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NEW GLOBAL STABILITY ESTIMATES FOR THE
CALDERÓN PROBLEM IN TWO DIMENSIONS

MATTEO SANTACESARIA

Abstract. We prove a new global stability estimate for the Gel’fand-

Calderón inverse problem on a two-dimensional bounded domain or,

more precisely, the inverse boundary value problem for the equation

−∆ψ + v ψ = 0 on D, where v is a smooth real-valued potential of

conductivity type defined on a bounded planar domain D. The principal

feature of this estimate is that it shows that the more a potential is

smooth, the more its reconstruction is stable, and the stability varies

exponentially with respect to the smoothness (in a sense to be made

precise). As a corollary we obtain a similar estimate for the Calderón

problem for the electrical impedance tomography.

1. Introduction

Let D ⊂ R
2 be a bounded domain equipped with a potential given by a

function v ∈ L∞(D). The corresponding Dirichlet-to-Neumann map is the

operator Φ : H1/2(∂D) → H−1/2(∂D), defined by

(1.1) Φ(f) =
∂u

∂ν

∣

∣

∣

∣

∂D

,

where f ∈ H1/2(∂D), ν is the outer normal of ∂D, and u is the H1(D)-

solution of the Dirichlet problem

(1.2) (−∆+ v)u = 0 on D, u|∂D = f ;

here we assume that

(1.3) 0 is not a Dirichlet eigenvalue for the operator −∆+ v in D.

The following inverse boundary value problem arises from this construc-

tion:

Problem 1. Given Φ, find v on D.

This problem can be considered as the Gel’fand inverse boundary value

problem for the Schrödinger equation at zero energy (see [10]) and can also be

seen as a generalization of the Calderón problem for the electrical impedance

tomography (see [7]), in two dimensions.
1
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We recall how our problem is related with the inverse conductivity problem

proposed by Calderón. In that framework D is a body equipped with an

isotropic conductivity σ(x) ∈ L∞(D) (with σ ≥ σmin > 0),

v(x) =
∆σ1/2(x)

σ1/2(x)
, x ∈ D,(1.4)

Φ = σ−1/2

(

Λσ−1/2 +
∂σ1/2

∂ν

)

,(1.5)

where σ−1/2, ∂σ1/2/∂ν in (1.5) denote the multiplication operators by the

functions σ−1/2|∂D, ∂σ1/2/∂ν|∂D, respectively and Λ is the voltage-to-current

map on ∂D, defined as

(1.6) Λf = σ
∂u

∂ν

∣

∣

∣

∣

∂D

,

where f ∈ H1/2(∂D), ν is the outer normal of ∂D, and u is the H1(D)-

solution of the Dirichlet problem

(1.7) div(σ∇u) = 0 on D, u|∂D = f.

Indeed, the substitution u = ũσ−1/2 in (1.7) yields (−∆+v)ũ = 0 in D with

v given by (1.4). In this framework we have the Calderón problem:

Problem 2. Given Λ, find σ on D.

We would like to remark that Problems 1 and 2 are not overdetermined,

in the sense that we consider the reconstruction of a real-valued function of

two variables from real-valued inverse problem data dependent on two vari-

ables. In addition, the history of inverse problems for the two-dimensional

Schrödinger equation at fixed energy goes back to [8].

There are several questions to be answered in these inverse problems: one

would like to prove the uniqueness, i.e. the injectivity of the map v → Φ

(for Problem 1, for example), then the reconstruction of v from Φ and after

the stability of the inverse Φ → v.

In this paper we study interior stability estimates, i.e. (for Problem 1 with

a potential of conductivity type, for example) we want to prove that given

two Dirichlet-to-Neumann operators Φ1 and Φ2, corresponding to potentials

v1 and v2 on D, we have that

‖v1 − v2‖L∞(D) ≤ ω (‖Φ1 − Φ2‖H1/2→H−1/2) ,

where the function ω(t) → 0 as fast as possible as t→ 0. We will study also

stability estimates for Problem 2.
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There is a wide literature on the Gel’fand-Calderón inverse problem. In the

case of complex-valued potentials the global injectivity of the map v → Φ

was firstly proved in [16] for D ⊂ R
d with d ≥ 3 and in [6] for d = 2

with v ∈ Lp: in particular, these results were obtained by the use of global

reconstructions developed in the same papers. A global stability estimate

for Problem 1 and 2 for d ≥ 3 was first found by Alessandrini in [1]; this

result was recently improved in [19]. In the two-dimensional case the first

global stability estimate for Problem 1 was given in [21].

Global results for Problem 2 in the two dimensional case have been found

much earlier than for Problem 1. In particular, global uniqueness was first

proved in [15] for conductivities in the W 2,p(D) class (p > 1) and after

in [2] for L∞ conductivities. The first global stability result was given in

[13], where a logarithmic estimate is obtained for conductivities with two

continuous derivatives. This result was improved in [4], where the same kind

of estimate is obtained for Hölder continuous conductivities.

This paper is not intended to pursue this direction of research, i.e. to prove

stability estimates for potentials/conductivities with less regularity. Here, in

fact, we focus on the opposite situation, i.e. smooth potentials/conductivities,

and try to answer another question: how the stability estimates vary with

respect to the smoothness of the potentials/conductivities.

The results obtained also constitutes progress for non-smooth potentials:

indeed they indicate stability dependence of the smooth part of a singular

potential with respect to boundary value data.

We will assume for simplicity that

D is an open bounded domain in R
2, ∂D ∈ C2,

v ∈Wm,1(R2) for some m > 2, supp v ⊂ D,
(1.8)

where

Wm,1(R2) = {v : ∂Jv ∈ L1(R2), |J | ≤ m}, m ∈ N ∪ {0},(1.9)

J ∈ (N ∪ {0})2, |J | = J1 + J2, ∂Jv(x) =
∂|J |v(x)

∂xJ11 ∂x
J2
2

.

Let

‖v‖m,1 = max
|J |≤m

‖∂Jv‖L1(R2).

The last (strong) hypothesis is that we will consider only potentials of con-

ductivity type, i.e.

(1.10) v =
∆σ1/2

σ1/2
, for some σ ∈ L∞(D), with σ ≥ σmin > 0.

The main result is the following.
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Theorem 1.1. Let the conditions (1.3), (1.8), (1.10) hold for the potentials

v1, v2, where D is fixed, and let Φ1 , Φ2 be the corresponding Dirichlet-to-

Neumann operators. Let ‖vj‖m,1 ≤ N , j = 1, 2, for some N > 0. Then, for

any α < m there exists a constant C = C(D,N,m,α) such that

(1.11) ‖v2 − v1‖L∞(D) ≤ C(log(3 + ‖Φ2 − Φ1‖
−1))−α,

where ‖Φ2 − Φ1‖ = ‖Φ2 − Φ1‖H1/2→H−1/2 .

Corollary 1.2. Let σ1, σ2 be two isotropic conductivities such that ∆(σ
1/2
j )/σ

1/2
j

satisfies conditions (1.8), where D is fixed and 0 < σmin ≤ σj ≤ σmax < ∞

for j = 1, 2 and some constants σmin and σmax. Let Λ1 , Λ2 be the correspond-

ing Dirichlet-to-Neumann operators and ‖∆(σ
1/2
j )/σ

1/2
j ‖m,1 ≤ N , j = 1, 2,

for some N > 0. We suppose, for simplicity, that supp (σj − 1) ⊂ D for

j = 1, 2. Then, for any α < m there exists a constant C = C(D,N,m,α)

such that

(1.12) ‖σ2 − σ1‖L∞(D) ≤ C(log(3 + ‖Λ2 − Λ1‖
−1))−α,

where ‖Λ2 − Λ1‖ = ‖Λ2 − Λ1‖H1/2→H−1/2 .

The main feature of these estimates is that, as m → +∞, we have α =

α(m) → +∞ (one can take α(m) = m − 1). In addition we would like

to mention that, under the assumption of Theorem 1.1 and Corollary (1.2),

according to instability estimates of Mandache [14] and Isaev [12], our results

are almost optimal. Note that in the linear approximation near zero potential

Theorem 1.1 (without condition (1.10) but with α ≤ 2) was proved in [20].

In dimension d ≥ 3 a global stability estimate similar to our result (with

respect to dependence on smoothness) was proved in [19].

The proof of Theorem 1.1 relies on the ∂̄-techniques introduced by Beals-

Coifman [5], Henkin-Novikov [11] and developed by Novikov [16] and Nach-

man [15] for solving the Calderón problem in two dimensions.

The Novikov-Nachman method starts with the construction of a special

family of solutions ψ(x, λ) of equation (1.2), which was originally introduced

by Faddeev in [9]. These solutions have an exponential behaviour depend-

ing on the complex parameter λ and they are constructed via some function

µ(x, λ) (see (2.5)). One of the most important property of µ(x, λ) is that it

satisfies a ∂̄-equation with respect to the variable λ (see equation (2.8)), in

which appears the so-called Faddeev generalized scattering amplitude h(λ)

(defined in (2.6)). On the contrary, if one knows h(λ) for every λ ∈ C, it

is possible to recover µ(x, λ) via this ∂̄-equation. Starting from these argu-

ments we will prove that the map h(λ) → v(x) satisfies an Hölder condition

(Proposition 4.2). This is done in Section 4.
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The remaining part of the method relates the scattering amplitude h(λ) to

the Dirichlet-to-Neumann operator Φ. In the present paper this is done using

the Alessandrini identity (see [1]) and an estimate of h(λ) for high values of

|λ| given in [17]. We find that the map Φ → h has logarithmic stability in

some natural norm (Proposition 3.3). This is explained in Section 3.

The composition of the two above-mentioned maps gives the result of

Theorem 1.1, as showed in Section 5.

This work was fulfilled in the framework of researches under the direction

of R. G. Novikov.

2. Preliminaries

In this section we recall some definitions and properties of the Faddeev

functions, the above-mentioned family of solutions of equation (1.2), which

will be used throughout all the paper.

Following [15], we fix some 1 < p < 2 and define ψ(x, k) to be the solution

(when it exists unique) of

(2.1) (−∆+ v)ψ(x, k) = 0 in R
2,

with e−ixkψ(x, k) − 1 ∈ W 1,p̃(R2) = {u : ∂Ju ∈ Lp̃(R2), |J | ≤ 1}, where

x = (x1, x2) ∈ R
2, k = (k1, k2) ∈ V ⊂ C

2,

V = {k ∈ C
2 : k2 = k21 + k22 = 0}(2.2)

and

(2.3)
1

p̃
=

1

p
−

1

2
.

The variety V can be written as {(λ, iλ) : λ ∈ C} ∪ {(λ,−iλ) : λ ∈ C}. We

henceforth denote ψ(x, (λ, iλ)) by ψ(x, λ) and observe that, since v is real-

valued, uniqueness for (2.1) yields ψ(x, (−λ̄, iλ̄)) = ψ(x, (λ, iλ)) = ψ(x, λ)

so that, for reconstruction and stability purpose, it is sufficient to work on

the sheet k = (λ, iλ).

We now identify R
2 with C and use the coordinates z = x1 + ix2, z̄ =

x1 − ix2,

∂

∂z
=

1

2

(

∂

∂x1
− i

∂

∂x2

)

,
∂

∂z̄
=

1

2

(

∂

∂x1
+ i

∂

∂x2

)

,

where (x1, x2) ∈ R
2.
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Then we define

ψ(z, λ) = ψ(x, λ),(2.4)

µ(z, λ) = e−izλψ(z, λ),(2.5)

h(λ) =

∫

D
eiz̄λ̄v(z)ψ(z, λ)dRez dImz,(2.6)

for z, λ ∈ C.

Throughout all the paper c(α, β, . . .) is a positive constant depending on

parameters α, β, . . .

We now restate some fundamental results about Faddeev functions. In

the following statement ψ0 denotes σ1/2.

Proposition 2.1 ([15]). Let D ⊂ R
2 be an open bounded domain with C2

boundary, v ∈ Lp(R2), 1 < p < 2, supp v ⊂ D, ‖v‖Lp(R2) ≤ N , be such that

there exists a real-valued ψ0 ∈ L∞(R2) with v = (∆ψ0)/ψ0, ψ0(x) ≥ c0 > 0

and ψ0 ≡ 1 outside D. Then, for any λ ∈ C there is a unique solution

ψ(z, λ) of (2.1) with e−izλψ(·, λ)−1 in L∞. Furthermore, e−izλψ(·, λ)−1 ∈

W 1,p̃(R2) (p̃ is defined in (2.3)) and

(2.7) ‖e−izλψ(·, λ) − 1‖W s,p̃ ≤ c(p, s)N |λ|s−1,

for 0 ≤ s ≤ 1 and λ sufficiently large.

The function µ(z, λ) defined in (2.5) satisfies the equation

(2.8)
∂µ(z, λ)

∂λ̄
=

1

4πλ̄
h(λ)e−λ(z)µ(z, λ), z, λ ∈ C,

in the W 1,p̃ topology, where h(λ) is defined in (2.6) and the function e−λ(z)

is defined as follows:

(2.9) eλ(z) = ei(zλ+z̄λ̄).

In addition, the functions h(λ) and µ(z, λ) satisfy
∥

∥

∥

∥

h(λ)

λ̄

∥

∥

∥

∥

Lr(R2)

≤ c(r,N), for all r ∈ (p̃′, p̃),
1

p̃
+

1

p̃′
= 1,(2.10)

inf
z,λ∈C

|µ(z, λ)| ≥ c(D,N) > 0,(2.11)

sup
z∈C

‖µ(z, ·) − 1‖Lr(C) ≤ c(r,D,N), for all r ∈ (p′,∞](2.12)

and

|h(λ)| ≤ c(p,D,N)|λ|ε,(2.13)

‖µ(·, λ) − ψ0‖W 1,p̃ ≤ c(p,D,N)|λ|ε,(2.14)

for λ ≤ λ0(p,D,N) and 0 < ε < 2
p′ , where 1

p + 1
p′ = 1.
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We recall that if v ∈Wm,1(R2) with supp v ⊂ D, then ‖v̂‖m < +∞, where

v̂(p) = (2π)−2

∫

R2

eipxv(x)dx, p ∈ C
2,(2.15)

‖u‖m = sup
p∈R2

|(1 + |p|2)m/2u(p)|,(2.16)

for a test function u.

In addition, if v ∈Wm,1(R2) with supp v ⊂ D and m ≥ 1, we have

(2.17) ‖v‖L∞(D) ≤ diam(D)‖v‖m,1,

so, in particular, the hypothesis v ∈ Lp(R2), supp v ⊂ D, in the statement

of Proposition 2.1 satisfied for every 1 < p < 2 (since D is bounded).

The following lemma is a variation of a result in [17]:

Lemma 2.2. Under the assumption (1.8), there exists R = R(m, ‖v̂‖m) > 0

such that

(2.18) |h(λ)| ≤ 8π2‖v̂‖m(1 + 4|λ|2)−m/2, for |λ| > R.

Proof. We consider the function H(k, p) defined as

(2.19) H(k, p) =
1

(2π)2

∫

R2

ei(p−k)xv(x)ψ(x, k)dx,

for k ∈ V (where V is defined in (2.2)), p ∈ R
2 and ψ(x, k) as defined at the

beginning of this section.

We deduce that h(λ) = (2π)2H(k(λ), k(λ) + k(λ)), for k(λ) = (λ, iλ). By

[17, Corollary 1.1] we have

(2.20) |H(k, p)| ≤ 2‖v̂‖m(1 + p2)−m/2 for |λ| > R,

for R = R(m, ‖v̂‖m) > 0 and then the proof follows. �

We restate [3, Lemma 2.6], which will be useful in section 4.

Lemma 2.3 ([3]). Let a ∈ Ls1(R2) ∩ Ls2(R2), 1 < s1 < 2 < s2 < ∞ and

b ∈ Ls(R2), 1 < s < 2. Assume u is a function in Ls̃(R2), with s̃ defined as

in (2.3), which satisfies

(2.21)
∂u(λ)

∂λ̄
= a(λ)ū(λ) + b(λ), λ ∈ C.

Then there exists c > 0 such that

(2.22) ‖u‖Ls̃ ≤ c‖b‖Ls exp(c(‖a‖Ls1 + ‖a‖Ls2 )).
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3. From Φ to h(λ)

Lemma 3.1. Let the condition (1.8) holds. Then we have, for p > 1,

(3.1)

∥

∥

∥

∥

h(λ)

λ̄

∥

∥

∥

∥

Lp(|λ|>R)

≤ c(p,m)‖v̂‖m
1

Rm+1−2/p
,

where R is as in Lemma 2.2.

Proof. It’s a corollary of Lemma 2.2. Indeed we have

∥

∥

∥

∥

h(λ)

λ̄

∥

∥

∥

∥

p

Lp(|λ|>R)

≤ c‖v̂‖pm

∫

r>R
r1−mp−pdr =

c(p,m)‖v̂‖pm

R(m+1)p−2
. �

Lemma 3.2. Let D ⊂ {x ∈ R
2 : |x| ≤ l}, v1, v2 be two potentials satisfy-

ing (1.3), (1.8), (1.10), let Φ1,Φ2 the corresponding Dirichlet-to-Neumann

operator and h1, h2 the corresponding generalised scattering amplitude. Let

‖vj‖m,1 ≤ N , j = 1, 2. Then we have

(3.2) |h2(λ)− h1(λ)| ≤ c(D,N)e2l|λ|‖Φ2 − Φ1‖H1/2→H−1/2 , λ ∈ C.

Proof. We have the following identity:

(3.3) h2(λ)− h1(λ) =

∫

∂D
ψ1(z, λ)(Φ2 − Φ1)ψ2(z, λ)|dz|,

where ψi(z, λ) are the Faddeev functions associated to the potential vi, i =

1, 2. This identity is a particular case of the one in [18, Theorem 1]: we refer

to that paper for a proof.

From this identity we have:

|h2(λ)− h1(λ)| ≤ ‖ψ1(·, λ)‖H1/2(∂D)‖Φ2 − Φ1‖H1/2→H−1/2‖ψ2(·, λ)‖H1/2(∂D).

(3.4)

Now take p̃ > 2 and use the trace theorem to get

‖ψj(·, λ)‖H1/2(∂D) ≤ C‖ψj(·, λ)‖W 1,p̃(D) ≤ Cel|λ|‖e−izλψi(·, λ)‖W 1,p̃(D)

≤ Cel|λ|
(

‖e−izλψi(·, λ) − 1‖W 1,p̃(D) + ‖1‖W 1,p̃(D)

)

, i = 1, 2,

which from (2.7) and (2.12) is bounded by C(D,N)el|λ|. These estimates

together with (3.4) give (3.2). �

The main result of this section is the following:

Proposition 3.3. Let v1, v2 be two potentials satisfying (1.3), (1.8), (1.10),

let Φ1,Φ2 the corresponding Dirichlet-to-Neumann operator and h1, h2 the

corresponding generalised scattering amplitude. Let 0 < ε < 1, 1 < p < 2
1−ε
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and ‖vj‖m,1 ≤ N , j = 1, 2. Then for every α < m + 1 − 2/p there exists a

constant c = c(D,N,m, p, α) such that

(3.5)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(C)

≤ c log(3 + ‖Φ2 − Φ1‖
−1
H1/2→H−1/2)

−α.

Proof. Let choose a, b > 0, a close to 0 and b big to be determined and let

(3.6) δ = ‖Φ2 −Φ1‖H1/2→H−1/2 .

We split down the left term of (3.5) as follows:
∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(C)

≤

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(|λ|<a)

+

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(a<|λ|<b)

+

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(|λ|>b)

.

From (2.13) we obtain

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(|λ|<a)

≤ c(D,N, p)

(

∫

|λ|<a
|λ|(ε−1)pdReλdImλ

)
1

p

(3.7)

= c(D,N, p)aε−1+2/p.

From Lemma 3.2 and (3.6) we get

(3.8)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(a<|λ|<b)

≤ c(D,N)

(

δ

a1−2/p
+ δb1/pe(2l+1)b

)

.

From Lemma 3.1

(3.9)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(|λ|>b)

≤
c(N)

bm+1−2/p
.

We now define, for 0 < α < m+ 1− 2
p ,

(3.10) a = log(3 + δ−1)
− α

ε−1+2/p , b = log(3 + δ−1)
α

m+1−2/p ,

in order to have (3.7) and (3.9) of the order log(3 + δ−1)−α. We also choose

δα < 1 such that for every δ ≤ δα, a is sufficiently small in order to have

(2.13) (which yields (3.7)), b ≥ R (with R as in Lemma 2.2) and also

(3.11)
δ

a1−2/p
= δ log(3 + δ−1)

(

α
ε−1+2/p

)

(1−2/p)
< log(3 + δ−1)−α.

Thus we obtain
∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(C)

≤
c(D,N, p)

log(3 + δ−1)α
(3.12)

+ c(D,N)δ log(3 + δ−1)
α

m+1−2/p e(2l+1) log(3+δ−1)
α

m+1−2/p
,
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for δ ≤ δα. As

δ log(3 + δ−1)
α

m+1−2/p e(2l+1) log(3+δ−1)
α

m+1−2/p
→ 0 for δ → 0

more rapidly than the other term, we obtain that

(3.13)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(C)

≤
c(D,N,m, p, α)

log(3 + δ−1)α
,

for 0 < α < m+ 1− 2
p , δ ≤ δα.

Estimate (3.13) for general δ (with modified constant) follows from (3.13)

for δ ≤ δα and the property (2.10) of the scattering amplitude. This com-

pletes the proof of Proposition 3.3. �

4. From h(λ) to v(x)

Lemma 4.1. Let v1, v2 be two potentials satisfying (1.3), (1.8), (1.10), with

‖vj‖m,1 ≤ N , h1, h2 the corresponding scattering amplitude and µ1(z, λ), µ2(z, λ)

the corresponding Faddeev functions. Let 1 < s < 2, and s̃ be as in (2.3).

Then

sup
z∈C

‖µ2(z, ·) − µ1(z, ·)‖Ls̃(C) ≤ c(D,N, s)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Ls(C)

,(4.1)

sup
z∈C

‖v2µ2(z, ·) − v1µ1(z, ·)‖Ls̃(C) ≤ c(D,N, s)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Ls(C)

.(4.2)

Proof. Let

ν(z, λ) = µ2(z, λ) − µ1(z, λ),(4.3)

τ(z, λ) = v2(z)µ2(z, λ)− v1(z)µ1(z, λ).(4.4)

From the ∂̄-equation (2.8) (and the fact that v1 and v2 are real-valued) we

deduce that ν, τ satisfy the following non-homogeneous ∂̄-equations:

∂

∂λ̄
ν(z, λ) =

e−λ(z)

4π

h2(λ)− h1(λ)

λ̄
µ2(z, λ) +

e−λ(z)

4π

h1(λ)

λ̄
ν(z, λ),(4.5)

∂

∂λ̄
τ(z, λ) =

e−λ(z)

4π

h2(λ)− h1(λ)

λ̄
v2µ2(z, λ) +

e−λ(z)

4π

h1(λ)

λ̄
τ(z, λ),(4.6)

for λ ∈ C, where e−λ(z) is defined in (2.9).

By Lemma 2.3 and (2.10) we obtain

‖ν(z, ·)‖Ls̃ ≤ c(D,N)

∥

∥

∥

∥

µ2(z, λ)
h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Ls(C)

≤ c(D,N) sup
z∈C

‖µ2(z, ·)‖L∞

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Ls(C)

≤ c(D,N)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Ls(C)

,
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where we used the property (2.12) of µ2(z, λ). With the same arguments

(along with (2.17)) we also obtain

‖τ(z, ·)‖Ls̃ ≤ c(D,N)

∥

∥

∥

∥

v2µ2(z, λ)
h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Ls(C)

≤ c(D,N) sup
z∈C

‖v2(z)µ2(z, ·)‖L∞

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Ls(C)

≤ c(D,N)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Ls(C)

,

which ends the proof. �

The main result of this section is the following proposition.

Proposition 4.2. Let v1, v2 be two potentials satisfying (1.3), (1.8), (1.10),

with ‖vj‖m,1 ≤ N , and let h1, h2 be the corresponding scattering amplitude.

Let p, p′ such that 1 < p < 2 < p′ <∞, 1/p + 1/p′ = 1. Then

(4.7) ‖v2 − v1‖L∞(D) ≤ c(D,N, p)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(C)∩Lp′ (C)

.

Proof. We write

v2(z)− v1(z) =
1

µ2(z, 0)

(

v2µ2(z, 0)− v1µ1(z, 0)− v1(z)[µ2(z, 0)− µ1(z, 0)]
)

,

that yields

(4.8)

|v2(z)−v1(z)| ≤
1

|µ2(z, 0)|

(

|v2µ2(z, 0)−v1µ1(z, 0)|+|v1(z)||µ2(z, 0)−µ1(z, 0)|
)

.

We claim that

‖v2µ2(·, 0) − v1µ1(·, 0)‖L∞(D) ≤ c(D,N, p)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(C)∩Lp′ (C)

,(4.9)

‖µ2(·, 0) − µ1(·, 0)‖L∞(D) ≤ c(D,N, p)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(C)∩Lp′ (C)

,(4.10)

for 1 < p < 2 < p′ < ∞, 1/p + 1/p′ = 1. Suppose (4.9), (4.10) already

proved; then estimate (4.7) follows from (4.8), (4.9), (4.10), property (2.11)

and (2.17).

Before proving (4.9), (4.10), we would like to recall that if v ∈Wm,1(R2),

m ≥ 1, with supp v ⊂ D then v ∈ Lp(D) for p ∈ [1,∞]; in particular, from

Proposition 2.1, this yields h(λ)/λ̄ ∈ Lp(C), for 1 < p <∞.

Now, in order to prove (4.9), (4.10) we write as before

ν(z, λ) = µ2(z, λ) − µ1(z, λ),(4.11)

τ(z, λ) = v2(z)µ2(z, λ)− v1(z)µ1(z, λ),(4.12)
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which satisfy the non-homogeneous ∂̄-equations (4.5) and (4.6), respectively.

From these equations we obtain

|ν(z, 0)| =
1

π

∣

∣

∣

∣

∫

C

e−λ(z)

4πλ

h1(λ)

λ̄
ν(z, λ)dReλdImλ(4.13)

+

∫

C

e−λ(z)

4πλ

h2(λ)− h1(λ)

λ̄
µ2(z, λ)dReλdImλ

∣

∣

∣

∣

≤
1

4π2
sup
z∈C

‖ν(z, ·)‖Lr

∥

∥

∥

∥

h1(λ)

λλ̄

∥

∥

∥

∥

Lr′

+
1

4π2
sup
z∈C

‖µ2(z, ·)‖L∞

∥

∥

∥

∥

h2(λ)− h1(λ)

λλ̄

∥

∥

∥

∥

L1

and

|τ(z, 0)| =
1

π

∣

∣

∣

∣

∫

C

e−λ(z)

4πλ

h1(λ)

λ̄
τ(z, λ)dReλdImλ(4.14)

+

∫

C

e−λ(z)

4πλ

h2(λ)− h1(λ)

λ̄
v2µ2(z, λ)dReλdImλ

∣

∣

∣

∣

≤
1

4π2
sup
z∈C

‖τ(z, ·)‖Lr

∥

∥

∥

∥

h1(λ)

λλ̄

∥

∥

∥

∥

Lr′

+
‖v2‖L∞(D)

4π2
sup
z∈C

‖µ2(z, ·)‖L∞

∥

∥

∥

∥

h2(λ)− h1(λ)

λλ̄

∥

∥

∥

∥

L1

,

where 1/r + 1/r′ = 1, 1 < r′ < 2 < r <∞. The number s = 2r/(r + 2) can

be chosen s < 2 and as close to 2 as wanted, by taking r big enough.

Then

∥

∥

∥

∥

h1(λ)

λλ̄

∥

∥

∥

∥

Lr′(|λ|<R)

≤

∥

∥

∥

∥

h1(λ)

λ̄

∥

∥

∥

∥

Lp

∥

∥

∥

∥

1

λ

∥

∥

∥

∥

Lq(|λ|<R)

≤ c(N, r),(4.15)

where we have chosen p > 2 such that
∥

∥h1(λ)/λ̄
∥

∥

Lp ≤ c(N, p) from (2.10)

and also, since 1/q = 1/r′ − 1/p = 1− 1/r − 1/p, q can be chosen less than

2 by taking r big enough depending on p. With the same choice of p, q we

also obtain

∥

∥

∥

∥

h1(λ)

λλ̄

∥

∥

∥

∥

Lr′(|λ|>R)

≤

∥

∥

∥

∥

h1(λ)

λ̄

∥

∥

∥

∥

Lq

∥

∥

∥

∥

1

λ

∥

∥

∥

∥

Lp(|λ|>R)

≤ c(N, r).(4.16)

From Lemma 4.1 with r = s̃ we get

sup
z∈C

‖ν(z, ·)‖Lr ≤ c(D,N, r)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Ls(C)

,(4.17)

sup
z∈C

‖τ(z, ·)‖Lr ≤ c(D,N, r)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Ls(C)

,(4.18)
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and from (2.12)

(4.19) sup
z,λ∈C

|µ2(z, λ)| ≤ c(D,N).

Finally
∥

∥

∥

∥

h2(λ)− h1(λ)

λλ̄

∥

∥

∥

∥

L1

≤

∥

∥

∥

∥

1

λ

∥

∥

∥

∥

Lp(|λ|>R)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp′
(4.20)

+

∥

∥

∥

∥

1

λ

∥

∥

∥

∥

Lp′(|λ|<R)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp

,

by taking p′ = s and p such that 1/p+ 1/p′ = 1.

Now (4.9) and (4.10) follows from (4.11)–(4.20); this finishes the proof of

Proposition 4.2. �

5. Proof of Theorem 1.1 and Corollary 1.2

Proof of Theorem 1.1. Fix α < m and take p such that 2
m−α+1 < p < 2.

From Proposition 4.2 we have

(5.1) ‖v2 − v1‖L∞(D) ≤ c(D,N, p)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(C)∩Lp′ (C)

,

where 1/p + 1/p′ = 1. From Proposition 3.3

(5.2)

∥

∥

∥

∥

h2(λ)− h1(λ)

λ̄

∥

∥

∥

∥

Lp(C)∩Lp′ (C)

≤ c(D,N, p) log(3+‖Φ2−Φ1‖
−1
H1/2→H−1/2)

−α,

as α < m+ 1− 2
p . Theorem 1.1 is proved. �

Proof of Corollary 1.2. We first extend σ on the whole plane by putting

σ(x) = 1 for x ∈ R
2 \D (this extension is smooth by our hypothesis on σ).

Now since σj|∂D = 1 and
∂σj

∂ν |∂D = 0 for j = 1, 2, from (1.5) we deduce that

(5.3) Φj = Λj , j = 1, 2.

In addition, from (2.14) we get

(5.4) lim
λ→0

µj(z, λ) = σ
1/2
j (z), j = 1, 2;

thus we obtain, using the fact that σj are bounded from above and below,

‖σ2 − σ1‖L∞(D) ≤ c(N)‖σ
1/2
2 − σ

1/2
1 ‖L∞(D)(5.5)

= c(N)‖µ2(·, 0) − µ1(·, 0)‖L∞(D).

Now the proof follows by repeating the proof of Theorem 1.1, using (5.5),

(4.10) and (5.3). �
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