Equidistribution, counting and arithmetic applications

Jouni Parkkonen Frédéric Paulin

Abstract This short note is an announcement of the results of [PP1] and [PP2]. ${ }^{1}$
Let M be a finite volume hyperbolic manifold of dimension n at least 2 . Let $T^{1} M \rightarrow M$ be the unit tangent bundle of M, where $T^{1} M$ is endowed with its usual Riemannian metric, whose induced measure is the Liouville measure $\operatorname{vol}_{T^{1} M}$. Let $\left(g^{t}\right)_{t \in \mathbb{R}}$ be the geodesic flow of M. Let C_{0} be a finite volume immersed totally geodesic submanifold of M of dimension k with $0<k<n$, and let $\nu^{1} C_{0}$ be its unit normal bundle, so that $g^{t} \nu^{1} C_{0}$ is, for every $t \geq 0$, an immersed submanifold of $T^{1} M$.

Theorem 1 The induced Riemannian measure of $g^{t} \nu^{1} C_{0}$ equidistributes to the Liouville measure as $t \rightarrow+\infty$:

$$
\operatorname{vol}_{g^{t} \nu^{1} C_{0}} /\left\|\operatorname{vol}_{g^{t} \nu^{1} C_{0}}\right\| \xrightarrow{*} \operatorname{vol}_{T^{1} M} /\left\|\operatorname{vol}_{T^{1} M}\right\| .
$$

This theorem can be deduced from [EM, Theo. 1.2]. Our (short and direct) proof also uses, as in Margulis' equidistribution result for horospheres, the mixing property of the geodesic flow of M.

Let \mathcal{H}_{∞} be a small enough Margulis neighbourhood of an end of M, that is a connected component of the set of points of M at which the injectivity radius of M is at most ϵ_{0}, for some $\epsilon_{0}>0$ small enough. We use the above equidistribution theorem, and the fact that the submanifold $g^{t} \nu^{1} C_{0}$ is locally close to an unstable leaf in $T^{1} M$ of the geodesic flow of M, to prove the following counting result.

Theorem 2 The number of common perpendicular locally geodesic arcs between $\partial \mathcal{H}_{\infty}$ and C_{0} with length at most t is equivalent, as tends to $+\infty$, to

$$
\frac{\operatorname{Vol}\left(\mathbb{S}_{n-k-1}\right) \operatorname{Vol}\left(\mathcal{H}_{\infty}\right) \operatorname{Vol}\left(C_{0}\right)}{\operatorname{Vol}\left(\mathbb{S}_{n-1}\right) \operatorname{Vol}(M)} e^{(n-1) t}
$$

We refer to [PP1] for the proofs of the above theorems, as well as for references to other works and many geometric complements, and we now give a sample of their arithmetic applications, extracted from [PP1] except for the last corollary.

Counting quadratic irrationals. Let K be a number field and let \mathcal{O}_{K} be its ring of integers. Endow the set of quadratic irrationals over K with the action by homographies of $\mathrm{PSL}_{2}\left(\mathcal{O}_{K}\right)$, and note that it is not transitive. We denote by α^{σ} the Galois conjugate over K of a quadratic irrational α over K. There are many works (see for instance [Bug]) on the approximation of real or complex numbers by algebraic numbers, and approximating them

[^0]by elements in orbits of algebraic numbers under natural group actions for appropriate complexities seems to be interesting.

Starting with $K=\mathbb{Q}$, our first result is a counting result in orbits of real quadratic irrationals over \mathbb{Q} for a natural complexity (see [PP1] for a more algebraic expression in terms of discriminants).

Corollary 1 Let $\alpha_{0} \in \mathbb{R}$ be a quadratic irrational over \mathbb{Q}, and let G be a finite index subgroup of $\mathrm{PSL}_{2}(\mathbb{Z})$. Then as s tends to $+\infty$,

$$
\operatorname{Card}\left\{\alpha \in G \cdot\left\{\alpha_{0}, \alpha_{0}^{\sigma}\right\} \bmod \mathbb{Z}: \frac{1}{\left|\alpha-\alpha^{\sigma}\right|} \leq s\right\} \sim \frac{24 q_{G} \operatorname{argcosh} \frac{\left|\operatorname{tr} \gamma_{0}\right|}{2}}{\pi^{2}\left[\operatorname{PSL}_{2}(\mathbb{Z}): G\right] n_{0}} s,
$$

where q_{G} is the smallest positive integer q such that $z \mapsto z+q$ belongs to $G, \gamma_{0} \in G-\{1\}$ fixes α_{0} and n_{0} is the index of $\gamma_{0}{ }^{\mathbb{Z}}$ in the stabilizer of $\left\{\alpha_{0}, \alpha_{0}^{\sigma}\right\}$ in G (and note that q_{G}, γ_{0}, n_{0} do exist).

For instance, if α_{0} is the Golden ratio $\phi=\frac{1+\sqrt{5}}{2}$ (which is reciprocal in Sarnak's terminology) and $G=\operatorname{PSL}_{2}(\mathbb{Z})$, we get $\operatorname{Card}\left\{\alpha \in G \cdot \phi \quad \bmod \mathbb{Z}: \frac{1}{\left|\alpha-\alpha^{\sigma}\right|} \leq s\right\} \sim$ $\frac{24 \log \phi}{\pi^{2}}$ s. With $\mathbb{H}_{\mathbb{R}}^{2}$ the upper halfplane model of the real hyperbolic plane, the proof applies Theorem 2 to M the orbifold $G \backslash \mathbb{H}_{\mathbb{R}}^{2}$, to C_{0} the image in M of the geodesic line in $\mathbb{H}_{\mathbb{R}}^{2}$ with endpoints α_{0} and α_{0}^{σ}, and to \mathcal{H}_{∞} the image in M of the set of points in $\mathbb{H}_{\mathbb{R}}^{2}$ with Euclidean height at least 1 . The trick is that if a and b are close enough distinct real numbers, then the hyperbolic length of the perpendicular arc between the horizontal line at Euclidean height 1 and the geodesic line with endpoints a and b is exactly $-\log |b-a|$.

Assume K is imaginary quadratic, with discriminant D_{K}. We proved a general statement analogous to the previous corollary, but we only give here a particular case for ϕ.

Corollary 2 Let \mathfrak{a} be a non zero ideal in \mathcal{O}_{K} and $\Gamma_{0}(\mathfrak{a})=\left\{ \pm\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{PSL}_{2}\left(\mathcal{O}_{K}\right)\right.$: $c \in \mathfrak{a}\}$. Assume for simplicity that $D_{K} \neq-4$ and $\phi^{\sigma} \notin \Gamma_{0}(\mathfrak{a}) \cdot \phi$. Then as s tends to $+\infty$, the cardinality of $\left\{\alpha \in \Gamma_{0}(\mathfrak{a}) \cdot\left\{\phi, \phi^{\sigma}\right\} \bmod \mathcal{O}_{K}: \frac{1}{\left|\alpha-\alpha^{\sigma}\right|} \leq s\right\}$ is equivalent to

$$
\frac{8 \pi^{2} k_{\mathfrak{a}} \log \phi}{\left|D_{K}\right| \zeta_{K}(2) N(\mathfrak{a}) \prod_{\mathfrak{p} \text { prime, } \mathfrak{p} \mid \mathfrak{a}}\left(1+\frac{1}{N(\mathfrak{p})}\right)} s^{2},
$$

with $k_{\mathfrak{a}}$ the smallest $k \in \mathbb{N}-\{0\}$ such that the $2 k$-th term of the standard Fibonacci sequence belongs to \mathfrak{a} (and note that $k_{\mathfrak{a}}$ does always exist, contrarily to the odd case).

Counting representations of integers by binary forms. Recall that a binary quadratic form $Q(x, y)=a x^{2}+b x y+c y^{2}$ is primitive integral if $a, b, c \in \mathbb{Z}$ are relatively prime, and indefinite non product if its discriminant $D=b^{2}-4 a c$ is positive and not a square. Using the well known correspondence between pairs of Galois conjugated quadratic irrationals over \mathbb{Q} and the set of such Q 's up to sign, we prove the following counting result for the number of values of a fixed such Q on couples of relatively prime integers satisfying some congruence relations. Let (t, u) be the minimal solution to the Pell-Fermat equation $t^{2}-D u^{2}=4$ and $\epsilon=\frac{t+u \sqrt{D}}{2}$ the corresponding fundamental unit.

Corollary 3 Let Q be as above, and let n be an integer at least 3. Then the number of couples $(x, y) \in \mathbb{Z}^{2}$, relatively prime, with $x \equiv 1 \bmod n$ and $y \equiv 0 \bmod n$, such that $|Q(x, y)| \leq s$, modulo the linear action of $\mathrm{SL}_{2}(\mathbb{Z})$, is equivalent, as s tends to $+\infty$, to

$$
\frac{24 \log \epsilon}{\pi^{2} n^{2} \sqrt{D}} \prod_{p \text { prime }, p \mid n}\left(1-\frac{1}{p^{2}}\right)^{-1} s
$$

The final result, for a quadratic imaginary number field K, is proved in [PP2], along with extensions to representations satisfying congruence properties.

Corollary 4 Let $f:(u, v) \mapsto a|u|^{2}+2 \operatorname{Re}(b u \bar{v})+c|v|^{2}$ be a binary Hermitian form, indefinite (that is $\Delta=|b|^{2}-a c>0$) and integral over K (that is $a, c \in \mathbb{Z}, b \in \mathcal{O}_{K}$). Let $\mathrm{SU}_{f}\left(\mathcal{O}_{K}\right)=\left\{g \in \mathrm{SL}_{2}\left(\mathcal{O}_{K}\right): f \circ g=g\right\}$ be the group of automorphs of f. Then the number of orbits under $\mathrm{SU}_{f}\left(\mathcal{O}_{K}\right)$ of couples (u, v) of relatively prime elements of \mathcal{O}_{K} such that $|f(u, v)| \leq s$ is equivalent, as s tends to $+\infty$, to

$$
\frac{\pi \operatorname{Covol}\left(\mathrm{SU}_{f}\left(\mathcal{O}_{K}\right)\right)}{2\left|D_{K}\right| \zeta_{K}(2) \Delta} s^{2}
$$

With $\mathbb{H}_{\mathbb{R}}^{3}$ the upper halfspace model of the real hyperbolic 3 -space, the proof applies Theorem 2 to M the orbifold $\mathrm{PSL}_{2}\left(\mathcal{O}_{K}\right) \backslash \mathbb{H}_{\mathbb{R}}^{3}$, to C_{0} the image in M of the unique hyperbolic plane $P(f)$ in $\mathbb{H}_{\mathbb{R}}^{3}$ preserved by $\operatorname{PSU}_{f}\left(\mathcal{O}_{K}\right)$, and to \mathcal{H}_{∞} the image in M of the set of points in $\mathbb{H}_{\mathbb{R}}^{3}$ with Euclidean height at least 1. The trick is that, for every $\gamma \in \operatorname{PSL}_{2}\left(\mathcal{O}_{K}\right)$, the hyperbolic plane $P(f \circ \gamma)$ is an Euclidean hemisphere whose diameter is $\frac{\sqrt{\Delta}}{f \circ \gamma(1,0)}$, hence whose perpendicular arc to the horizontal plane at Euclidean height 1 has (signed) hyperbolic length $\log \frac{f \circ \gamma(1,0)}{\sqrt{\Delta}}$, and that $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$ acts transitively on the couples of relatively prime elements of \mathcal{O}_{K}.

References

[Bug] Y. Bugeaud, Approximation by algebraic numbers, Camb. Tracts Math. 160, Cambridge Univ. Press, 2004.
[EM] A. Eskin, C. McMullen, Mixing, counting, and equidistribution in Lie groups, Duke Math. J. 71 (1993) 181-209.
[PP1] J. Parkkonen and F. Paulin. Équidistribution, comptage et approximation par irrationnels quadratiques, Preprint [arXiv:1004.0454].
[PP2] J. Parkkonen, F. Paulin, On the representations of integers by indefinite binary Hermitian forms, preprint 2010 [arXiv. 1004.3211].

Department of Mathematics and Statistics, P.O. Box 35
40014 University of Jyväskylä, FINLAND
e-mail: parkkone@maths.jyu.fi
DMA, UMR 8553 CNRS
Ecole Normale Supérieure, 45 rue d'Ulm 75230 PARIS Cedex 05, FRANCE
e-mail: Frederic.Paulin@ens.fr

Département de mathématique, Bât. 425
Université Paris-Sud 11
91405 ORSAY Cedex, FRANCE
e-mail: frederic.paulin@math.u-psud.fr

[^0]: ${ }^{1}$ Keywords: Equidistribution, counting, quadratic irrational, hyperbolic manifold, binary quadratic form, perpendicular geodesic. AMS codes: 37A45, 11R11, 53A35, 22F30, 20H10, 11H06, 53C40, 11 E 16

