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Abstract. We present a Petri net interpretation of the pi-graphs - a
graphical variant of the pi-calculus. Characterizing labelled transition
systems, the translation can be used to reason in Petri net terms about
open reconfigurable systems. We demonstrate that the pi-graphs and
their translated Petri nets agree at the semantic level. In consequence,
existing results on pi-graphs naturally extend to the translated Petri
nets, most notably a guarantee of finiteness by construction.
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1 Introduction

Systems that reconfigure themselves dynamically are ubiquitous: from Internet
servers that create and destroy dynamic connections with clients, to mobile sys-
tems that scrutinize their surrounding environment to adapt their behaviour
dynamically. The pi-calculus [1] is acknowledged as a particularly concise and
expressive formalism to specify the dynamic structure of reconfigurable systems.

There is now a relatively rich tradition of translations of pi-calculus variants
into Petri nets. One motivation of such studies is the possibility to apply effi-
cient verification techniques on pi-calculus models. Another interest relates to
expressivity: which features of the pi-calculus can be translated? What is the
abstraction level required from the target Petri net formalism? Existing related
research studies roughly decompose in either semantic [2–4] or syntax- driven [5]
translations. In the first case, a reachability analysis of the semantics of a given
term is performed, and a Petri net is synthesized from this. In the second case,
a Petri net is built directly from the syntax. Most of the time, the semantic
analysis allows to produce lower level nets. On the other side of the coin, se-
mantic encodings generally cover less features (especially no support for match
or mismatch operators; i.e., without comparison of names) and often only ap-
ply on reduction, or chemical semantics for closed systems. With the increased
expressivity of high-level nets, it is possible to support more constructs. Most
importantly, it is possible to capture the semantics of open systems by translat-
ing the richer labelled transition semantics which is most customary in studies
about the pi-calculus. To quote Robin Milner: “you can’t do behavioural analysis
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with the chemical semantics [...] I think the strength of labels is that you get
the chance of congruential behaviours” [6]. More prosaically, labelled transition
semantics enables compositional reasoning about partial specifications.

In this paper, we continue our work about translating rich pi-calculus variants
in labelled transition semantics [5]. By introducing a “translation-friendly” vari-
ant of the pi-calculus, namely the pi-graphs [7, 8], we are able to provide a much
simpler syntax-driven translation to one-safe coloured Petri nets. The translation
supports most of the constructs of the original pi-calculus, including the match
and mismatch operators with their non-trivial semantics. For non-terminating
behaviours we use a notion of iterator along the line of [9]. The semantics for
the intermediate calculus rely on graph relabelling techniques (hence the name
pi-graphs) but in the present paper, to avoid confusion with the Petri net se-
mantics, we provide a more abstract presentation. An important result of the
paper is that these semantics are in complete agreement. In consequence, exist-
ing results on pi-graphs (cf. [8]) naturally extend to the translated Petri nets,
most notably a guarantee that only finite-state systems can be constructed.

The outline of the paper is as follows. In Section 2 we describe the syntax and
informal semantics of the pi-graph calculus. In Section 3 we present the opera-
tional semantics more formally. Section 4 presents the translation to Petri nets,
and discusses its main properties. The related and future works are discussed in
Section 5.

2 The process calculus

The pi-graph process calculus is a variant of the pi-calculus that enjoys a nat-
ural graphical interpretation4 hence its name. The syntax is based on prefixes,
processes, iterators and graphs. The prefixes are as follows :

p ::= τ | c〈a〉 | c(x) |
∑

[P1 + . . . + Pn] |
∏

[P1 ‖ . . . ‖ Pn] (n > 1)

The first three elements correspond to the standard action prefixes of the
pi-calculus: silent action τ , output c〈a〉 of name a on channel c, and input c(x)
through channel c of a name bound to the variable x. The remaining two elements
are an n-ary non-deterministic choice operator

∑

between a set of possible
processes P1, . . . , Pn and an n-ary parallel operator

∏

. Unlike most variants
of the pi-calculus, these are not considered as top-level binary operators. The
reason is that the sub-processes of choice and parallel must be terminated (cf.
below). The syntax for processes is as follows:

P,Q, Pi ::= p.P | [a = b]P | [a 6= b] P | p.0

A process can be constructed inductively by prefixing another process P by
a prefix p, denoted p.P . The match [a = b] P (resp. mismatch [a 6= b] P ) is such

4 The graphical interpretation of pi-graphs is not detailed in the present paper to
avoid any confusion with the translated Petri nets. This interpretation is discussed
at length in previous publications [7, 8].
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that the process P is only enabled if the names a and b are proved equal (resp.
inequal). Finally, the construction p.0 corresponds to the suffixing of a prefix p
by a terminator 0. It is the only way to terminate a prefixed sequence. Moreover,
no match or mismatch is allowed in front of 0, for semantic reasons (cf. [8]).

The top-level components of pi-graphs are iterators, which allow to encode
control-finite recursive behaviours without relying on explicit recursive calls. The
syntax of iterators is as follows:

I ::= I : (νa1, . . . , νan) ∗ P with a1, . . . , an names, P a process and I a label

The behaviour of an iterator is the repeated execution of its main process P
in which the names a1, . . . , an are considered locally private.

Iterators can be composed to form a pi-graph with the following syntax:

π ::= (νA1, . . . , νAm) I1 ‖ . . . ‖ Ip

with A1, . . . , Am names and I1, . . . , Ip iterators

The names A1, . . . , Am are considered globally private in all the iterators
I1, . . . , Ip. These (roughly) play the role of static restrictions as in CCS, whereas
locally private names (i.e. νa1, . . . , νan) correspond to the (dynamic) restrictions
of the pi-calculus. Iterators are implicitly executed in parallel.

To illustrate the syntax constructors and their informal meaning, we consider
the example of a simple server mode.

Example 1. a sequential server (empty parentheses are omitted)

(νStart, νRun, νEnd)

Service : ∗Run(s).s(m).
∑

[

[m = s] End〈s〉.0
+ [m 6= s] τ.Start〈s〉.0

]

.0 ‖

Handler : ∗Start(s).Run〈s〉.0 ‖
Server : (νsession) ∗ adr(c).c〈session〉.Start〈session〉.End(q).0

The depicted pi-graph has three iterators: the main server process, a session
handler and a service delivered to clients. The server initially expects a connec-
tion request from a client on the public channel adr. A (locally) private session
channel is then sent back to the connected client and an instance of the service
is started through the session handler. The (globally) private channels - Start,
Run and End - are used to confine the server model, disallowing external inter-
ferences. When a request is emitted by a client (through channel s in the Service
iterator) two cases are discriminated. If the received message m is the session
channel s itself, then this indicates the end of the session. The control is passed
back to the Server iterator using the (globally private) End channel. Otherwise,
an internal activity is recorded (as a silent step τ) and the service is reactivated
by the Handler component.

Note that in this example we only specify the server infrastructure. We see
the model as an open system independent from any particular client model.
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3 Operational semantics

The operational semantics of pi-graphs is based on graph relabelling, a simplistic
form of graph rewriting where nodes and edges can have their content updated
but neither created nor deleted. To avoid any confusion with the Petri net se-
mantics - also a form of graph relabelling - we adopt in this paper a process
calculus presentation. As a preliminary, we require a precise definition of what
is a name in a pi-graph.

Definition 1. The set of names is N
def

= Nf ⊎Nv ⊎Nr ⊎Np ⊎No ⊎Ni with:
















Nf the set of free names a, b, . . .
Nv the set of variables xI , yJ , . . . with I, J iterator labels
Nr the set of restrictions νA, νB, . . .
Np the set of private names νIa, νJb, . . . with I, J iterator labels

No
def

= {n! | n ∈ N} the set of output names

Ni
def

= {n? | n ∈ N} the set of input names

We define Priv
def

= Nr∪Np (private names) and Pub
def

= N \Priv (public names)

This categorization is required because names are globalized in the semantics
(i.e. all names have global scope). The sets Ni and No are names whose identity
is generated fresh by construction. They play a prominent role in the model.

3.1 Terms, context and initial state

The semantics manipulates terms of the form Γ ⊢ π where π is a pi-graph with
names globalized (cf. below) and Γ = β; γ;κ is a global context with:

– β ∈ N → N a name instantiation function,
– κ ∈ No → P(Ni) a causal clock, and

– γ
def

= (γ=, γ 6=) ∈ (N ×N )2 a dynamic match/mismatch partition

The operations available on the context are formalized in Table 1. We will
discuss these in the remainder of the section.

The initial state and context is denoted β0; γ0;κ0 ⊢ π0 where π0 is a syntactic
term with globalized names. If the syntactic term is (νA1, . . . , νAm) I1 ‖ . . . ‖
Ip then we transform it as (I1 ‖ . . . ‖ Ip){νA1/A1, . . . , νAm/Am}, i.e. each
restricted bound name Ai is replaced by an explicit restricted occurrence νAi in
the set Nr. Moreover, we rewrite each iterator of the form Ij : (νa1, . . . , νan) ∗Pj

as Ij : ∗Pj{ν
Ij a1/a1, . . . , ν

Ij an/an} where each name νIj ak is in Np. As such,
we encode at the global level the local nature of these private names. Finally we
repeat this process for each input variable x of iterator Ij , renamed (as well as
its occurrences) as xIj in set Nv. We thus end up with a term containing only
names with global scope but ranging from disjoint subsets of N (all iterator
labels are assumed different).

In the initial state, the instantiation function associates each name of π0 with

itself, i.e. β0
def

= {n 7→ n | n a name of π0}. By default, there are no explicit name
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Instantiation β

update β⊳x7→y
def

= (β \ {x 7→ β(x)}) ∪ {x 7→ y}
Causal clock κ

fresh output out(κ)
def

= κ ∪ {nexto(κ)! 7→ ∅}

fresh input in(κ)
def

= {o 7→ (κ(o) ∪ {nexti(κ)?}) | o ∈ dom(κ)}

freshness (input) nexti(κ)
def

= min
`

N
+ \ {n | n? ∈

S

cod(κ)}
´

freshness (output) nexto(κ)
def

= min
`

N
+ \ {n | n! ∈ dom(κ)}

´

r-w causality x ≺κ y
def

= x ∈ dom(κ) ∧ y ∈ κ(x)

Partitions γ
def

= (γ=, γ 6=)

match x =γ y iff



x = y ∨ (x, y) ∈ γ= ∨ (y, x) ∈ γ=

∨∃z, x =γ z ∧ z =γ y

mismatch x 6=κ
γ y iff

8

>

>

<

>

>

:

(x, y) ∈ γ 6= ∨ (y, x) ∈ γ 6= ∨ (x, y ∈ Priv ∪No ∧ x 6= y)
∨(x ∈ Nf ∧ y ∈ Priv ∪No) ∨ (y ∈ Nf ∧ x ∈ Priv ∪No)
∨(x ∈ No ∧ y ∈ Ni ∧ x 6≺κ y) ∨ (y ∈ No ∧ x ∈ Ni ∧ y 6≺κ x)
∨(∃z1 z2, x =γ z1 ∧ z1 6=κ

γ z2 ∧ z2 =γ y)

compatibility x
γ
∼κy iff



¬(x 6=κ
γ y) ∧ (x, y ∈ Nf ∪Ni

∨(x ∈ No ∧ y ∈ Ni ∧ x ≺κ y) ∨ x =γ y ∨ y
γ
∼κx)

refine γ⊳x=y
def

= (γ= ∪ {(x, y)}, γ 6=) if ¬(x =γ y), γ otherwise

discriminate γ⊳x6=κy
def

= (γ=, γ 6= ∪ {(x, y)}) if ¬(x 6=κ
γ y), γ otherwise

Table 1. The global context and associated operations.

(in)equality so the partitions are empty, i.e. γ0
def

= (∅, ∅). Finally, the initial clock

is also empty, i.e. κ0
def

= ∅. The initial state of the server example (cf. Example 1)
is depicted below.

Example 2. the sequential server with global (and shortened) names
β0; γ0;κ0 ⊢

V : ∗ νRun(xV ).xV (yV ).
∑

[

[yV = xV ] νEnd〈xV 〉.0
+ [yV 6= xV ] τ.νStart〈xV 〉.0

]

.0 ‖

H : ∗ νStart(xH).νRun〈xH〉.0 ‖

S : ∗ a(xS).xS〈νSses〉.νStart〈νSses〉.νEnd(qS).0

To model control-flow we use boxes to surround the active parts of pi-graphs.
A prefix denoted p is considered active, and it is said to be a redex. Anticipating

on the Petri net semantics, the redex prefixes will be associated to places with an
active control token inside. The left-part of a match [a = b] P (resp. mismatch

[a 6= b] P ) can also be a redex, which is denoted [a = b] P (resp. [a 6= b] P ).

The 0 suffix of a process can also be a redex 0 , which means the process has
terminated. Finally, an iterator I : ∗P can be a redex, denoted I : ∗ P . This
means the iterator is ready to execute a (first or) new iteration of P .

A process in its initial state is denoted P such that:

p.P
def

= p P , p.0
def

= p 0 and [a = b]P
def

= [a = b ] P (resp. 6=).
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A process is thus in its initial state if its initial prefix is a redex. We also
introduce a complementary notation for a process in its terminal state, which

we denote P , when the terminator of a process is a redex, i.e:

pP
def

= p P , p0
def

= p 0 and [a = b]P
def

= [a = b] P (resp. 6=).

In the initial state, the term π0 has all and only its iterators marked as redex,
i.e. π0 is of the form I1 : ∗ P1 ‖ . . . ‖ Ip : ∗ Pp, cf. Example 2 above.

3.2 The semantic rules

The operational semantics rules are listed in Table 2. Each rule is of the form:
β; γ;κ ⊢ θ

α
−→ β′; γ′;κ′ ⊢ θ′ where θ is a subterm of a pi-graph π with some

redex(es) inside5. We write π[θ] to denote π with the designated subterm θ. The
local application of a rule to the subterm θ is reflected in the global pi-graph π
as follows:

Definition 2. A global transition β; γ;κ ⊢ π[θ]
α
−→ gc(β′; γ′;κ′) ⊢ π[θ′] is

inferred iff β; γ;κ ⊢ θ
α
−→ β′; γ′;κ′ ⊢ θ′ is provable

In a global transition, the label α can be either a low-level rewrite ǫ, a silent
step τ , an output c〈a〉 or an input c(x). In the subterm θ′ after the rewrite, the
only possibility is a move of redex(es): i.e. an evolution of the control graph.
Moreover, the rules are local, no other subterm of π is changed. The global con-
text, however, can be updated through a rewrite. First, the gc function “garbage
collects” all the inactive names from the context. This clean-up is required to
ensure the finiteness of the model (cf. [8]).

Definition 3. In a global context β; γ;κ, the set of inactive names is:

inact(β; γ;κ)
def

= {n | (n ∈ Ni ∧ n 6∈ cod(β))
∨(n ∈ No ∧ n 6∈ cod(β) ∧ ¬(∃m ∈ cod(β), n =γ m))}

All the static names, i.e. the names in N \(Ni∪No) are considered active. An
input name n is considered inactive if and only if it is not instantiated in β. For
an output name the situation is slightly more complicated because it is possible
that the name has been equated to another name in γ, which means that even
if it is not instantiated its existence may be required. For example, if two names
o! and i? are considered equal (i.e o! =γ i?), even if o! is not instantiated (i.e.
o! 6∈ cod(β)), any other o′! must be considered distinct from i? as long as the
latter remains itself instantiated.

Now, the garbage collection function simply consists in removing all the oc-
currences of the inactive names in the context.

5 The shape of a subterm θ in a pi-graph π[θ] follows the left-hand side of the semantic
rules (cf. Table 2). The only non-trivial case is for the [sync] rule because the subterm
involves two separate sub-processes, potentially in distinct iterators. In [8] such a
subterm indeed corresponds to a subgraph.
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[silent] β; γ; κ ⊢ τ P
τ
−→ β; γ; κ ⊢ τ P

[out] β; γ; κ ⊢ Φ〈∆〉 P
β(Φ)〈β(∆)〉
−−−−−−−→ β; γ; κ ⊢ Φ〈∆〉 P if β(Φ), β(∆) ∈ Pub

[o-fresh] β; γ; κ ⊢ Φ〈∆〉 P
β(Φ)〈nexto(κ)!〉
−−−−−−−−−→ β⊳∆7→nexto(κ); γ; out(κ) ⊢ Φ〈∆〉 P

if β(Φ) ∈ Pub, β(∆) ∈ Priv

[i-fresh] β; γ; κ ⊢ Φ(x) P
β(Φ)(nexti(κ)?)
−−−−−−−−−→ β⊳x7→nexti(κ)?; γ; in(κ) ⊢ Φ(x) P if β(Φ) ∈ Pub

[match] β; γ; κ ⊢ [Φ = ∆] P
ε
−→ β; γ⊳β(Φ)=β(∆); κ ⊢ [Φ = ∆] P if β(Φ)

γ
∼κβ(∆)

[miss] β; γ; κ ⊢ [Φ 6= ∆] P
ε
−→ β; γ⊳β(Φ) 6=κβ(∆); κ ⊢ [Φ 6= ∆] P if ¬(β(Φ) =γ β(∆))

[sync] β; γ; κ ⊢ Φ〈∆〉 P ‖ Φ′(x) Q
τ
−→ β⊳x7→β(∆); γ⊳β(Φ)=β(Φ′); κ ⊢ Φ〈x〉 P ‖ Φ′(x) Q if β(Φ)

γ
∼κβ(Φ′)

[sum] β; γ; κ ⊢
P

[P1 + . . . + Pi + . . . + Pn]Q
ǫ
−→ β; γ; κ ⊢

P

[P1 + . . . + Pi + . . . + Pn]Q

[sum0] β; γ; κ ⊢
P

[P1 + . . . + Pi + . . . + Pn]Q
ε
−→ β; γ; κ ⊢

P

[P1 + . . . + Pi + . . . + Pn] Q

[par] β; γ; κ ⊢
Q

[P1 ‖ . . . ‖ Pi ‖ . . . ‖ Pk]Q
ε
−→ β; γ; κ ⊢

Q

[ P1 ‖ . . . ‖ Pi ‖ . . . ‖ Pk ]Q

[par0] β; γ; κ ⊢
Q

[ P1 ‖ . . . ‖ Pi ‖ . . . ‖ Pk ]Q
ε
−→ β; γ; κ ⊢

Q

[P1 ‖ . . . ‖ Pi ‖ . . . ‖ Pk] Q

[iter] β; γ; κ ⊢ I : ∗ P
ε
−→ β; γ; κ ⊢ I : ∗ P

[iter0] β; γ; κ ⊢ I : ∗ P
ε
−→ β

⊳(
S

ΦI∈dom(β)
ΦI 7→ΦI ); γ; κ ⊢ I : ∗ P

Table 2. The operational semantics rules.

Definition 4. In a pi-graph context β; γ;κ, let E
def

= inact(β; γ;κ).

Then gc(β; γ;κ)
def

= β; γ′;κ′ such that







γ′ def

= ({(x, y) | x =γ y ∧ x, y 6∈ E},
{(x, y) ∈ γ 6= | x, y 6∈ E})

κ′ def

= {(x, κ(x) \ E) | x ∈ dom(κ) \ E}

We now proceed to the individual description of the semantics rules.
The [silent] rule describes a subterm of π with a prefix τ as a redex. In such

a situation, a transition through τ may be fired, leading to a state π′ identical
to π except that the continuation process P is activated.

The [par] rule is similar but the control-flow is now duplicated, simulating the
fork of parallel processes. The latter works in conjunction with the [par0] rule,
which waits for all the forked processes to terminate before passing the control to
the continuation Q. The non-deterministic choice among a set of possible sub-
processes is implemented by the [sum] and [sum0] rules. Unlike parallel, only
one branch is non-deterministically activated, and only the termination of this
particular branch is required to activate the continuation of the choice.

The [iter] rule explains the start of a new iteration of an iterator named
I. At the end of the iteration the rule [iter0] reactivates the iterator so that a
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next iteration can start. The important step is the reinitialization of the names
instantiated locally during the last iteration (cf. below).

As an illustration, we consider the example of an infinite generator of fresh
names:

{νIa 7→ νIa}; ∅; ∅ ⊢ I : ∗ c〈νIa〉.0

The only applicable rule is [iter] to start a new iteration, which yields:

ǫ
−→ {νIa 7→ νIa}; ∅; ∅ ⊢ I : ∗ c〈νIa〉 .0

We are now in a state where a private name must be sent over a public channel,
a situation handled by the [o-fresh] rule. An important remark is that after
the emission, the name νIa cannot be considered private anymore but shared.
We implement the sharing of a private name by the instantiation of a fresh
output name in set No. To ensure freshness, we use the clock component κ of
the context. The identity of the name is denoted nexto(κ)!. In Table 1 we see
that the principle is to take the least strictly positive integer that is not already
in the domain of κ. Moreover, the clock is updated so that the newly generated
identity is recorded, which is denoted out(κ) and simply consists in adding the
new output name in the domain of the clock. In our running example, the clock
is initially empty so the generated identity is 1!. The whole transition is depicted
below:

c〈1!〉
−−−→ {νIa 7→ 1!}; ∅; {1! 7→ ∅} ⊢ I : ∗ c〈νIa〉. 0

In this state the iteration terminates by [iter0] and we must not forget to reini-
tialize the local private name νIa and apply garbage collection, which gives:

ǫ
−→ {νIa 7→ νIa}; ∅; ∅ ⊢ I : ∗ c〈νIa〉.0

We are back in the initial state and we remark that the infinite fresh name
generator is characterized finitely.

The rule [out] is a simpler variant triggered when a process emits a public
name on a public channel. The rule [i-fresh] (fresh input) is quite similar to [o-
fresh]. When a name is received from the environment, a fresh identity nexti(κ)?
is generated for it. The clock is updated using in(κ) which adds the fresh input
in the co-domains of all the existing output names (i.e. the domain of κ). This
records read-write causality [10] that we illustrate together with the [match] rule
below.

β, νIa 7→ νIa, xI 7→ xI ; ∅; ∅ ⊢ I : ∗ c〈νIa〉 .d(xI).[νIa = xI ] P
c〈1!〉
−−−→ β, νIa 7→ 1!, xI 7→ xI ; ∅; {1! 7→ ∅} ⊢ I : ∗c〈νIa〉. d(xI) .[νIa = xI ] P

d〈1?〉
−−−→ β, νIa 7→ 1!, xI 7→ 1?; ∅; {1! 7→ {1?}} ⊢ I : ∗c〈νIa〉.d(xI). [νIa = xI ] P

In the first step the [o-fresh] rule is triggered because we send a private name on
a public channel. In consequence the private name νIa is instantiated by a fresh
output 1!. The clock is also updated to record this fact. In the second step the
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[i-fresh] rule instantiates for xI the fresh input 1?. The read-write causal link
between the output 1! and the subsequent input 1? is recorded in the clock. The
rationale is that it is indeed possible to receive an instance of 1! as 1? because
the former is shared. Actually, the two names may be equated, which in term

of Table 1 would be written 1!
γ
∼κ1? because 1! ≺κ 1? (i.e. 1? ∈ κ(1!)) where

κ is the current clock and γ the partition. In the next step, the [match] rule is
enabled and thus we can infer the following transition:

ǫ
−→ β′; {1! = 1?}; {1! 7→ {1?}} ⊢ I : ∗c〈νIa〉.d(xI).[νIa = xI ] P
(where the instantiations β′ remain unchanged)

The match has been effected and in the continuation P (left undetailed), the
names 1! and 1? (and thus the occurrences of νIa and xI) are considered equal.
If we inverse the input and the output, then the input 1? will appear before the
output 1!, and thus in the clock the two names will not be related. In consequence
the final match would not be enabled and P could not be reached. We refer to [8]
for a more thorough discussion about these non-trivial aspects.

The proposed dynamic interpretation of match suggests a similar treatment
for mismatch, which is implemented by the [miss] rule. First, a mismatch between
two names x, y is only possible if they are not provably equal (i.e. x =γ y). There
are then more possibilities for x, y to be inequal (denoted x 6=κ

γ y). First they are

inequal if either the name are explicitly distinguished in γ 6= or they are distinct
private names. Another case is if one name is a (public) free name (in Nf ) and
the other one is a private or an output name. The most non-trivial case is if one
name is an input and the other one is an output, which makes them provably
distinct if they are not causally related in κ (hence the causal clock is required).
Finally, we must be careful not to forget about the interaction between equality
and inequality. In all the other cases the mismatch leads to the explicit addition
of a discriminating pair in γ6=.

Finally, the rule [sync] is for a communication taking place internally in a
pi-graph. The subterm triggering the rule is composed of a pair of redexes: an
output in one process and an input in another process (potentially from two
distinct iterators). The effect of the rule is a communication from the output to
the input process, the received name being instantiated in β. Because we need
to characterize open systems, a non-trivial aspect here is that the communica-
tion can be triggered on distinct channel names, under the constraint that the
match between the two names can be performed. This makes name matching
and synchronization intimately related in the proposed semantics.

3.3 Abstracted transitions

An important aspect of the pi-graphs semantics is the possibility to abstract
away from low-level ǫ-transitions. In [8] we propose an inductive rule that allows
to omit the ǫ-transitions altogether, blindly. The main problem with this induc-
tive principle is that it does not translate easily to the semantics of Petri nets. In
this paper we use an alternative approach, which is to allow to branch directly on
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ǫ-transitions in non-deterministic choices. At first sight, this may lead to an in-
correct situation where a deadlock may result from an unobservable ǫ-transition.
To overcome this problem we introduce a causal principle of abstraction.

Definition 5. Let Γ1 ⊢ π1
α1−→ . . .

αn−1
−−−→ Γn ⊢ πn

αn−−→ Γn+1 ⊢ πn+1 be a
sequence of transitions, with θi, θ

′
i the subterms inducing the i-th transition (1 ≤

i ≤ n), following Definition 2. This sequence will be said causal iff ∀i, 1 ≤ i <
n, ∃j, i < j ≤ n such that θ′i ∩ θj 6= ∅, i.e., the i-th transition produces a redex
(maybe many) needed by the j-th one.

In such a causal sequence, the first transitions are all causally needed to produce
the next ones, and in particular the last transition causally uses all the previous
ones. The abstraction principle is then expressed as follows:

Definition 6. An abstracted transition Γ1 ⊢ π1
α

99K Γn ⊢ πn is inferred iff
there is a causal sequence Γ1 ⊢ π1

ǫ
−→ . . .

ǫ
−→ Γn ⊢ πn

α
−→ Γn+1 ⊢ πn+1 (α 6= ǫ).

The definition says that an abstracted transition with label α corresponds to
a path of length n beginning with n − 1 ǫ-transitions, and ending with a single
non-ǫ-transition labelled α. Moreover, all the intermediate invisible transitions
are causally needed to produce the visible one. This abstracts from invisible
transitions and gets rid of the invisible transitions not causally needed to perform
a visible one, which excludes to choose a branch in a choice leading to a deadlock
through ǫ transitions. The definition is sound because we show in [8] that every
ǫ-path is of finite (bounded, in fact) length.

4 Translation to Petri nets

The key component of our proposition is the translation of the pi-graphs and
their semantics into (concise) Petri nets. As a matter of fact, the pi-graph se-
mantics has been designed to implicitly address the most complex issues of such
a translation (control-flow, freshness, read-write causality, etc.). In this section
we thus mostly assemble the pieces of the puzzle.

4.1 Petri net class and transition rule

Our translation requires a relatively simple class of coloured Petri nets. As usual
in coloured models, places have types, arcs have annotations with variables and
constants, and transitions have labels and guards. A particularity of these nets
is that they accept only 1-safe markings. More precisely each place always has
a unique token (possibly the “empty” token). Moreover, all the arcs are bidirec-
tional and labelled by pairs R/W intended to read from the adjacent place a
token ρ(R) and write an updated token ρ(W ) (where ρ is a binding function for
the variables in adjacent arcs and in the guard of the transition).
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Definition 7. A (coloured) Petri net is a tuple N = (S, T, U,G;M), where

– S and T are the sets of places and transitions with S ∩ T = ∅;
– S × T is the set of bidirectional arcs;
– U is a labeling mapping for each element of S ∪ T ∪ (S × T ), such that

• for each place s ∈ S, U(s) gives its type (the set of admissible tokens);
• for each transition t ∈ T , U(t) is its (possibly empty) label;
• for each arc in S × T , U((s, t)) is a pair R/W , where R and W are

constants or variables (or tuples thereon) compatible with U(s).
– G is the mapping associating a guard (Boolean formula) to each t ∈ T ;
– M is the marking associating to each place s ∈ S a unique token in U(s).

As usual in high-level Petri nets, a transition t ∈ T is enabled at a marking
M iff there exists a binding ρ for the variables in its guard and in the arc
inscriptions adjacent to t, such that ρ is compatible with the type of each place
s adjacent to t, matches each token of M(s) and makes the guard G(t) true. The
occurrence of t under ρ produces a new marking M ′ by consuming the tokens
in all places adjacent to t and producing the new ones according to the arc
annotations and conditions expressed in the guard. Such an occurrence of t is
denoted M [t : ρ>M ′.

4.2 Translation

Let E
def

= β0; γ0;κ0 ⊢ π0 be a pi-graph in its initial state (cf. Section 3.1). The
translation is performed in two steps:

1. first, a term net T(π0) is obtained from a syntax-driven translation of π0;
2. then, the translation Pnet(E) is obtained by composing T(π0) with a generic

context net C, and by associating to the resulting net structure an initial
marking.

Step 1. The syntax-driven translation of pi-graph terms is based on a reduced
set of basic control-flow nets that can be composed together using only three op-
erators: (trivial) relabelling, disjoint union and merge. Table 3 gives the complete
definition of the translation.

The monadic control-flow nets, denoted Nz(a, b, µ1, . . . , µn), have only a sin-
gle predecessor transition, labelled pred, and a single successor labelled succ.
The control-flow is obtained from the predecessor and forwarded to the suc-
cessor. The unique place of the net is connected to a set of context transitions
µ1, . . . , µn that correspond to rule names in the operational semantics of Ta-
ble 2 (cf. the context net in Step 2 below). In the translation, the monadic nets
are used to directly encode the constructs that reference names: input/output
and match/mismatch. The set of context transition labels correspond to all the
semantic rules that are potentially enabled when these constructs are in redex
position, e.g. [i-fresh] and [sync] for the input prefix (cf. Table 2 and Figure 1).

The place type of a monadic net is Bz(a, b)
def

= {(z, a, b), (•, a, b), (∅, a, b)}, with
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pred

Bz(a, b)

succ

...

µ1

µn

(x, Φ, ∆)/(x
′ , Φ, ∆)

(x, Φ, ∆)/(x ′, Φ, ∆)

(∅, Φ′, ∆′)/(z, Φ′, ∆′)

(•, Φ, ∆)/(∅, Φ, ∆)

{∅, ◦I , I}

[iter0][iter]

{∅, ◦I , I}

start

end

I/∅

∅/I

x/x′

y/y′x/x′

Monadic net Nz(a, b, µ1, . . . , µn) Iterator net I(I)

· · ·1:pred n:pred

{∅, ◦, •}

· · ·1:succ m:succ

µ
x/x′

∅/• ∅/•

•/∅ •/∅

Polyadic net M(n, m, µ)
(if n = 1 or m = 1, then the corresponding indices
in transition labels are removed)

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

T([I1 : ∗P1 ‖ . . . ‖ Ik : ∗Pk])
def

=
Lk

j=1 T(Ij : ∗Pj)

T(I : ∗P )
def

= I(I) ⊡
{start⋊⋉pred,end⋊⋉succ} T(P )

T(p0)
def

= T(p)

T(pP )
def

= T(p) ⊡
{succ⋊⋉pred}

T(P )

T(τ)
def

= M(1, 1, [silent])

T(a〈b〉)
def

= N◦o(a, b, [out], [o-fresh], [sync])

T(a(b))
def

= N◦i(a, b, [i-fresh], [sync])

T([a = b]P )
def

= N◦(a, b, [match]) ⊡
{succ⋊⋉pred}

T(P )

T([a 6= b]P )
def

= N◦(a, b, [miss]) ⊡
{succ⋊⋉pred}

T(P )

T(
P

[P1 + . . . + Pk])
def

= M(1, k, [sum]) ⊡A (
Lk

j=1 j:T(Pj)) ⊡A M(k, 1, [sum0])

where A
def

= {j:succ ⋊⋉ j:pred | j ∈ [1, k]}

T(
Q

[P1 ‖ . . . ‖ Pk])
def

= M(1, 1, [par]) ⊡B (
Lk

j=1 j:T(Pj)) ⊡B′ M(1, 1, [par0])

where B
def

= {succ ⋊⋉ j:pred | j ∈ [1, k]} and B′ def

= {j:succ ⋊⋉ pred | j ∈ [1, k]}

where the net operations are defined as follows:

– j:N renames in N transition labels pred and succ to j:pred and j:succ;
–

Lk

j=1 Nj is a disjoint union of Nj ’s;
– N ⊡A N ′, with A ⊆ U(T ) × U ′(T ′), is the disjoint union N ⊕ N ′ where for each

pair (a, a′) ∈ A, denoted a ⋊⋉ a′, the transitions labeled a in N have been subse-
quently merged with the transitions labeled a′ in N ′; the merged transitions are
anonymous; i.e., have empty labels and true guards.

Table 3. Term nets – Step 1 of the translation.
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a, b names in N , and z = ◦i for an input prefix, z = ◦o for an output, and z = ◦
for match and mismatch. The control markers are: ∅ for inactive, ◦λ ∈ {◦, ◦i, ◦o}
for the activation of the place (redex position for the corresponding term), and •
to trigger the successor transition (we illustrate the dynamics of the translated
Petri net below).

The polyadic control-flow nets, denoted M(n, m, µ) are used to encode the
remaining constructs but iterators. They have potentially multiple predecessors
and successors but are connected to a single transition of the context net (e.g.
[silent] for the τ prefix). The place type of polyadic nets is {∅, ◦, •} with the
same meaning as the monadic case for control markers. Finally, the iterator nets
denoted I(I) directly encode the iterator constructs. The type of the initial and
final places of a translated iterator is {∅, ◦I , I} where I is the iterator label and
◦I the control marker.

pred

{(∅, a, b),
(•, a, b),
(◦i, a, b)}

succ

[i-fresh]

[sync]

(∅, Φ′, ∆′)/(◦i, Φ
′, ∆′)

(•, Φ, ∆)/(∅, Φ, ∆)

(x, Φ,∆)/(x ′, Φ,∆)

(x, Φ,∆)/(x
′ , Φ,∆)

pred

{∅, ◦, •}

succ

[silent]
x/x′

∅/•

•/∅

Fig. 1. Term net for Input T(a(b)) (left) and silent prefix T(τ) (right).

The translations for input and silent prefixes are illustrated in Figure 1.
For the input prefix, the symbols Φ, ∆ and ∆′ are variables always bound to
the translated channel name a and datum name b. The variables x and x′ are
used to modify the control-state of the place. This is managed by the context
net (cf. Step 2 below). The other symbols are constants. The connection to the
continuation of a prefix consists in merging the succ transition of the prefix with
the pred transition of the next prefix (if it is a termination the prefix remains
unmodified). The translation for output is similar to the input case. The match
and mismatch are special prefixes (that cannot be suffixed by 0) but otherwise
have quite similar translations. For parallel and sum, the entry and the exit
places of the constructs have separate translations. A (polyadic) sum entry -
connected to [sum] - has k successors (because a choice must be made) whereas
the successor is unique for parallel entry (activation of all successor places at
once through [par]). Symmetrically, the sum exit - connected to [sum0] has k
predecessors (only one must terminate) whereas it is unique for parallel exit
(termination of all sub-processes at once through [par0]). An iterator term net
I(I : ∗ P ) is obtained by the disjoint union of the translation of the iterator
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body T(P ) and the term net I(I), with the explicit merge of the start/pred, and
end/succ transitions. The translation of Example 2 is proposed in Figure 2.

∗

Run(s)

s(m)

Σ

[m = s]

End〈s〉

[m 6= s]

τ

Start〈s〉

Service

∗

adr(c)

c〈νses〉

Start〈νses〉

End(q)

Server

∗

Start(s)

End〈s〉

Handler

[sync]

[iter]

[i-fresh]

[match]

[miss]

[silent]

[o-fresh]

[sum]

[sum0]

[iter0]

Fig. 2. Translation of the server specification (without place and arc labels).

Step 2. The term nets produced by the first step of the translation encode the
basic control-structure of the pi-graphs. However, an extra layer is required to
orchestrate faithfully the semantics of Table 2. Technically speaking, we must
connect the context transitions ([sync], [par], etc.) to a Petri net layer responsible
of the orchestration: namely the context net. Given the relatively high-level and
interleaving nature of the pi-graphs (as well as most pi-calculus variants), the
role of the context net is to centralize the control so that each observation (i.e.
a labelled transition in process calculus terms) can be generated atomically.

The generic context net C - represented in Figure 3 - has only two places and
fourteen transitions. The global context place Γ contains a single token (β, γ, κ)
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Γ

...

[iter]

[iter0]

[silent]

Ω

reset

(β, γ, κ)/(
β
′′ , γ

′′ , κ
′′ )

...
(β, γ, κ)/(β ′′, γ ′′, κ ′′)

(ǫ, ∅, ∅)/(ω, ϕ, δ)

...

(ǫ, ∅,
∅)/(ω

, ϕ, δ)

(ω, ϕ, δ)/(∅, ∅, ∅)

Fig. 3. Generic context net C – all context transitions are present.

describing the current instantiations, partitions and causal clock (cf. Section 3).
The observation place Ω contains informations about the current observation or
∅ for “unobservable” states. This place allows to abstract away from the internal
states of the Petri nets and it also ensures the mutual exclusion among potential
observations for the connected term net.

g([silent])
def

= ω = τ ∧ ∃u : xu = ◦ ∧ x′
u = •

g([out])
def

= ω = o ∧ ∃u(xu = ◦o ∧ ϕ = β(Φu) ∈ Pub ∧ δ = β(∆u) ∈ Pub ∧ x′
u = •)

g([o-fresh])
def

= ω = o ∧ δ = nexto(κ)! ∧ ∃u(xu = ◦o ∧ ϕ = β(Φu) ∈ Pub∧
β(∆u) ∈ Priv ∧ x′

u = • ∧ β′(∆u) = δ) ∧ κ′ = out(κ)

g([i-fresh])
def

= ω = i ∧ δ = nexti(κ)? ∧ ∃u(xu = ◦i ∧ ϕ = β(Φu) ∈ Pub∧
x′

u = • ∧ β′(∆u) = δ) ∧ κ′ = in(κ)

g([match])
def

= ω = ǫ ∧ ∃u(xu = ◦ ∧ ϕ = β(Φu) ∧ δ = β(∆u) ∧ ϕ
γ
∼κδ ∧ x′

u = •)∧
γ′ = γ⊳ϕ=δ

g([miss])
def

= ω = ǫ ∧ ∃u(xu = ◦ ∧ ϕ = β(Φu) ∧ δ = β(∆u) ∧ ¬(ϕ =γ δ) ∧ x′
u = •)∧

γ′ = γ⊳ϕ6=κδ

g([sync])
def

= ω = τ ∧ ∃u, v(xu = ◦o ∧ xv = ◦i ∧ β(Φu)
γ
∼κβ(Φv) ∧ x′

u = x′
v = •∧

β′ = β⊳∆′
v 7→β(∆u) ∧ γ′ = γ⊳β(Φu)=β(Φv))

g([sum]) = g([sum0]) = g([par]) = g([par0])
def

= ω = ǫ ∧ ∃u : xu = ◦ ∧ x′
u = •

g([iter])
def

= ω = ǫ ∧ ∃u : xu = ◦I ∧ x′
u = I

g([iter0])
def

= ω = ǫ ∧ ∃u : xu 6= ∅ ∧ {β′(axu) = axu | axu ∈ dom(β)} ∧ x′
u = ∅)∧

∃v : yv = ∅ ∧ y′
v = xu)

g(reset)
def

= (ω, ϕ, δ) 6= (∅, ∅, ∅)

Table 4. Formulas for Petri net transition guards (if not explicitly indicated x′
r = xr,

β′(r) = β(r), γ′ = γ, κ′ = κ, ϕ = ∅ and δ = ∅) and (β′′, γ′′, κ′′) = gc(β′, γ′, κ′).

The reset transition is used to discharge the previous observation (by putting
(∅, ∅, ∅) in Ω). The thirteen other transitions correspond to the thirteen rule
names of Table 2. All the preconditions and side-effects of the semantic rules
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are encoded as guards for the corresponding context transitions. The guards
are listed in Table 4 and the correspondence with the semantic rules of Table 2
is immediate. A context transition is enabled if the marking on Γ gives an
appropriate global context, and if the marking on Ω is (∅, ∅, ∅) indicating that
an observation is possible (mutual-exclusion). If an observation is enabled, the
markings on Ω and Γ allow to retrieve it. For example, if the token on Ω is of
the form (o, c, d), it means that the corresponding observation is the output c〈d〉,
and analogously for the other actions. Firing the reset transition discharges the
observation, allowing further observations.

The final net structure is a disjoint union of the nets T(π) and C, in which:

– we remove from C all the context transitions which are not present in T(π);
– we merge all context transitions with the same label, and add to each result-

ing transition the corresponding guard.

Formally, this is defined as follows, using net operation T(π)♦DC, indexed by a

set D
def

= {(µ, g(µ)) | µ ∈ M} of pairs (transition label, transition guard), where
M is the set of labels containing reset and all interface transition labels present in
T(π), and the guards g(µ) are as specified in Table 4. For each pair (µ, g(µ)) ∈ D,
let t1, . . . , tn be transitions with label µ in T(π); for each arc (s, tu), the variables
in arc annotations U(s, tu) are indexed by u; all these transitions are merged
together and with the transition with the same label in C; the resulting transition
has label µ and guard g(µ).

The Petri net Pnet(E) is then obtained by associating to the structure result-
ing from Step 2 an initial marking M0, which is (β0, γ0, κ0) on Γ , (∅, ∅, ∅) on Ω,
(∅, a, b) on input a(b), output a〈b〉, match [a = b] and mismatch [a 6= b] places,
Ij on the initial place of iterator Ij , and ∅ on any other place.

4.3 Main properties

The first important property of the proposed translation scheme is its concision.

Theorem 1. The size of Pnet(E) is linear in the size of E

Proof. The proof is by trivial (inductive) case analysis, with exactly one place
and one transition for each prefix except sum and parallel (two places and one
transition each), two places and one transition for iterators, and the context net
has only two places and fourteen transitions. More precisely the size is (tightly)
bounded by 2i+p+2s+2 places and i+p+s+14 transitions (with i the number
of iterators, p the number of simple prefixes and s the number of parallels and
sums) ⊓⊔

The most important property we expect from the translation is that it agrees
with the operational semantics of pi-graphs described in Section 3. Our objective
is to show that each abstracted rewrite of a pi-graph is matched, in the translated
Petri net, by an abstracted occurrence (defined below).

The Petri nets have lower-level semantics than the pi-graphs; in particular
we may abstract away from any occurrence of an anonymous transition (i.e. a
transition t such that U(t) = ∅). First, we may observe:
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Lemma 1. There is no infinite sequence of anonymous occurrences, and suc-
cessive anonymous occurrences are causally independent.

Proof. In the translation, we can easily see that between two anonymous tran-
sitions there is always a place connected to a context transition. As such, the
context transition must be fired between the two anonymous occurrences. Of
course, causally independent anonymous occurrences (in parallel processes or
iterators) can still be performed in arbitrary order, but there can only be a finite
number of these. ⊓⊔

Hence, we may consider sequences of occurrences M0[t1 : ρ1>M1 . . . Mn−1[tn :
ρn>Mn such that ∀i, 0 ≤ i ≤ n, U(ti) = ∅ and such that there is no anonymous
transition tn+1 enabled from Mn. The markings M0, . . . ,Mn are considered as
equivalent and the witness of the equivalence class is Mn, i.e. the (unique) state
from which no further anonymous transition is enabled.

With this first level of abstraction, the Petri net markings are almost in
one-to-one correspondence with pi-graph states.

Definition 8. Let β1, γ1, κ1 ⊢ π[θ] be a pi-graph state with a subterm θ. We
define Mπ[θ] a marking of the corresponding Petri net such that Mπ[θ](Γ ) =
(β1, γ1, κ1), Mπ[θ](Ω) = (∅, ∅, ∅) and each place corresponding to a redex in θ
contains a control marker ◦λ.

The most important part of the agreement is that each pi-graph rewrite is
matched by exactly two (abstract) Petri net occurrences: (1) the enabling of an
observation, and (2) its discharge by the reset transition.

Lemma 2. The rewrite β1; γ1;κ1 ⊢ π[θ]
α
−→ β2; γ2;κ2 ⊢ π[θ′] can be in-

ferred by rule µ of the semantics iff there exists a sequence of occurrences

M
π[θ]
1 [t1 : ρ1>M ′[t2 : ρ2>M

π[θ′]
2 such that U(t1) = µ, U(t2) = reset and

label(M ′(Ω)) = α

with label(ω, ϕ, δ)
def

= ϕ(δ) if ω = i, ϕ〈δ〉 if ω = o, ω otherwise

Proof. For the if part, we must take each rule of Table 2 and give its interpre-
tation in terms of the translated Petri net. The translation has been designed
to closely follow the rules, and thus all steps are almost direct and very similar.
For the sake of concision, we only detail the case of the input prefix. The main
hypothesis is a transition of the form:

β1; γ1;κ1 ⊢ π[ a(b) .P ]
β1(a)(β1(b))
−−−−−−−−→ gc((β1⊳∆ 7→nexti(κ1)?, γ1, in(κ1))) ⊢ π[a(b). P ]

In Figure 4 we illustrate the two corresponding occurrences in the translated
Petri net. The place named s1 is the translation of the input prefix; initially
this place is a redex since it contains the control marker ◦i. The place s2 is the
first subterm of the continuation process P , its marking contains the control
marker ∅, i.e. it is inactive. The global context Γ contains (β1, γ1;κ1) and there
is no observation in Ω. In this situation the [i-fresh] transition can be fired, which
leads to the second marking described in the figure. At the low-level, the [i-fresh]
occurrence replaces the control marker ◦i by a continuation marker •. However,
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this continuation is consumed by the anonymous transition between s1 and s2,
which activates s2. We only retain at the abstract level the state with s1 marked
∅ (inactive) and s2 marked with the control marker ◦λ (depending on the exact
nature of s2, it can be ◦, ◦i or ◦o). The observation is captured by the marking
of Ω. The context is also updated accordingly in the marking of Γ . Finally, the
reset transition is fired to discharge the observation.

The only-if part consists in identifying each high-level occurrence of the Petri
net to a corresponding pi-graph rule. There is no ambiguity since the Petri net
provides the name of the rule (the label of the fired transition). Moreover, any
observation must be discharged by the reset transition and thus the two steps
are indeed atomic ⊓⊔

a(b) s1 [i-fresh]

P s2

...

Ω

Γ reset

(β, γ, κ)/(β′′, γ′′, κ′′)

(x1, Φ1, ∆1)/(x′
1, Φ1, ∆1) (∅, ∅, ∅)/(ω, ϕ, δ)

(ω, ϕ, δ)/(∅, ∅, ∅)(•, Φ, ∆)/(∅, Φ, ∆)

(∅, Φ′, ∆′)/(◦λ, Φ′, ∆′)

s1
s2

Γ
Ω

2

6

6

4

(◦i, a, b)
(∅, ϕ′, δ′)
(β1, γ1, κ1)
(∅, ∅, ∅)

3

7

7

5

[[i-fresh]>

2

6

6

4

(∅, a, b)
(◦λ, ϕ′, δ′)
gc((β1⊳∆7→nexti(κ1)?, γ1, in(κ1)))

(i, β1(Φ), nexti(κ1)?)

3

7

7
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Fig. 4. Illustration of Lemma 2.

In the remainder we may forget about the particular subterm that is rewrit-
ten in the two-steps sequences identified by Lemma 2. In consequence, we sim-
ply denote a high-level occurrence as Mπ

1 [α>Mπ′

2 . This allows a more general
restatement of the previous Lemma as follows.

Lemma 3. Γ1 ⊢ π
α
−→ Γ2 ⊢ π′ iff Mπ

1 [α>Mπ′

2

The notion of abstracted transition (Definition 6) can then be reinterpreted.

Definition 9. An abstracted occurrence M1[α≫Mn is produced iff there is a
sequence M1[ǫ>M2 . . . Mn−2[ǫ>Mn[α>Mn+1 (α 6= ǫ) with ∀i, 1 ≤ i < n, ∃j, i <
j ≤ n such that the i-th transition produces a redex token absorbed by the j-th
one.

This leads to the most important theorem of the study, as follows:

Theorem 2. (agreement)

Γ1 ⊢ π1
α

99K Γn ⊢ πn iff Mπ1
1 [α≫Mπn

n
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Proof. For the only if part an abstracted transition (in the pi-graph) is assumed.
By Lemma 3 we obtain directly a sequence of high-level occurrences (in the
translated Petri net) verifying the conditions for an abstracted occurrence, as
described above. Since Lemma 3 works both ways, the if part derives easily ⊓⊔

5 Related and future works

In a previous work [5], we study the syntactic translation of a variant of the
pi-calculus into high-level Petri nets with read arcs. The supported language has
unrestricted recursion and the match operator, but no mismatch. These two fea-
tures clearly impact the translation scheme in terms of complexity, together with
the non-deterministic choice. By introducing a “transition-friendly” intermediate
calculus – namely the pi-graphs – we are able to provide a much simpler trans-
lation scheme to lower-level (but still coloured) Petri nets (without read arcs).
The construct of iterator is preferred to general recursion in the pi-graphs. As
demonstrated in [8], this provides a guarantee of finiteness by construction on
the semantic side, a property only enjoyed for recursion-free processes in [5].

There are also various semantic translations of pi-calculi into Petri nets. De-
spite the different philosophy of these approaches based on reachability analysis,
many interesting points of comparison remain. A prominent example is [4], that
investigates the translation of a variant of the pi-calculus into low-level P/T nets.
The supported language has general recursion but no match nor mismatch. The
translation produces P/T nets whose places correspond to sub-processes (so-
called fragments) in a normal structural form said restricted. The transitions are
either reactions between reachable fragments or communications though public
channels. The (interleaving) reduction semantics of the considered pi-calculus
variant can be “fully retrieved” in the P/T nets, i.e. the formalisms agree in our
own terms. Our translation reaches a similar agreement but in terms of transition
semantics, a more complex setting. Indeed, without the match (and mismatch)
and considering the reduction semantics only, our translation would be greatly
simplified (e.g. no need for name partitions or causal clocks) and it would be
interesting to see how far we get from P/T nets in this case.

Since the language of [4] has general recursion, it is possible to generate infi-
nite systems. However, the semantic property of structural stationarity captures
an interesting (albeit undecidable) subclass of potentially infinite systems that
can be characterized finitely (by ensuring that there are only a finite number of
reachable fragments up to structural congruence). In contrasts the pi-graphs can-
not express processes with e.g. infinite control, which is a design choice because
we require a guarantee of finiteness by construction.

Related semantic translations are proposed in [2, 3], which interpret the (non-
) interleaving and causal semantics for a pi-calculus in terms of P/T nets with
inhibitor arcs. The translation provides an interpretation of the early transi-
tions, whereas our interleaving semantic are closer to the late semantics. The
advantage of the latter is that there is no need to study all the possible substi-
tutions for the names generated by the environment. The authors of [3] identify
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the finite net processes that may only generate a bounded number of restricted
names, a property that is not required in the pi-graphs thanks to the garbage
collection of inactive names. A similar principle is proposed in the history depen-
dent automata (HDA) framework [11]. The transitions of HDA provide injective
correspondences between names, which ensures locally the freshness of the gen-
erated names. In the pi-graphs the freshness property is enforced at the global
level by the use of the causal clock. One advantage of the global approach is the
possibility to implement non-trivial phenomena such as read-write causality [10]
and the support for both match and mismatch.

There are three main directions that seem worth studying based on the pre-
sented work. First, the proposed translation scheme has quite a modular struc-
ture with the term nets on the one side (interpretation of the syntax) and the
context net on the other side (interpretation of the semantics). Variants of the
context net (thus, of the semantics) could be considered to investigate, as an al-
ternative to the interleaving semantics, more concurrent/causal strategies. The
Petri nets resulting from the translations are coloured but, we believe, with a lot
of symmetry involved, which means efficient unfoldings could be produced for
verification purpose. Finally, we plan to study a variant of the iterator construct
- a form of replication - that would allow multiple simultaneous iterations to run
in parallel.
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