
is indefinitely blocking. In such a situation, the best thing to do is
to reclaim the clique as a whole.

We now discuss more formally about the soundness and com-
pleteness of the proposed garbage collection scheme. This com-
monly relates to the notion of reachability. The garbage collector
semantics is sound if it does not reclaim any reachable memory
cell. Complementarily, it is complete if it actually reclaim all un-
reachable cells. In the case of the π-graphs, there are no memory
cells per se but only channels and processes. An alternative notion
of reachability must be proposed, which is as follows:

DEFINITION 1. Let an agent A
def

= ∆ ⊢ Πn
i=1[Γi; δi] : Pi.

A process [Γj ; δj] : Pj(1 ≤ j ≤ n) in A is said enabled iff:

• it is active (i.e. Pj 6=
∑

wait), or

• it is waiting (Pj =
∑

wait) and there is a channel ĉ ∈ Γj and
an enabled process [Γk; δk] : Pk(1 ≤ k 6= j ≤ n) in A such
that knows(ĉ, [Γk; δk] : Pk) = true

A process is said disabled iff it is not enabled

In this definition, the question of reachability translates to a
notion related to process scheduling. A process is said enabled if
either it is actually runnable (running or ready for scheduling) or if
it is waiting but may become ready for scheduling in the future. In
the proposed framework, this can only happen if at least one other
process - itself enabled - knows about at least one of the channels
that can be used to awake the waiting process. If none of these
conditions is satisfied, then there is no way the process could be
ever awaken, and in this case we say it is disabled.

We see that the definition has an inductive flavor: the chain
of disabled processes eventually boils down to an active process,
which we formalize as follows:

LEMMA 1. If a process [Γ1; δ1] : P1 is enabled, then there exist
a collection of processes [Γ2; δ2] : P2, . . . , [Γn; δn] : Pn and
channels ĉ1, . . . , ĉn (n ≥ 2) such that ∀i, 1 ≤ i < n, ĉi ∈
Γi ∧ knows(ĉi, [Γi+1; δi+1] : Pi+1) = true, and Pn 6=

∑

wait

An important hypothesis for the correct behavior of the GC
semantics is to restrict the discussion to executions involving a
finite number of processes within an agent. Under this assumption,

the previous lemma trivially follows from Definition 1 by a simple
inductive argument.

From this we can develop a soundness argument, by showing
that the garbage collection semantics does not involve false posi-
tives.

PROPOSITION 3. The (stuck) rule does not reclaim any enabled
processes

First, we can see that the rule cannot reclaim active processes
because the reclaimed processes are waiting (i.e. in state

∑

wait).
For the rest we proceed ab absurdo. Suppose there exists an (in-
active) enabled process [Γ1; δ1] : P1 that is a member of the pro-
cesses Πi[Γi; δi] :

∑

wait in the left-hand side of the reduction
defined by the conclusion of the (stuck) rule. By hypothesis of
the rule ∀ĉ ∈ Γ1, globalrc(ĉ,Πj [Γj ; δj] : Qj) = 0, i.e. all the
processes knowing all the channels blocking P1 are also to be re-
claimed. Moreover, the whole chain P1, . . . , Pn (n ≤ 2) implied
by Lemma 1 should be reclaimed also because if any of the chan-
nels ĉ1, . . . , ĉn linking the P ′

i s is known to the Qj’s, then the hy-
pothesis of the (stuck) rule would be contradicted. But this in turn
contradicts in Lemma 1 the fact that Pn 6=

∑

wait. In consequence
the process P1 cannot be reclaimed, which concludes the proof.

For the completeness part, we may show that it is possible to
reclaim all disabled processes as a once.

PROPOSITION 4. Given an agent A
def

= ∆ ⊢ Πi[Γi; δi] : Pi ‖
Πj [Γi; δi] : Qj such that all the Pi’s are disabled and all the Q′

js

are enabled. Then we can infer A → ∆′ ⊢ Πj [Γj ; δj] : Qj by rule
(stuck)

Since the Pi’s are all disabled and all the Qj’s enabled, by Def-
inition 1 it must be the case that ∀ĉ ∈

⋃

i
Γi, knows(ĉ, [Γj ; δj] :

Qj) = false (i.e. no enabled process may “reach” a disabled one).
In consequence, globalrc((ĉ,Πj [Γj ; δj] : Qj) = 0 which is ex-
actly the hypothesis of the (stuck) rule. This concludes the proof.

Note that we do not discuss the collection of “unreachable” cy-
cles per se, since the (stuck) rule is able to reclaim any structure
of disabled processes. While as demonstrated it is possible to re-
claim all disabled processes at once, it is not mandatory to do so
and the rule (stuck) allows a more incremental way of reclaiming
processes. The following proposition will prove most useful when
we detail the garbage collection algorithms in Section 4.3.

PROPOSITION 5. Any disabled process can be reclaimed by the
(stuck) rule

Consider an arbitrary disabled process [Γ1; δ1] : P1. We must
show that there is a collection of (disabled) processes that can be re-
claimed together with P1 through the rule (stuck). By Definition 1
we know that P1 is in a waiting state

∑

wait and for any ĉ ∈ Γi and
any process [Γi; δi] : Pi, knows(ĉ, [Γi; δi] : Pi) = true implies
Pi is also disabled. Under the finite agent assumption, the transitive
closure of such interlinked disabled process is finite. By taking the
complement of this set of disabled process as the Q′

js in the con-
clusion of (stuck), we satisfy the hypothesis of the rule and thus

6 2010/10/18

record Agent {
chans : Set[Channel]
run : Queue[PiThread]
ready : Queue[PiThread]
wait : Queue[PiThread]
old: Queue[PiThread]
date: Int

}

record Channel {
taken: Lock
globalrc, waitrc : Int
commits : Set[Commit]

}

record PiThread {
env : Array[Value]
knows : Set[Channel]
state: { R, Y, W, O }
commits : Array[Commit]
clock, date : Int

}

record Commit {
kind : { IN, OUT }
thread : PiThread
chan : Channel
val: Value
clock : Int

}

Table 6. PCM : main data structures

the whole clique of disabled processes can be reclaimed, together
with P1, which concludes the proof.

4. The Parallel Commitment Machine

We give in this Section an overview of the Parallel Commitment
Machine (PCM), which is a parallel implementation of the π-
threads calculus. The challenge is to decentralize the control of
the abstract machine. In fact, there are only a few places where
some centralization is implied by the operational semantics. The
first place is in the communication rules, when a process must look
for a partner in order to synchronize. In the worst case it has to ask
every other processes in the agent. To decentralize this knowledge,
a simple but effective idea is to “inverse” the commitment relation
and record in each channel the commitments made by processes on
it. Using this information, the lookup phase may now be performed
in constant time because it suffices to take an arbitrary commitment
made on the channel to find a partner. There is a drawback, though,
because when a process is ready for execution, it has to remove all
its commitments and this knowledge may be spread over several
channels. A very effective work-around is to employ a simple
lazy invalidation scheme based on logical clocks. The (stuck)
garbage collection rule also involves a non-local knowledge, but
there is a relatively simple way of reconstructing this knowledge
in an incremental (and parallel) way. For concurrency control,
the general principle is extremely simple: the channels must be
accessed in a mutually exclusive way by processes, and that is
almost all about it. We now give a few details about how these
principles can be actually implemented.

4.1 Architecture

The architecture of the PCM can be presented with a few data struc-
tures and associated algorithms. The only global-level entity is the
agent, as described in the top-leftmost pseudo-code of Table 6. An
agent manages a set of channels (field chans) accessed in parallel
by a set of threads. The main goal of the agent is to support the fast
scheduling of the threads. The threads are distributed in four dif-
ferent scheduler queues, depending on their running state. The ac-
tually running threads are placed in the run queue. The size of this
queue corresponds to the number of “physical” threads available in
the underlying hardware. In a micro-threading situation it is a sin-
gleton. The ready queue contains the threads that are next planned
for execution. In contrast, the threads in the wait queue cannot be
executed right away, i.e. they have deposited some commitments.
Finally, the old queue contains waiting threads of the second gen-
eration. The field date allows to decide whether a waiting thread

is in the first or the second generation. These relate to the garbage
collection algorithm presented below.

A communication channel, as described by the Channel record,
operates similarly to a lock for mutual exclusion. The underlying
implementation should employ efficient machine-level atomic con-
ditional updates (e.g compare-and-swap operations) because the
threads only access to the channels for a very short period of time.
The field globalrc is the global reference count for the considered
channel, as described in Table 5. The GC also requires to main-
tain the number waitrc of the waiting processes having at least a
reference to the channel. A useful invariant to remember is waitrc
≤ globalrc. Finally, the commitments made on the channel are
recorded in the commits field. This information is already avail-
able in the threads but as explained before we need this redundancy
for optimal scheduling.

The implementation of a thread corresponds to the PiThread
structure of Table 6. Each thread has a local environment, a set of
registers and a special knows set that implements locally the knows
predicate of the GC semantics (cf. Table 5). As expected from the
formal semantics, there is no stack structure involved, and the size
of all the components except knows can be computed at compila-
tion time (cf. Proposition 1). The commitments made by the thread
are recorded in the set commits. The clock field is a logical clock
for lazy commitment invalidation. When a thread makes a commit-
ment, the value of the clock is saved in the Commit structure.. A
commitment is only valid if its clock value matches the one of the
committing thread. It is thus only required to increment the clock to
invalidate all the previous commitments made by the thread when
it is awaken. Such invalid commitments can be reclaimed in a lazy
way when a thread gets access to the corresponding channel struc-
ture, in general in the scheduling code. The date counter marks the
time when the thread entered the wait queue of the scheduler. After
some time, the threads with an old date will enter the old queue for
potential garbage collection (see below). Finally, the next instruc-
tion to execute is pointed by the program counter pc.

4.2 Scheduler

The scheduler of the PCM is most remarkable by its decentralized
control. The main idea is to select the π-threads from the ready
queue and give them access to the CPU resources by putting them
in the run queue. Of course, not all threads are always ready to run.
A simple but useful invariant to remember is that a thread [Γ; δ] : P
can only be in the ready or run queue if Γ = ∅. Complementarily,
it can only be in the wait or old queue if Γ 6= ∅, which means it
actually has some valid commitment deposited. Now, the decision
to switch from a ready state to a wait state (and conversely) can be
taken in a purely local way:

• if a (running) thread tries to perform an emission or a reception
on a given channel ch, it has to find a (waiting) partner with
some matching commitment. This information can be obtained
almost instantaneously by inspecting the commitments made
on the channel ch by fetching an arbitrary valid commitment.
If there is no such valid partner then the thread deposits its
commitments and goes into the wait queue. Because of the lazy
invalidation of commitments, the lookup is not strictly speaking
performed in constant time. It may be necessary to remove a
set of invalid commitments before actually finding a match.
However, these extra steps correspond to the (delayed) removal
of the commitments, there is no waste here.

• In the case of a non-deterministic choice, we proceed as fol-
lows. First, during a polling phase, the branches of the choice
are tested in a left-right ordering. If the guard of the current
branch evaluates to false then the branch is simply skipped. If
the guard evaluate to true and the guarded action is executable,

7 2010/10/18

then the branch is selected immediately. If the action is not exe-
cutable, then we prepare the commitments to deposit as part of
a (local) transaction. If a branch is executed then the transaction
is simply aborted but if all the branches are blocking, the trans-
action is committed (which means the commitments it contains
are effectively recorded) and the thread is put in the wait queue.
Note that the choice must appear as atomic, and thus the chan-
nels must be locked during the initial polling phase. In our im-
plementations we adopt a simple pessimistic locking approach
because the transactions are very lightweight: there are in gen-
eral no more than a dozen branches to test, and the locks must
be only retained during the polling phase. Of course, a more
optimistic approach could be also experimented.

In conclusion, the main property of the scheduling algorithm is
that its logic is distributed over the π-threads themselves, and there
is no need for any centralized intervention.

4.3 Garbage collector

The implementation of an efficient garbage collector is probably
one of the most critical and complex issue when developing a vir-
tual machine [4]. As suggested by the rules (reclaim) and (stuck)
of the semantics (cf. Table 5), the principles underlying the garbage
collector of the PCM are remarkably simple. For the (reclaim)
rule, a π-thread can safely reclaim a channel it encounters if the
latter has a global reference count of 0.

In a similar way, a thread can check if an emission or a reception
is possible by first testing the value of the field globalrc for the
concerned channel. If this count is 1 then it means the channel
is only referenced by the thread trying to emit or receive. Put in
other terms, there is no way this emission or reception could be
performed because there cannot be any partner. The same situation
occurs in a choice where all the involved channels are only known
to the current process. In both situations the thread can be safely
reclaimed. We exploit here the following derived rule :

∀ĉ ∈ Γ, globalrc(ĉ, A) = 0

∆, p̂ ⊢ [Γ; δ, pid⊲p̂] :
∑

wait ‖ A → ∆ ⊢ A
(stuck1)

The interest of this derivative of (stuck) is that it can be decided
in a purely local manner. Of course, it does not cover the general
case of e.g. cyclic structures. In most garbage collectors based on
reference counting, non-trivial algorithms for cycle detection in
graphs are employed [10]. As explained previously, we do not need
in the case of π-threads to actually detect any cyclic structure, but
only a partial termination. In the context of the PCM, where every
resources are either threads or channels, the latter problem enjoys
a (much) simpler solution than the former !

procedure wait(a:Agent, th:PiThread) {
for(ch:Channel ∈ th.knows) {

ch.waitrc := ch.waitrc + 1
}
a.wait := a.wait ∪ { th }
th.date = a.date ; a.date = a.date + 1 ;

}

procedure awake(a:Agent, th:PiThread) {
for(ch:Channel ∈ th.knows) {

ch.waitrc := ch.waitrc - 1
}
a.wait := a.wait \ { th }

}

Table 7. Algorithms : waiting and awaking

From an algorithmic point of view, the principle of rule (stuck)
is to determinate a clique of waiting threads verifying a global

property on the reference count for the channels on which the
threads are waiting. The hypothesis of the rule requires to count
the total number of threads outside the clique, i.e. the threads that
are not waiting on any of these channels. We must obtain a count of
0 which means no thread outside the clique may ever wake any of
the threads within the clique. A way to simply separate the outside
from the inside of such a clique is to maintain a count of the (global)
references to the channels from waiting threads. This is the role of
the waitrc field of the Channel structure (cf. Table 6). When a thread
is put of removed from the wait (or old) queue, it is required to
refresh this value, as explained in Table 7.

procedure gc2(a:Agent,th:PiThread) {
var clique:Set[PiThread] := ∅
var candidates:Set[PiThread] := { th }
do {

var candidate:PiThread := choose(candidates)
for(ch:Channel ∈ chans(candidate.commits)) {

if ch.waitrc = ch.globalrc then {
candidates := candidates

∪ procs(ch.inCommits∪ch.outCommits)
\ clique

} else return
}
clique := clique ∪ { candidate }

} while(candidates 6= ∅)
for stuck:PiThread ∈ clique {

reclaim(stuck)
}

}

Table 8. Algorithms : second generation collector

PROPOSITION 6. For any channel ch, if ch.waitrc=ch.globalrc then
all the threads knowing the channel are waiting.

Despite being obvious, this proposition is at the heart of our
GC algorithm for second generation (i.e. old) garbage, whose
pseudo-code is provided in Table 8. The objective is to construct,
incrementally and concurrently, a clique of threads of the form
∏

i
[Γi; δi, pid⊲p̂i] :

∑

wait which is isolated in terms of commit-
ments on channels. First, we have to pick up a candidate among
the waiting threads. A good heuristic is to select a candidate who
started waiting “a long time ago”, which can be obtained by in-
specting the date field. Past a given date (one of the very few pa-
rameters of our algorithm), a waiting thread is put in the old queue
of the scheduler. The gc2 algorithm picks up its initial candidate
among such old threads. In the algorithm, the candidate corre-
sponds to the variable th. We first construct an empty clique and
a set of candidates, initially a singleton containing the candidate
thread th. In the main loop of the algorithm, the principle is to try
to empty the set of candidates to populate the clique. For this we
first choose an arbitrary thread within candidates. We then analyze
the set of channels that are referenced by the commitments of this
thread. If one of these channels is known by a ready or running
thread, then we know at least one thread outside the clique would
be able to awake at least one of the threads within the clique,
so we abandon this instance of the algorithm. Now, if the equa-
tion ch.waitrc=ch.globalrc holds then we know that all the threads
having some reference to ch are waiting, they are thus also new
candidates to be added to the clique we try to construct. We add
these threads to the set of candidates if they are not already present
in the clique. If at some point we manage to empty candidates then
it means we constructed a clique that is valid with respect to the
hypothesis of the (stuck) rule. In consequence, all the threads
within the clique are indefinitely blocking and can be all reclaimed
at once.

8 2010/10/18

It is easy to see the gc2 algorithm is terminating because at worst
we must examine as candidates all the waiting threads in the agent
(note that the detection of a global termination is more efficiently
detected when both the ready and run queues are empty). For the
correctness wrt. (stuck), we have not yet elaborated the formal
proof but we started recently its verification in a proof assistant. At
the time of writing this paper the formalization remains unfinished.

4.4 Implementations

We developed four different implementation of the π-calculus se-
mantics, three of which are directly based on the π-thread calculus
as presented in this paper. The CubeVM [13], our first implemen-
tation, is an interpreter based on an older version of the semantics.
It is still a useful pedagogical for students/learners to experiment
with the π-calculus constructs and semantics. The LuaPi imple-
mentation is a small library based on the coroutine mechanisms of
the Lua scripting language. More than just a toy, this implemen-
tation shows that the π-threads model can be implemented in a
very concise way with minimal runtime support. It is also used as
a pedagogical tool and it is available online with a companion tuto-
rial [11]. For the parallel variant, we developed a library above the
multi-threading facilities of the Java programming language. Most
of the parallel algorithms of the PCM where developed in the con-

text of this library, which is also available online6. The implemen-
tation uses modern concurrency control features and lock-free al-
gorithms, especially the lazy invalidation scheme explained previ-
ously. A termination detection algorithm is also provided, based on
the gc2 algorithm presented in this paper. Finally, we are working
on a complete toolchain that targets the PCM directly. Although it
is at a very early stage of development, preliminary benchmarks re-
veal promising performance results. More informations about these
various implementations and benchmarks can be found on the web
site for the project7.

5. Related work

There exists a large variety of language abstractions for paral-
lel programming. In our work, we are mostly interested by pro-
gramming languages and implementations based on the metaphor
of communicating processes. Our main object of study is the π-
calculus [9, 17], of which there are very few implementations. The
most famous one is the Pict programming language, which is an
implementation of an asynchronous variant of the π-calculus with-
out a choice operator [15]. The closures used for efficient schedul-
ing in Pict are quite similar to our commitments. One important
difference is that in Pict a given process can deposit at most one
closure, whereas we allow simultaneous commitments to support
the choice operator. To address the problem of efficiently remov-
ing commitments, we propose a lazy invalidation scheme based on
logical clocks. Because of its asynchronous nature, the closures are
always input-guarded in Pict, whereas we allow a mix of input and
output guards. Still for efficiency reasons, we also propose a lazy
evaluation of output guards.

The Occam-π language [20] is an extension of the Occam lan-
guage, itself based on the CSP formalism. We borrow some features
of the Occam-π syntax but the latter is a much richer language. We
favor an intermediate view of the process-oriented language, which
may “disappear” behind higher-level derived constructs. It seems
that Occam-π, as plain Occam, only allow input guards in choice
expressions - probably for efficiency concerns - whereas we allow
a mix of input and output guards. We did not find, however, a de-
scription for an intermediate language with formal operational se-

6 http://code.google.com/p/javapi/
7 http://lip6.fr/Frederic.Peschanski/pithreads

mantics which would allow more thorough comparisons. At the im-
plementation level, it would be interesting to compare the schedul-
ing and garbage collection principles of Occam-π implementations
with ours. But at the current stage of our implementations this study
seems premature.

Our own CubeVM [13] is a reasonably efficient interpreter for
an applied variant of the π-calculus. The choice operator imple-
mented by the VM is purely non-deterministic but synchronization
requires a linear search of partners in the scheduling algorithms. In
comparison, our new operational semantics based on explicit com-
mitments yield a much more efficient scheduling algorithm. The
micro-benchmarks available online show that the impact of this
change is huge in term of performances. Another important inno-
vation is the new semantics and algorithms for second generation
garbage collection of threads. The efficient collection of cycles in
algorithms based on reference counting is, still today, an active area
of research [10]. The originality of our approach is to reinterpret
the problem as the detection of a partial termination of concurrent
processes. The cyclic configurations are a special case of this more
general problem, and the solution is indeed simpler than the explicit
detection of cycles.

The extension Concurrent ML (CML) for the SML/NJ compiler
of Standard ML supports a programming style very close to the π-
calculus [16]. In fact the combinators for synchronization events
supported by CML makes it even more expressive: it is for ex-
ample possible to encode dynamic choices with the possibility to
insert/remove execution branches at runtime. However, it is not ob-
vious how we may generalize the guarded choices to more complex
event combinators while maintaining the current balance between
the simplicity of the operational semantics and the efficiency of its
implementation(s) (especially for the scheduling and garbage col-
lection). At the compiler level, relying on arbitrarily complex event
combinators would make harder the static analysis of the language
(e.g. the calculation of static bounds cf. Table 4). We plan, how-
ever, to introduce less intrusive extensions, in particular multicast
or asynchronous channels. As a library, CML can exploit the fea-
tures of the SML/NJ compiler : higher-order functions, lightweight
continuations, garbage collector, etc. In our approach, we try to rely
on a minimal runtime support (basic datatypes and operations, low-
level operating system interface). Finally, an important reason to
stick with the π-calculus is to establish a formal connection with
the abstract calculus, and in the longer term to connect the imple-
mentations with modeling/verification tools (especially [12]).

Recently, Google released the Go programming language [6]
with native support for concurrent processes (called goroutines)
and synchronous (as well as asynchronous) channels. At the imple-
mentation level, an interesting characteristic of Go is the support
of a mix of micro and macro-threading, based on a notion of stack
segmentation. The principle is simple : the “real” stack is divided
in various zones, each of which is associated to a given thread. If
the allocated zone is not sufficient (e.g. because of too many nested
calls), the extra memory can be allocated at runtime. The π-threads
have no stack but only a local environment whose size is computed
at compilation time. The segmentation of the stack can be used to
store the local environments for the actually running threads, with
the big difference of a compiler support. There are only (very) in-
formal specifications available for the Go language so it is difficult
to compare the approaches in more details. Finally, it seems that the
GC framework for Go is still at a very early stage of development,
maybe our GC scheme could be of some interest ?

The monadic functional programming metaphor offers an ele-
gant way to mix pure functional code with imperative traits: side
effects, input/output and parallelism. The M-vars of Concurrent
Haskell [8] roughly correspond to a π-calculus without a choice
operator. A powerful transactional choice is proposed with the

9 2010/10/18

STM [7]. Unlike the π-calculus choice, which plays “one move
in advance”, the transactional choice can play many moves before
an actual branch of execution is committed. The proximity with the
database transactions makes the metaphor appealing, but the under-
lying formal semantics and implementation support are also much
more involved. It appears to us that “one move in advance” is al-
ready a great deal of expressive power.

The join patterns proposed in the JoCaml programming lan-
guage [5] are quite interesting from a π-calculus point of view
because they offer an orthogonal way of composing behaviors.
The non-deterministic choice plays the role of a «OR» combina-
tor whereas the joins play the role of «AND». The two constructs
can thus be combined in a natural way. In the LuaPi implementa-
tion we added the join patterns natively, because it is easy to do
so in a micro-threading environment. It also supports join patterns
with both input and output guards whereas only input guards are
supported in JoCaml. Another approach is to encode the joins us-
ing the choice operator and recursion, which is more amenable to
a truly parallel implementation. In this case, however, only joins
with input guards can be supported. Consider for example the join
pattern {c?(x) & d?(y)}P. In order to execute the continuation P,
the process must be able to simultaneously read on the channels c
and d. This behavior can be encoded as follows:

def J = c?(x), [d?(y),P + c!x,J]

The order of the clauses in the choice is important, here we
make the left-branch prioritized so that we put a priority on resolv-
ing the join pattern, and only if it is not possible we offer to “give
back” the value we got though the channel c.

Erlang [3] is quite famous for its concurrency model based on
the actor model of computation [1]. With actors the processes inter-
act in an asynchronous way using message passing but without any
notion of communication channel. In consequence, the processes
must know about each others to interact, i.e. they share their iden-
tity. In the π-calculus there is less implicit coupling between the
processes because they are anonymous, and the only shared infor-
mation are the channels they use to communicate. Moreover, the
garbage collection problem is more complex in the case of actors
because it is required to maintain the “inverse” references [19].
We favor in this work the synchronous interpretation of the π-
calculus but there are natural extensions of the present work to
asynchronous semantics. The first possibility would be to adopt
the asynchronous-π approach [2] by disallowing output prefixes.
The output commitments (without continuations) would then corre-
spond to buffer cells. A second approach, more operational, would
be to introduce buffered channels.

6. Conclusion

We advocate in this work and paper the use of an applied variant
of the π-calculus – the π-threads – as an intermediate language in
a compiler toolchain for a parallel programming environment. We
believe the proposed operational semantics to be simple and “natu-
ral”, especially if we consider the fact that they to not characterize
the language itself but its (abstract) implementation. This includes
important properties related to thread scheduling and garbage col-
lection. A striking feature of the PCM machine is its stackless ar-
chitecture which, definitely, is a major advantage when it comes to
parallelism. We see the explicit commitment model as probably the
most natural interpretation of the “one move in advance” kind of
non-determinism promoted by the π-calculus and other similar pro-
cess algebras. The direct consequence is the decentralized schedul-
ing algorithm. Last but not least, the GC algorithms proposed in the
PCM provide a simple and general solution to the issue of garbage
collection for parallel processes.

Our current research mostly focuses on the intermediate and
backend layers of the compiler toolchain. We investigate the type-
directed static analysis of the intermediate language and in partic-
ular the compile-time detection of chain reactions for automatic
stack injection (cf. [13] for a manual approach). Given the proxim-
ity of the calculus and the virtual machine, we recently initiated a
project for a certified implementation of the PCM using a proof as-
sistant. The longer term objective would be the design of a certified
compilation toolchain for the π-calculus.

References

[1] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for
actor computation. Journal of Functional Programming, 7(1):1–69,
Jan. 1997.

[2] R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for
the asynchronous pi-calculus. In Concur’96, volume 1119 of LNCS.
Springer, 2001.

[3] J. Armstrong. A history of erlang. In HOPL, pages 1–26, 2007.

[4] D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first garbage
collection. In ISMM ’04, pages 37–48. ACM, 2004.

[5] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A
calculus of mobile agents. In Concur’96, volume 1119 of LNCS, pages
406–421. Springer, 1996.

[6] Google. The Go Programming Language Specification. http://
golang.org/doc/go_spec.html, 2009.

[7] T. Harris, S. Marlow, S. L. P. Jones, and M. Herlihy. Composable
memory transactions. Commun. ACM, 51(8):91–100, 2008.

[8] S. L. P. Jones, A. Gordon, and S. Finne. Concurrent haskell. In
POPL’96, pages 295–308, 1996.

[9] R. Milner. Communicating and Mobile Systems: The π-Calculus.
Cambridge University Press, 1999.

[10] H. Paz, D. F. Bacon, E. K. Kolodner, E. Petrank, and V. T. Rajan. An
efficient on-the-fly cycle collection. ACM Trans. Program. Lang. Syst.,
29(4), 2007.

[11] F. Peschanski. (lua)pi-threads tutorial. Technical report, UPMC
Paris Universitas – LIP6, http://luaforge.net/docman/view.
php/505/5768/LuaPiTut.pdf, 2008.

[12] F. Peschanski and J.-A. Bialkiewicz. Modelling and verifying mobile
systems using pi-graphs. In Sofsem’09, volume LNCS 5404, pages
437–442. Springer, 2009.

[13] F. Peschanski and S. Hym. A stackless runtime environment for a
pi-calculus. In VEE ’06, pages 57–67. ACM Press, 2006.

[14] I. Phillips. Ccs with priority guards. In CONCUR, volume 2154 of
Lecture Notes in Computer Science, pages 305–320. Springer, 2001.

[15] B. C. Pierce and D. N. Turner. Pict: a programming language based on
the pi-calculus. In Proof, Language, and Interaction, pages 455–494.
The MIT Press, 2000.

[16] J. H. Reppy. Concurrent Programming in ML. Cambridge University
Press, Cambridge, England, 1999.

[17] D. Sangiori and D. Walker. The pi-calculus: a Theory of Mobile

Processes. Cambridge University Press, 2001.

[18] H. Sutter. The free lunch is over: a fundamental turn toward concur-
rency in software. Dr. Dobbs Journal, March 2005.

[19] A. Vardhan and G. Agha. Using passive object garbage collection
algorithms for garbage collection of active objects. In ISMM’02, pages
106–113. ACM Press, 2002.

[20] P. H. Welch and F. R. M. Barnes. Communicating mobile processes. In
25 Years of CSP, volume 3525 of Lecture Notes in Computer Science.
Springer, 2005.

10 2010/10/18

