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Abstract

We present a new specification for the multinomial multiperiod Probit model
with autocorrelated errors. In sharp contrast with commonly used specifications,
ours is invariant with respect to the choice of a baseline alternative for utility
differencing. It also nests these standard models as special cases, allowing for
data based selection of the baseline alternatives for the latter. Likelihood eval-
uation is achieved under an Efficient Importance Sampling (EIS) version of the
standard GHK algorithm. Several simulation experiments highlight identifica-
tion, estimation and pretesting within the new class of multinomial multiperiod
Probit models.
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1 Introduction

In this paper we revisit the Dynamic Multinomial (multiperiod) Probit model

(hereafter DMP). DMP models offer a flexible and operational framework for

analyzing correlated sequences of discrete choices such as living arrangement de-

cisions for elderlies (Börsch-Supan et al., 1990) or the brand choices in successive

purchases (Keane, 1997).

The standard DMP specification commonly used in the literature initially

expresses all utilities in differences from that of a baseline alternative which is

selected a priori among all available alternatives. It then assumes that the er-

ror terms associated with these differences follow a stationary diagonal AR(1)

process. One common interpretation of that approach amounts to treating the

selected baseline utility as non-random – see, e.g., Börsch-Supan et al., (1990)

or Geweke et al. (1997). However, as we shall discuss below, the standard DMP

model suffers from a major drawback in that it is not invariant with respect to

the choice of the baseline alternative. Specifically, DMP models derived under

different baseline alternatives are non-nested and their respective parameteriza-

tions are not one-to-one transformations of one another. It follows that results

(estimations or test statistics) derived under different baseline alternatives are

mutually incompatible and, therefore, not easily comparable.

In the present paper we propose a dynamic version of the multinomial pro-

bit model which is specified in terms of utilities prior to differencing. It still

relies upon an arbitrary baseline alternative in order to construct the likelihood

function. However, parameters associated with different selections of baseline

alternative will be in one-to-one correspondence with one another. Whence, our

specification will be invariant with respect to that selection.
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In addition, our Dynamic Invariant Multinomial Probit model (hereafter DIMP)

offers the critical advantage that it actually nests all DMP versions thereof, cor-

responding to different baseline categories. Whence it becomes trivial to test

whether an initial DIMP model simplifies into a DMP model for a particular

baseline alternative (whose selection is now data based instead of arbitrary).

Last but not least, the Monte Carlo (MC) evaluation of the likelihood function

of the DIMP model is not more demanding than that of the standard DMP model.

For the likelihood evaluation of both specification one can rely on very similar im-

plementations of the GHK probability simulator as developed by Geweke (1991),

Hajivassiliou (1990) and Keane (1994). Actually, in the present paper we shall

rely upon a numerically more Efficient Importance Sampling version of the GHK

algorithm (hereafter GHK-EIS) as developed in the companion paper by Liesen-

feld and Richard (2009).

Invariance, nesting of DMPs, similar ease of computation offer strong incen-

tives for the adoption of our proposed DIMP specification by practitioners. In

particular, it allows for pretesting of whether a DIMP model can be subsequently

simplified into a standard DMP model under data based selection of a baseline

alternative.

The remainder of the paper is organized as follows. In Section 2, we use a sim-

ple bivariate example in order to introduce some of the key features of the DIMP

model under a simplified notation. The general DIMP specification is introduced

in Section 3.1, followed by a discussion of its invariance (Section 3.2), identifica-

tion (Section 3.3) and nesting properties (Section 3.4). Estimation in presented

in Section 4 with a brief description of GHK-EIS (Section 4.1) followed by its

application to likelihood evaluation (Section 4.2). MC experiments are presented

in Section 5: First a correctly specified DIMP (Section 5.1), next a misspecified
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DMP (Section 5.2) and finally a sample-based pretesting of a correctly specified

DMP (Section 5.3). Section 6 concludes.

2 Introductory example

Consider the case where there are only two categories with utilities given by

Ut =




ut1

ut2


 = µ (xt; β) + εt, (1)

where µ(·) is momentarily left unspecified and εt follows a stationary AR(1)

process

εt = Rεt−1 + ηt, ηt ∼ N2(0, Σ). (2)

Assume that we only observe the difference Yt = d′Ut with d′ = (1, −1), or later

only its sign. The following related three questions are central to our paper:

(i) Which parameters remain identified?

(ii) Under what conditions would d′εt itself follow a stationary AR(1) process?

(iii) What would be the consequences of incorrectly assuming that d′εt follows

an AR(1) process?

For the ease of exposition we initially consider the case when R is diago-

nal with diagonal elements ρ1 and ρ2 (with |ρi| < 1). Selecting an appropriate

(re)parametrization helps clarifying the issues under consideration. Since the

transformation from εt to d′εt implies a reduction in dimensionality from 2 to

1 and, therefore, an (implicit) marginalization, we first introduce the auxiliary

3
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non-singular transformation

ε∗
t =




et

εt2


 = Q εt, Q =




1 −1

0 1


 , (3)

with et = d′εt = εt1 − εt2. Note that ε∗
t follows the stationary AR(1) process

ε∗
t = R∗ε

∗
t−1 + η∗

t , η∗
t ∼ N2 (0, Σ∗) , (4)

with

R∗ = QRQ−1 and Σ∗ = QΣQ′. (5)

Let Φ = (φij) denote the stationary covariance matrix of εt and Φ∗ that of ε∗
t

Φ∗ = QΦQ′. (6)

The most relevant parametrization is that which is associated with the fac-

torization of the stationary density of ε∗
t into a marginal density for et and a

conditional density for εt2|et. Whence, Φ∗ is re-parameterized as

Φ∗ =




Ψ b2Ψ

b2Ψ υ2 + b2
2Ψ


 , (7)

with Ψ > 0, υ2 > 0 and b2 ∈ R. For the ease of reference, the relationships

between the successive parameterizations just introduced are given by

φ11 =
σ2

1

1 − ρ2
1

, φ12 =
σ12

1 − ρ1ρ2

, φ22 =
σ2

2

1 − ρ2
2

, (8)

4
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Ψ = φ11 + φ22 − 2φ12, b2 =
φ21 − φ22

φ11 + φ22 − 2φ12

, (9)

υ2 =
φ11φ22 − φ2

12

φ11 + φ22 − 2φ12

. (10)

For obvious reasons of symmetry we shall also consider the (stationary) re-

gression coefficient of εt1, on (εt2 − εt1) which is given by

b1 =
φ21 − φ11

φ11 + φ22 − 2φ12

= − (1 + b2) . (11)

The parametrization used for the rest of the discussion consists of (Ψ, b2, υ
2, ρ1,

ρ2) together with β. The identification for β is standard and has to be achieved by

means of restrictions on the difference µ1(xt, β) − µ2(xt, β) while υ2 which repre-

sents the variance of the conditional distribution of the utility error term εt2 given

et is clearly unidentified. We are left discussing identification of (Ψ, b2, ρ1, ρ2).

Equations (5) to (7) imply that the stationary distribution of et is characterized

by the following moments:

Var (et) = Ψ, (12)

Cov (et−s, et) =

(
1 0

)
(R∗)

sΦ∗




1

0


 = γ∗

sΨ, (13)

with

γ∗
s = [ρs

1 + b2 (ρs
1 − ρs

2)] . (14)

Identification results for Ψ are standard. If d′Ut is observed, then Ψ is identi-

fied. If only the sign of d′Ut is observed then it is identified only up to a constant

and this indeterminacy is typically resolved by setting Ψ = 1. If b2 = 0, then

ρ1 is identified. If b2 = −1 (b1 = 0), then ρ2 is identified. Otherwise, the triples

5
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(ρ1, ρ2, b2) and (ρ2, ρ1, b1) are observationally equivalent, in which case (ρ1, ρ2, b2)

are locally but not globally identified. However, as we shall discuss below, global

identification of the ρs and bs obtains from the diagonal elements of Cov(et−s, et)

when the dimension of et is greater than 1 (except on a subspace of measure

zero).

It also follows from Equation (14) that if any of the following three conditions

hold: (i) b1 = 0; (ii) b2 = 0; (iii) ρ1 = ρ2, then γ∗
s = (γ∗

1)
s and et follows the

stationary AR(1) process

et = γ∗
1et−1 + λt. (15)

If neither of these conditions hold, then while it still is the case that Cov(λt, et−1) =

0 by construction, the higher order Cov(λt, et−s) are non zero for s > 1. In other

words, λt is no longer an innovation relative to {eτ }t−2
τ=1 and et no longer follows

an AR(1) process. Furthermore, even though |ρi| < 1, it does not even follow

that |γ∗
1 | < 1 since b2 ∈ R. Actually γ∗

1 is then unrestricted. Note that the first-

order covariance associated with γ∗
1 in Equation (15) does not suffice to identify

the ρs and bs by itself. As we shall formally demonstrate in Section 3.3 below,

identification of these parameters requires taking into consideration the higher

order covariances.

The consequences of erroneously assuming that et follows an AR(1) process

when neither of the conditions listed above hold depend upon the nature of the

observations. If {d′Ut}T
t=1 were observed, then we would be discussing a standard

Generalized Least Squares miss–specification and the ML estimate of β would

remain consistent but would be inefficient. Since, furthermore, it need not be the

case that |γ∗
1 | < 1, we might be lead to erroneously conclude that the process

is non–stationary. If, as commonly the case for discrete choice applications, we

6
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only observed the signs of the differences d′Ut, then the Hessian would no longer

be block diagonal and all parameter estimates would be inconsistent.

Foremost, we shall see that the ρs and bs are identified except on a zero-

measure subspace and that the (EIS-)GHK algorithm applies as discussed below

to the more general model. Whence, there is no need to impose a priori the

restriction that d′εt follows an AR(1) process, which eventually can be pretested

within the more general model introduced in Equations (1) and (2).

Actually, we might not even restrict R to be diagonal. Let R = (rij). The

corresponding elements for R∗ are then given by




r∗
11 r∗

12

r∗
21 r∗

22


 =




r11 − r12 r11 + r12 − (r22 + r21)

r21 r22 + r21


 . (16)

The coefficients γ∗
s in Equation (13) then obtain from the recursion




γ∗
s

cs


 = R∗




γ∗
s−1

cs−1


 , s > 0, (17)

initialized by γ∗
0 = 1 and c0 = b1. It follows that the condition r∗

12 = 0 is sufficient

for et to follow an AR(1) process (the conditions b1 = 0 or b2 = 0 are no longer

sufficient if r∗
12 6= 0). Actually, if r∗

12 = 0, then it follows from Equations (4) and

(16) that

et = (r11 − r12) et−1 + (η2t − η1t) . (18)

7
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3 Dynamic Invariant Multinomial Probit (DIMP)

3.1 Model

We now discuss the higher dimensional version of the pilot model introduced in

Section 2. Let U ′
t = (ut1, . . . , utJ) denote a J-dimensional vector of utilities at

time t. We assume that Ut evolves according to the stationary process

Ut = µt + εt, εt | εt−1 ∼ NJ (Rεt−1, Σ) , (19)

where µt = µ(xt; β) is left unspecified since the focus of our analysis lies in the

second order moments of the process and of its subsequent transformations. The

stationary covariance matrix of εt denoted by Φ satisfies the identity

Σ = Φ − RΦR′. (20)

The standard approach consists of selecting a baseline alternative, say alter-

native J , and of expressing all utilities in difference from utJ . As in Section 2,

we initially complete that transformation into the following non-singular trans-

formation:

U ∗
t =




Yt

utJ


 =




D

i′
J


 Ut = QUt, (21)

where D is the (J − 1) × J matrix

D = (IJ −1
... − ιJ −1), (22)

ι′
J −1 = (1, . . . , 1) and i′

J is the unit vector (0, . . . , 0, 1). The transformed system

8
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is given by

U ∗
t = µ∗

t + ε∗
t , ε∗

t | ε∗
t−1 ∼ NJ

(
R∗ε

∗
t−1, Σ∗

)
, (23)

with

µ∗
t = Qµt, ε∗

t = Qεt, Σ∗ = QΣQ′, R∗ = QRQ−1, (24)

Q−1 =




IJ −1 ιJ −1

0 1


 . (25)

The stationary covariance matrix of {ε∗
t }T

t=1 consists of the following blocks

Φ∗ = Var (ε∗
t ) = QΦQ′, Cov

(
ε∗

t−s, ε
∗
t

)
= (R∗)

sΦ∗. (26)

As in Section 2, we partition Φ∗ as follows

Φ∗ =




Ψ Ψb

b′Ψ υ2 + b′Ψb


 . (27)

The stationary moments of et = Dεt are given by

Var (et) = Ψ, (28)

Cov (et−s, et) =

(
IJ

... 0

)
(R∗)

sΦ∗




IJ

0


 = Γ∗

sΨ, (29)

with

Γ∗
s =

(
IJ

... 0

)
(R∗)

s




IJ

b′


 . (30)

In the next two sections we discuss the invariance and the identifications of the

parametrization (Ψ, b, {Γ∗
s }).

9
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3.2 Invariance

Suppose we select a different baseline alternative, say utj of instead of utJ . The

simplest way to handle this change consists of permuting ujt and uJt before

applying the Q transformation introduced in Equation (21). Whence the error

terms associated with the baseline alternative utj are given by

ε∗j
t = QPjεt = QPjQ

−1ε∗
t , (31)

where Pj is the permutation matrix for rows J and j. Note that

QPjQ
−1 =




Sj 0

i′
j 1


 , (32)

where Sj is the (J − 1) × (J − 1) matrix

Sj =




Ij−1 −ιj−1 0

0 −1 0

0 −ιJ −j−1 IJ −j−1




, with SJ = IJ −1, (33)

S−1
j = Sj and −i′

jSj = i′
j. It follows from Equation (27) and (31) that the

stationary covariance matrix of ε∗j
t is given by

Φ∗j =




Sj 0

i′
j 1







Ψ Ψb

b′Ψ υ2 + b′Ψb







S ′
j ij

0 1


 =




Ψj Ψjbj

b′
jΨj υ2

j + b′
jΨjbj


 , (34)

with

Ψj = SjΨS ′
j, bj = S ′

j (ij + b) , υ2
j = υ2. (35)

10
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Moreover (since − i′
jSj = i′

j),

(R∗j)
s =




Sj 0

i′
j 1


 (R∗)

s




Sj 0

i′
j 1


 . (36)

It follows that

Γ∗
js =

(
IJ

... 0

)
(R∗j)

s




IJ

b′


 = SjΓ

∗
sSj. (37)

The immediate implication of Equations (35) and (37) is that the parameters

(Ψj, bj, υ
2
j , {Γ∗

js}T −1
s=1 ) associated with baseline alternative j are in one–to–one cor-

respondence with the parameters (Ψ, b, υ2, {Γ∗
s }T −1

s=1 ) associated with baseline al-

ternative J . Whence ML estimators of the multinominal probit model introduced

in Equation (19) will be invariant w.r.t. the choice of the baseline alternative.

In sharp contrast, the standard dynamic multinominal probit model which

assumes a diagonal autocorrelation matrix for the differences relative to a partic-

ular alternative is not invariant relative to the choice of that alternative unless

all correlations are equal. Specifically, assume that R∗ is diagonal, say

R∗ = Diag (ρ∗
i ) , i = 1, . . . , J. (38)

Then it is trivial to verify that R∗j which obtains from equation (36) with

s = 1 is not diagonal unless

R∗ = ρ∗IJ . (39)

3.3 Identification

Next, we discuss identification of the DIMP model in Equation (19) when ob-

servations consist of {xt, jt}T
t=1, where jt denotes the index of the alternative

11
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selected at time t. Following our discussion in Section 3.1, we can arbitrarily

select a baseline alternative, say alternative J . Since the transformations associ-

ated with permutations of the alternatives are one-to-one we only need to discuss

identification of the baseline parameters. The parameters whose identification

needs to be discussed are (Ψ, b, υ2, β, R).

Identification of β has been extensively discussed in the literature – see, e.g.,

Bunch (1991) and Keane (1992) – and need not be considered further here. More-

over, under scale normalization of the mean vector µ(xt, β), the stationary co-

variance matrix Ψ in Equation (27) is identified while υ2 is not. Whence, we are

left discussing identification of (b, R).

Actually, the likelihood function depends upon the sequence of auxiliary re-

gression matrices {Γ∗
s }T −1

s=1 introduced in Equation (30) which are clearly over–

identified functions of b and R. (This will not be a problem for ML estimation

since optimization will be conducted in terms of b and R themselves.) Since the

relationship between (b, R) and {Γ∗
s } is highly non-linear we cannot expect global

identification if R is left unconstrained (beyond stationarity). Local identification

might be considered though in the present paper, we choose to focus our attention

on the case where R is diagonal, for which we can establish global identification

under simple conditions. Whence let

R = Diag (ρi) , i = 1, . . . , J, (40)

12
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in which case Γ∗
s in Equation (30) is given by

Γ∗
s =




ρs
1 0 · · · 0

0 ρs
2 · · · 0

...
...

...

0 0 · · · ρs
J −1




+




ρs
1 − ρs

J

ρs
2 − ρs

J

...

ρs
J −1 − ρs

J




· (b1, b2, . . . , bJ −1), (41)

where the bjs are the individual elements of b. The following special cases are

trivial: (i) If ρi = ρJ , then ρi is identified; and (ii) if bj = 0, then (ρj, bj) are

identified. In order to avoid dealing with all possible combinations of these spe-

cial cases, we first proceed to a reduction of the matrices {Γ∗
s } by eliminating all

rows i for which ρi = ρJ and all columns j for which bj = 0. Moreover, we also

permute alternatives in such a way that the remaining JR rows and JC columns

are regrouped in the leading JR × JC blocks of {Γ∗
s }. It follows that all bjs for

j > JC and all ρis for i > min(JR, JC) are identified. The following theorem then

provides sufficient condition for global identification of (b, R):

Theorem. If (i) JR > 1; (ii) JC > 0; (iii) either there exist a pair ρi 6= ρi′

(i, i′ ≤ JR) or a bj 6= − 1
2

(j ≤ JC), then (b, R) are globally identified.

Proof. Since we can permute alternatives, we need only to consider the leading

(2 × 1) block of the reduced {Γ∗
s }, say




ρs
1 + b1(ρ

s
1 − ρs

J)

b1(ρ
s
2 − ρs

J)


 .

13
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As was the case for γ∗
s in Equation (14) we note that

ρs
1 + b1(ρ

s
1 − ρs

J) ≡ ρs
J − (1 + b1)(ρ

s
J − ρs

1).

If, however, ρ1 6= ρ2 or ρ1 = ρ2 but b1 6= −1/2 (in which case −(1 + b1) 6= −b1),

the off-diagonal element (2, 1) prevents permuting ρ1 and ρJ . 2

3.4 Reinterpreting the standard DMP

The standard DMP model (see e.g. Börsch-Supan et al., 1990 or Geweke et al.,

1997) requires selecting a baseline alternative, say alternative J , expressing all

utilities in deviation from utJ and assuming that the differences et = Dεt fol-

low a diagonal AR(1) process. This model is clearly not invariant with respect

to the choice of the baseline alternative. Worse, in the absence of additional

assumptions on the underlying utility process the DMP models associated with

different baseline alternatives are non-nested with one another. This probably

explains why, to the best of our knowledge, data based selection of the baseline

alternative has not been discussed in the literature.

It turns out that our discussion of invariance and identification enables us

to reinterpret the standard DMP model as one which is explicitly nested within

a DIMP with diagonal R matrix. The key to such reinterpretation lies with

Equation (41) which indicates that a diagonal R matrix also produces diagonal

Γ∗
s matrices if b is zero. However, in such a case the matrices Γ∗

js associated with

baseline alternative j 6= J are not diagonal – confirming the lag of invariance of

14



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

the standard DMP model. Instead, following Equation (37) they are given by

Γ∗
js =




ρs
1 0 . . . 0

0 ρs
2 . . . 0

...
...

...

0 0 . . . ρs
J −1




−




ρs
1 − ρs

j

ρs
2 − ρs

j

...

ρs
J −1 − ρs

j




i′
j, (42)

which leaves ρJ as the sole unidentified autocorrelation coefficient, irrespective of

the baseline alternative. A direct comparison between Equations (41) and (42)

– see also Equation (35) – indicates that the vector bj associated with baseline

alternative j 6= J is given by

bj = S ′
jij = −ij. (43)

This reinterpretation of the standard DMP model has fundamental impli-

cations for practitioners. Specifically, once the standard DMP model is nested

within a DIMP model with diagonal R matrix, it is no longer advisable to select

a priori (arbitrarily) a baseline alternative, say J , and to impose the assumption

that the corresponding Γ∗
s matrices be diagonal. Instead, one can use the DIMP

as maintained hypothesis under a parametrization (Ψ, b, R) which is fundamen-

tally invariant with respect to J . It is then trivial to test whether this DIMP

simplifies into a standard DMP for baseline alternative j denoted by DMPj . The

corresponding null hypotheses are given by

H0j (“DMPj”) : bj = 0, for j 6= J, and H0J (“DMPJ”) : b = 0, (44)

all of which are trivially nested within the DIMP. In view of Equation (35) these
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null hypotheses can all be reformulated in terms of b

H0j : b = −ij, for j 6= J, and H0J : b = 0. (45)

Nesting DMPjs within a DIMP with diagonal R matrix removes all ambiguities

as well as arbitrariness associated with the conventional interpretation of DMP

models. Note, in particular, the complete disconnect between the selection of

alternative J for parametrization purposes (with full invariance with respect to J)

and the eventual subsequent data based selection of particular DMPj (likelihood

based tests of H0j are clearly invariant with respect to J).

The fact that under the null hypotheses H0j: DMPj (j = 1, ..., J) the pa-

rameter ρJ is not identified poses the problem that the asymptotic distribution

of standard tests like the likelihood ratio (LR), Lagrange multiplier (LM), and

Wald test are nonstandard, which means that the conventional critical values

cannot be used to assess significance (see, e.g., Davies 1977,1987). In order to

derive asymptotic optimal tests for such testing problems, Davies (1977, 1987)

and Andrews and Ploberger (1994) consider mappings (supremum and average)

of the LR, LM, and Wald statistics as functions in the nuisance parameter which

is unidentified under the null hypothesis, while Hansen (1996) suggests a use-

ful computational method for simulating appropriate asymptotic critical values.

The extension of these methods to our nonlinear simulated Maximum Likelihood

(ML) framework seems to be conceptionally straightforward but is beyond the

scope of the present paper and is left for future research. A simple but computa-

tionally more demanding alternative to those asymptotic methods is to perform

bootstrap versions of the LR, LM, and Wald test, where the model under con-

sideration is used to simulate the finite-sample distribution of the corresponding
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test statistics under the null hypothesis.

4 Estimation

Before we formally discuss simulated ML estimation, it should be noted that since

DMP models are nested within DIMP models, the analysis which follows applies

identically to both classes of models. The only difference is that a DIMP model

includes the J additional parameters (b, ρJ). This justifies our earlier claim of

similar ease of computation, and the analysis which follows applies to DMPs as

well as DIMPs.

4.1 GHK and GHK-EIS

Let y′ = (y1, . . . , yM) denote a M -dimensional Normal random vector with mean

µ and covariance matrix V :

y = µ + Lη, η ∼ NM (0, IM) , V = LL′, (46)

where L denotes the lower triangular Cholesky decomposition of V . The prob-

ability to be computed is that of the event D = {yi < 0; i = 1, . . . , M }. Let

`′
τ = (γ′

τ , δτ ) denote the τth (lower triangular) row of L with γτ ∈ Rτ −1 and

δτ > 0. The τth row of y is then given by

yτ = µτ + γ′
τη(τ −1) + δτητ , (47)
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with η′
(τ −1) = (η1, . . . , ητ −1) and η(0) = ∅. It follows that

P (D) =

∫

RM

M∏

τ=1

ϕτ (η(τ))dη, (48)

with

ϕτ (η(τ)) = I(ητ < − 1

δτ

[µτ + γ′
τη(τ −1)]) · φ(ητ ), (49)

where I denotes the indicator function and φ the standardized normal density.

Both GHK and GHK-EIS are importance sampling techniques that are described

in Liesenfeld and Richard (2009). In short they rely upon a sequential parametric

importance sampling density of the form

m(η; a) =
M∏

τ=1

mτ (ητ |η(τ −1); aτ ), (50)

with a′ = (a1, . . . , aM) ∈ A = ×M
τ=1Aτ . The density mτ obtains from an auxiliary

density kernel kτ (η(τ); aτ ) with known functional integral χτ (η(τ −1); aτ ) in ητ , i.e.,

mτ (ητ |η(τ −1); aτ ) =
kτ (η(τ); aτ )

χτ (η(τ −1); aτ )
, χτ (η(τ −1); aτ ) =

∫

R
kτ (η(τ); aτ )dητ . (51)

GHK-EIS relies upon a backward recursive sequence of auxiliary LS problems,

selecting values of aτ which approximately minimize the MC sampling variances

of the ratios ϕτχτ+1/kτ for τ = M, . . . , 1 (with χM+1 ≡ 1). If we momentarily

assume that χτ+1 is given by the product of a gaussian kernel in η(τ) by a Normal

cdf of the form Φ(ωτ ), where ωτ is a linear combination of η(τ), then the only

non-Gaussian kernel in the numerator ϕτχτ+1 is Φ(ωτ ) itself. Whence kτ obtains

by combining the various Gaussian kernels in that numerator with a Gaussian
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approximations of Φ(ωτ ) obtained by the LS approximation

ln Φ(ωτ ) ' − 1

2
(α̂τω

2
τ + 2β̂τωr + κ̂τ ), (52)

with âτ = (α̂τ , β̂τ , κ̂τ ).

Analytical integration with respect to ητ of the resulting Gaussian kernel kτ

over the range associated with the indicator function in Equation (49) produces

a (recursive) functional integral which is itself in the form of a Gaussian kernel

times a Gaussian cdf in ωτ −1. Note that all Gaussian kernels common to ϕτχτ+1

and kτ cancel out in the ratios ϕτχτ+1/kτ . It follows that the GHK-EIS estimate

of P (D) is given by

P̂s(D) = χ1 (â1) · 1

S

S∑

s=1

[
M −1∏

τ=1

Φ(ω̃
(s)
τ )

exp − 1
2
(α̂τ [ω̃

(s)
τ ]2 + 2β̂τ ω̃

(s)
τ + κ̂τ )

]
, (53)

where ω̃
(s)
τ is a linear combination of η̃

(s)
(τ), and {{η̃

(s)
τ }M

τ=1}S
s=1 denotes S i.i.d.

trajectories drawn from the EIS sampler m(η; â) as defined in Equation (51)

with â = {âτ }M
τ=1. As discussed in Richard and Zhang (2007), the values of

the EIS parameters â and, therefore, the simulated {η̃
(s)
τ }M

τ=1 trajectories depend

upon the values of the model parameters (µ, V ). Hence, continuity of the MC

likelihood evaluation (53) in (µ, V ) requires that all trajectories {{η̃
(s)
τ }M

τ=1}S
s=1

drawn under different values of â be obtained by a set of Common Random

Numbers (CRNs) pre-drawn from a canonical distribution, which does not depend

on the parameters â. In the present context, the CRNs consist of M × S draws

form a uniform distribution on [0, 1] to be transformed by inversion into truncated

Gaussian draws from mτ (ητ |η̃(s)
τ −1; âτ ).

As for GHK, it ignores the factor χτ+1 in the construction of the auxiliary
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Gaussian kernels kτ , which is equivalent to setting α̂τ = β̂τ = κ̂r = 0 in Equations

(52) and (53). Whence, for a given simulation sample size S GHK is intrinsically

numerically less efficient than GHK-EIS but computationally faster since it does

not require computing the auxiliary LS approximations in Equation (52). See

Liesenfeld and Richard (2009) for full details and for numerical examples which

indicate that even if we increase the simulation sample size S for GHK in or-

der to equate computing time, GHK-EIS remains the numerically more efficient

procedure. All computations reported below rely upon GHK-EIS.

4.2 GHK-EIS likelihood evaluation

Since individuals in a probit panel data set are typically assumed to act indepen-

dently from one another, we consider here a single individual for whom observa-

tions consist of a sequence of T indicators of selected alternatives {j1, . . . , jT ; jt ∈

(1, . . . , J)} together with a T × K matrix of exogenous variables. As discussed

in Section 3, the identified parameters are those associated with an (arbitrary)

baseline alternative J and are denoted by (Ψ, b, R, β). The likelihood function is

the joint probability of the observed sequence of choices.

The covariance matrix V of the T (J − 1) vector e′ = (e′
j1

, . . . , e′
jT

) with ejt =

Sjtet consists of the following blocks:

- The variance of ejt obtain from Equation (34):

Var(ejt) = Ψjt = SjtΨS ′
jt

(54)

- The covariance between ejt and ejs obtain from Equation (29):

Cov(ejt , ejs) = SjtΓ
∗
t−sΨS ′

js
, t > s. (55)
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Brute force Cholesky decomposition of the joint covariance matrix V enables

us to rewrite the DIMP model in the form given by equation (46), from which

GHK-EIS evaluation of the likelihood function proceeds as described in Section

4.1.

As discussed in Section 3.1, D(I)MP models obtain by marginalization with

respect to the Jth component of the error term ε∗
t in Equation (23). It is precisely

this operation which led to the replacement of the correlation matrices (R∗)t−s

by Γ∗
t−s in Equation (55) and to the subsequent need for brute force Cholesky

decomposition of the joint covariance matrix V . In contrast, the Cholesky decom-

position of the covariance matrix of {ε∗
t }, transformed as needed to account for

{jt}, can take full advantage of the present AR(1) structure as discussed in the

lemma below. Whence, an efficient algorithm would first compute that Cholesky

decomposition, and only then marginalizing with respect to the T Jth compo-

nents of {ε∗
t }. In order to do so, we complete the rectangular transformation from

ε∗
t ∈ RJ into ejt ∈ RJ −1 into the square transformation

e0
jt

=




Sjt 0

0 1


 ε∗

t = Kjtε
∗
t , (56)

with K−1
jt

= Kjt . The covariance matrix V0 of the TJ-dimensional vector e′
0 =

(e0
j1

′, . . . , e0
jT

′) consists of the following blocks:

Var
(
e0

jt

)
= KjtΦ∗K

′
jt
, (57)

Cov
(
e0

jt
, e0

js

)
= Kjt(R∗)

t−sΦ∗K
′
js
, t > s. (58)

Note that the covariance matrix V0 preserves the initial AR(1) structure (up to a

set of squared transformations), as indicated by the presence of (R∗)t−s in Equa-
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tion (58) - instead of Γ∗
t−s in Equation (55). The Cholesky decomposition of V0

obtains by application of the following lemma (deleting the subscripts 0, ∗ and j

for the ease of notation).

Lemma. Let the TJ-dimensional stationary covariance matrix V be parti-

tioned into J-dimensional blocks of the form

Vts = Kt(R)t−sΦK ′
s, t ≥ s, (59)

with K−1
t = Kt. Let L denote the lower triangular Cholesky decomposition of V ,

partitioned conformably with V . The diagonal blocks of L obtain by the following

J-dimensional Cholesky factorizations:

L11L
′
11 = K1ΦK ′

1, (60)

LttL
′
tt = KtΣK ′

t, with Σ = Φ − RΦR′, (61)

and its off–diagonal blocks by the products

Lts =
[
Kt(R)t−sKs

]
Lss, t > s. (62)

Proof: See Liesenfeld and Richard (2009, Appendix).

Note that Kt can only take J different forms for the D(I)MP, corresponding

to each of the J different alternatives (see Equation 56). Whence the Cholesky

factorization of the TJ-dimensional matrix V0 requires at most J different J-

dimensional Cholesky factorizations as given in Equations (60) and (61).

The extension to V0 only requires two trivial modifications of the GHK-EIS al-

gorithm for V : (i) Since the baseline utility uJt is not observed the corresponding
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integral with respect to the last component of e0
jt

(t = 1, . . . , T ) is un-truncated.

It produces a probability Φ(·) equal to 1 in Equations (52) and (53) with the cor-

responding EIS coefficients equal to zero; (ii) The stationary covariance matrix

Φ∗ as given by Equations (26) and (27) includes an additional parameter υ2 which

is unidentified and can, therefore, be set equal to any (reasonable) arbitrary value

without affecting the likelihood values.

5 Monte Carlo simulations

5.1 ML-GHK-EIS estimates of the DIMP model

In order to illustrate the identification and ease of estimation of DIMP models

we conducted a Monte Carlo experiment for a DIMP panel model with J = 3

alternatives, T = 10 periods and N = 500 individuals. We arbitrarily selected

alternative 3 as the baseline (remembering that DIMP models are invariant with

respect to the selection of the baseline alternative). Since our focus of attention

lies on second order moments we specified the regression function of the utilities,

as given in Equation (19) directly in differences as

Dµit = Dµi (xt; β) = (π1 + ψZit1 , π2 + ψZit2)
′ , (63)

with β′ = (π1, π2, ψ) and Zitj ∼ i.i.d.N(0, 1) for t = 1, . . . , T , i = 1, ..., N and

j ∈ {1, 2}. Note that this specification represents a simplified version of that

used by Geweke et al. (1997).

The autocorrelation matrix R in Equation (19) is diagonal with elements

ρ1 = 0.8, ρ2 = 0.6 and ρ3 = 0.3. The covariance matrix Σ = [σik] has diagonal

elements σ11 = σ22 = σ33 = 1 and off-diagonal elements σ12 = σ13 = σ23 = 0.3.
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The corresponding stationary covariance matrix Φ∗ as defined in Equation (26)

is given by

Φ∗ =




3.087

0.915 1.930

−0.704 −0.733 1.099




. (64)

Its partitioning according to Equation (27) produces the following values for

Λ = [λik], the Cholesky decomposition of Ψ, and b

Λ =




1.757 0

0.521 1.288


 b = −




0.134

0.316


 . (65)

Since we are leaving Dµit unnormalized, Ψ is identified only up to a scale factor.

Whence, for ease of comparison with the parameter true values we set λ11 equal

to its true value 1.757. Had we set it equal to one as commonly done, we would

have to divide the true values for (π1, π2, ψ, λ11, λ12, λ22) and their estimates by

1.757.

ML-GHK-EIS estimates are computed using for the likelihood evaluations

(53) a simulation sample size S = 20 which, as we shall see, suffices to produce

high numerical accuracy in likelihood function IS estimates and corresponding

ML parameter estimates. Following Richard and Zhang (2007) we conduct two

sets of replications. For the first one we keep the simulated data set fixed and

replicate ML-GHK-EIS estimation 100 times under different sets of CRNs used for

the likelihood evaluations. The MC standard deviations of these replications are

direct measures of numerical accuracy (accounting in particular for the simulation

based selection of the EIS samplers). Since these replications are conducted for a

fixed data set, we also computed Root Mean Squared Errors (RMSEs) relative to

the “true” ML estimates (as computed using a simulation sample size S = 1, 000,

24



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

which suffices to produce highly accurate approximations to the infeasible true

ML estimates).

Our second set of replications repeats ML-GHK-EIS under 100 different sim-

ulated data sets (using a fixed set of CRNs for all 100 replications). The resulting

means and standard deviations are numerical estimates of the finite sample (sta-

tistical) distribution of the ML estimators. We also produced for comparison

asymptotic standard deviations based upon the inverse Hessian (since EIS likeli-

hood estimates are sufficiently smooth to produce numerically well-behaved esti-

mates of the Hessian). The results are reproduced in Table 1. They unequivocally

confirm that the DIMP model is identified and statistically well-behaved, includ-

ing the parameters (b1, b2, ρ3) which are not identified under the standard DMP

(unless, as discussed in Section 3.4, the latter is reinterpreted as nested within

the DIMP in which case b1 = b2 = 0 a priori though ρ3 remains unidentified).

The finite sample standard deviations are close to their asymptotic counterparts.

The numerical (MC) standard deviations are orders of magnitude smaller

than the statistical standard deviations (with ratios ranging from 0.016 to 0.050).

Though the results are not reported here, we also reproduced the entire simulation

exercise under ML-GHK. Our findings confirm results presented in Liesenfeld

and Richard (2009) in that for a common simulation sample size S = 20 ML-

GHK estimates are numerically far less accurate than ML-GHK-EIS estimates

especially for the DIMP parameters (b1, b2, ρ1, ρ2, ρ3) with ratios of numerical

standard deviations ranging from 8 to 95. In that paper, where we provide

a more detailed comparison of GHK and GHK-EIS for the estimation of the

standard DMP model, we also produce results in which we increase the simulation

sample size of the computationally less demanding GHK from 20 to 100 in order

to roughly equalize computing time for both procedures. Doing so we found
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that GHK-EIS with S = 20 remains numerically more efficient than GHK with

S = 100, though with efficiency gain reductions by a factor ranging between 1.2

and 2.1 relative to the comparison for a common simulation sample size S = 20

(see Liesenfeld and Richard, 2009, Tables 2 and 4).

For each of the 100 ML-GHK-EIS estimates of the DIMP model under differ-

ent simulated data sets we computed the three Wald statistics testing whether

the DIMP simplifies into a corresponding DMPj model, which amounts to testing

the restrictions b = −ι1 (DMP1), b = −ι2 (DMP2), and b = 0 (DMP3). Figure 1

provides the histogram of the values for the three Wald statistics. As expected,

for all three hypotheses nearly all values of the Wald statistic are significantly

larger than the ‘naive’ 1% critical value from a χ2
(2)-distribution, which is used as

a preliminary benchmark value. Of course, one would need, as mentioned above,

to adjust the naive critical value since it ignores the fact that we are ‘scanning’

across a range of values for the nuisance parameter ρ3 which is unidentified under

the null. This suggests that the appropriate critical value is larger than the naive

one (see Davis, 1987). However, as shown in Section 5.3 below, the appropriate

critical value in the present context remains in the same ballpark as its naive

counterpart. Hence, the comparably large values of the Wald-statistics in Figure

1 suggest that such a Wald-type procedure is a useful tool to pretest whether

an initial DIMP model simplifies into a DMP model for a particular baseline

alternative.

The main conclusions to be drawn from this simulation exercise are that: (i)

DIMP models appear to be statistically well-behaved, as expected in view of the

identification theorem in Section 3.3; (ii) ML-GHK-EIS can produce numerically

accurate ML estimates with as little as S = 20 EIS draws; and (iii) a Wald test

used to pretest whether an initial DIMP model can be substituted by a standard
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DMP model with a particular reference category appears to have good power.

5.2 Estimates of a miss-specified DMP model

In order to analyze the impact of erroneously assuming a DMPj model, we used

the same simulated data sets from the DIMP model as in Section 5.1 and com-

puted the ML-GHK-EIS estimates for a miss-specified DMP3 model, i.e., the

DIMP model with the restriction b = 0 and unidentified ρ3. The results are

reproduced in the left columns of Table 2. They indicate that (statistical) biases

of the estimates for the mean parameters π01, π02, and ψ are comparably small

while, in contrast, the estimates for the covariance parameters λ12, ρ1, ρ2 are

typically severely biased due to the miss-specification.

Based on the likelihood values of the miss-specified DMP3 model at the param-

eter estimates and those of the DIMP model obtained in Section 5.1 we computed

the values of the LR statistic testing for the DMP3 model. The lower right panel

of Figure 1 provides the histogram of the LR values. Consistent with the results

for the Wald statistic (see lower left panel of Figure 1) most of the LR values are

significantly larger than the naive asymptotic critical value. However note that

the finite-sample variation of the LR-statistic appears to be much smaller than

that of the Wald statistic.

5.3 Testing for a DMP model

In order to analyze the finite-sample distribution of the Wald statistic under the

null hypothesis of a DMP model, we simulated 100 data sets from a DMP3 model

and computed ML-GHK-EIS estimates for an unrestricted DIMP specification

together with the corresponding Wald statistic for the DMP3 model.
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Under the restriction b = (b1, b2)
′ = 0, the DIMP model with J = 3 alterna-

tives and j = 3 as baseline alternative reduces to a DMP3 model. This amounts

to setting the off-diagonal blocks of the stationary covariance matrix Φ∗ given by

Ψb and b′Ψ equal to zero (see Equations 26 and 27). This restriction on Φ∗ is

satisfied if the parameters of the autocorrelation and covariance matrix (R, Σ) in

the initial specification (19) satisfy the Equations

σ13 =
1 − ρ1ρ3

1 − ρ2
3

σ33 and σ23 =
1 − ρ2ρ3

1 − ρ2
3

σ33. (66)

We consider the following values for the (R, Σ) parameters: (ρ1, ρ2, ρ3, σ11, σ22, σ33)

= (0.8, 0.6, 0.3, 1, 1, 0.2), together with the restrictions given in Equation (66).

The implied values for the identified parameters for the Cholesky decomposition

of Ψ, and b are (λ12, λ22, b1, b2) = (0.223, 1.137, 0, 0).

The parameter estimates of the unrestricted DIMP model for the simulated

data from a DMP3 specification are reported in the right columns of Table 2.

As expected, the ML-GHK-EIS estimator is statistically well-behaved, except for

the parameter ρ3, which is unidentified under the data generating DMP3 model.

Note also that the means of the b1 and b2 estimates are not significantly different

from zero. The histograms for the Wald statistics testing for the DMP1, DMP2,

and DMP3 model are provided in Figure 2. As for the Wald statistic testing

the DMP3 specification (see lower panel of Figure 1), in 2% of the cases one

would reject the null using the naive 1% asymptotic critical value, in 8% for the

5% critical value, and in 10% for the 10% critical value. This clearly suggests

that the naive asymptotic χ2 distribution delivers a fairly good approximation.

Hence, the appropriate critical values which account for the fact that the nuisance

parameter ρ3 is unidentified under the null can be expected to be fairly close to
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the naive ones. Finally, we observe that the histograms for the Wald statistic

testing for a DMP1 and DMP2 model (see upper panels of Figure 2) indicate

large deviations from the specification under the corresponding null, as expected.

The main conclusion to be drawn from this simulation experiment are that:

(i) the naive asymptotic distribution of the Wald statistic under the null of a

DMP model provides a fairly good approximation to the true one, and (ii) the

Wald test appears to be able to discriminate between different DMP specifications

obtained by using different baseline categories, allowing for data based selection

of the latter.

5.4 Predictions under a miss-specified DMP model

The histograms in Figure 1 show that when the true model is a DIMP model, both

the Wald- and LR-test reject the miss-specified DMP models at very high rates.

However, it is well-known that a miss-specified model can always be rejected given

enough data even if the miss-specification leads to only trivial deterioration in fit

and predictions. This raises the question of whether a miss-specified DMP model

produces significant differences in substantively important predictions relative to

a correctly specified DIMP. Note that both models share common specifications

for their means with similar estimated mean coefficients in Tables 1 and 2 and

differ only in their error correlation structure. It follows, for example, that we

should expect DMP miss-specification to have a greater impact on predicted

transition probabilities than on predicted marginal selection probabilities.

In order to substantiate these conjectures, we compare marginal selection

probabilities and transition probabilities and their responses to changes in the

covariates under the DIMP and DMP3 model estimated in Sections 5.1 and 5.2,

setting the parameters at their estimated values in Tables 1 and 2, respectively.
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In this context the DIMP parameters serve as true values while the DMP3 pa-

rameters implicitly represent pseudo-true values. Probabilities are accurately

estimated by Monte Carlo using 1,000,000 simulated sequences of selected alter-

natives {ji1, ..., jiT } for each model.

In Table 3 we compare the partial effects of changes in the covariates Zitj

(j = 1, 2) on the marginal selection probabilities

P (jit|Zit1 = 1, Zit2 = 0) − P (jit|Zit1 = Zit2 = 0), and

P (jit|Zit1 = 0, Zit2 = 1) − P (jit|Zit1 = Zit2 = 0), for jit = 1, 2, 3.

As expected, percentage differences remain fairly small ranging from -6.82% to

7.34%. For reference, the selection probabilities P (jit|Zit1 = Zit2 = 0) for jit =

1, 2, 3 are (0.573, 0.086, 0.342) under the DIMP model and (0.571, 0.084, 0.345)

under the DMP3 model.

In Table 4 we report the transition probabilities evaluated at the means of

the covariates

P (jit|jit−1, Zi.1 = Zi.2 = 0), for (jit, jit−1) ∈ {1, 2, 3} × {1, 2, 3},

where Zi.j = (Zi1j, ..., ZiT j), and observe larger percentage differences ranging

from -16.11% to 29.65%.

Finally, we report in Table 5 the partial effects of a permanent change in the

covariates on the transition probabilities

P (jit|jit−1, Zi.1 = 1, Zi.2 = 0) − P (jit|jit−1, Zi.1 = Zi.2 = 0), and

P (jit|jit−1, Zi.1 = 0, Zi.2 = 1) − P (jit|jit−1, Zi.1 = Zi.2 = 0).
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Here we observe the largest percentage changes ranging from -19.35% to 59.65%.

These results fully confirm our conjecture that miss-specified DMP models

can significantly distort predicted transition probabilities and their responses to

changes in the covariates even when marginal selection probabilities are affected

to a much lesser extent. We suspect that we could easily induce larger distortions

of the predicted transition probabilities by assigning autocorrelation parameters

ρj over the full range from −1 to +1 for the DIMP model instead of the [0.3 , 0.8]

interval used here. Therefore, it appears prudent to initially estimate a DIMP

model in any substantive empirical application analyzing the dynamics of decision

processes since the cost of generalizing a DMP estimation algorithm into a DIMP

one essentially consists of a one-time implementation cost associated with mod-

ifications of the Cholesky decomposition of the corresponding joint covariance

required for GHK(-EIS).

6 Conclusion

We have proposed a new specification for the multinomial multiperiod model with

autocorrelated errors which is invariant with respect to the selection of the base-

line alternative, in sharp contrast with commonly used models. Furthermore, it

identifies parameters which are not identified under the standard approach (such

as the parameter governing the dynamics of the utility for the reference category).

The formal identification of the proposed invariant model has been illustrated by

MC experiments. Since our model also nests the standard specifications as spe-

cial cases, it becomes feasible to test whether it simplifies into a standard model

for a particular baseline alternative.
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Table 1. ML-EIS-GHK estimates for the DIMP model

diff. data sets fixed data set/diff. CRNs

ML-GHK- ML- ML-GHK-
Parameter true EIS value EIS
π01 mean .500 .495 .537 .539

std. dev. .063 .0009
rmse .063 .0023
mean asy. s.e. .049

π02 mean −1.000 −1.008 −.961 −.968
std. dev. .083 .0027
rmse .084 .0079
mean asy. s.e. .066

ψ mean 1.000 1.003 1.020 1.024
std. dev. .036 .0009
rmse .036 .0044
mean asy. s.e. .030

λ12 mean .521 .523 .550 .552
std. dev. .087 .0051
rmse .087 .0054
mean asy. s.e. .066

λ22 mean 1.288 1.288 1.291 1.296
std. dev. .073 .0026
rmse .073 .0059
mean asy. s.e. .056

b1 mean −.134 −.139 .0003 −.004
std. dev. .095 .0024
rmse .095 .0051
mean asy. s.e. .068

b2 mean −.316 −.313 −.427 −.418
std. dev. .099 .0040
rmse .099 .0098
mean asy. s.e. .072

ρ1 mean .800 .802 .775 .775
std. dev. .029 .0008
rmse .029 .0008
mean asy. s.e. .024
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Table 1. Continued

diff. data sets fixed data set/diff. CRNs

ML-GHK- ML- ML-GHK-
Parameter true EIS value EIS
ρ2 mean .600 .594 .687 .686

std. dev. .066 .0019
rmse .066 .0021
mean asy. s.e. .045

ρ3 mean .300 .245 .317 .302
std. dev. .160 .0055
rmse .169 .0166
mean asy. s.e. .110

NOTE: The reported numbers for ML-GHK-EIS are mean, standard deviation,
RMSE, and the mean of the asymptotic standard errors obtained for S = 20. The
asymptotic standard errors are obtained from a numerical approximation to the
Hessian. For the experiment with a fixed data set and different CRNs, RMSE is
computed around the true ML value for that particular data set. The true ML
values are the ML-GHK-EIS estimates based on S = 1000.
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Table 2. ML-EIS-GHK estimates for the DIMP/DMP model

true model: DIMP / true model: DMP3 /
est. model: DMP3 est. model: DIMP

ML-GHK- ML-GHK-
Parameter true EIS true EIS
π01 mean .500 .469 .500 .515

std. dev. .063 .064
rmse .071 .066
mean asy. s.e. .052 .051

π02 mean −1.000 −1.043 −1.000 −.994
std. dev. .088 .116
rmse .098 .116
mean asy. s.e. .073 .070

ψ mean 1.000 1.005 1.000 1.001
std. dev. .036 .047
rmse .037 .047
mean asy. s.e. .031 .032

λ12 mean .521 .423 .223 .245
std. dev. .094 .079
rmse .136 .081
mean asy. s.e. .075 .065

λ22 mean 1.288 1.264 1.137 1.141
std. dev. .072 .093
rmse .076 .093
mean asy. s.e. .060 .058

b1 mean −.134 .000 −.010
std. dev. .410
rmse .410
mean asy. s.e. .129

b2 mean −.316 .000 .004
std. dev. .247
rmse .247
mean asy. s.e. .143

ρ1 mean .800 .726 .800 .810
std. dev. .017 .082
rmse .075 .082
mean asy. s.e. .014 .025
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Table 2. Continued

true model: DIMP / true model: DMP3 /
est. model: DMP3 est. model: DIMP

ML-GHK- ML-GHK-
Parameter true EIS true EIS
ρ2 mean .600 .537 .600 .604

std. dev. .035 .052
rmse .072 .052
mean asy. s.e. .029 .037

ρ3 mean .300 .189
std. dev. .891
rmse .898
mean asy. s.e. .346

NOTE: The reported numbers for ML-GHK-EIS are mean, standard deviation,
RMSE, and the mean of the asymptotic standard errors obtained for S = 20. The
asymptotic standard errors are obtained from a numerical approximation to the
Hessian.
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Table 3. Partial effects of a change in Zitj on the selection probabilites

∆Zit1 = 1 ∆Zit2 = 1

Alternative jit = 1 jit = 2 jit = 3 jit = 1 jit = 2 jit = 3

DIMP .207 −.045 −.162 −.085 .171 −.086

DMP3 .206 −.042 −.164 −.079 .172 −.093

Difference in percent −.51 −6.82 1.24 −6.51 .47 7.34
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Table 4. Transition probabilities

Alternative jit = 1 jit = 2 jit = 3

jit−1 = 1 DIMP .781 .039 .180
DMP3 .788 .045 .167
Difference in percent .86 16.68 −7.36

jit−1 = 2 DIMP .268 .350 .382
DMP3 .347 .332 .321
Difference in percent 29.65 −5.09 −16.11

jit−1 = 3 DIMP .300 .100 .600
DMP3 .267 .089 .644
Difference in percent −11.08 −10.63 7.31
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Table 5. Partial effects of a permanent change in Zitj on the transition probabilities

∆Zit1 = 1 ∆Zit2 = 1

Alternative jit = 1 jit = 2 jit = 3 jit = 1 jit = 2 jit = 3

jit−1 = 1 DIMP .099 −.019 −.080 −.033 .076 −.043
DMP3 .096 −.022 −.074 −.046 .088 −.042
Difference in percent −3.27 14.78 −7.55 40.06 15.37 −3.53

jit−1 = 2 DIMP .121 −.048 −.074 −.045 .188 −.142
DMP3 .135 −.059 −.076 −.072 .187 −.115
Difference in percent 11.32 24.20 3.02 59.65 −.28 −19.35

jit−1 = 3 DIMP .133 −.026 −.107 −.042 .148 −.106
DMP3 .122 −.021 −.101 −.043 .142 −.100
Difference in percent −8.44 18.90 −5.88 1.85 −4.36 −6.79
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Figure 1. Histogram of the Wald statistic of H0: DMPj for j = 1 (upper left panel),
j = 2 (upper right panel), j = 3 (lower left panel) and histogram of the

likelihood-ratio statistic for H0: DMP3 (lower right panel); The true data generating
process is the DIMP model as given by Equations (63) to (65). The vertical line

marks the 99%-percentile of a χ2-distribution with 2 degrees of freedom given by 9.21.
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Figure 2. Histogram of the Wald statistic of H0: DMPj for j = 1 (upper left panel),
j = 2 (upper right panel), j = 3 (lower left panel); The true data generating process
is the DMP3 model. The vertical line marks the 99%-percentile of a χ2-distribution

with 2 degrees of freedom given by 9.21.
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