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Circle Diffeomorphisms: Quasi-reducibility and Commuting Diffeomorphisms

In this article, we show two related results on circle diffeomorphisms. The first result is on quasi-reducibility: for a Baire-dense set of α, for any diffeomorphism f of rotation number α, it is possible to accumulate R α with a sequence h n f h -1 n , h n being a diffeomorphism. The second result is: for a Baire-dense set of α, given two commuting diffeomorphisms f and g, such that f has α for rotation number, it is possible to approach each of them by commuting diffeomorphisms f n and g n that are differentiably conjugated to rotations.

In particular, it implies that if α is in this Baire-dense set, and if β is an irrational number such that (α, β) are not simultaneously Diophantine, then the set of commuting diffeomorphisms ( f, g) with singular conjugacy, and with rotation numbers (α, β) respectively, is C ∞ -dense in the set of commuting diffeomorphisms with rotation numbers (α, β).

Introduction

It is well-known that there are circle diffeomorphisms with Liouville rotation numbers (i.e. non-Diophantine) that are not smoothly conjugated to rotations [START_REF] Arnol'd | Small denominators I: Mappings of the circumference into itself[END_REF][START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF][START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF][START_REF] Katznelson | Sigma-finite invariant measures for smooth mappings of the circle[END_REF]. A natural question arises, namely, the problem of smooth quasi-reducibility: given a smooth diffeomorphism f of rotation number α, is it possible to accumulate R α in the C ∞ -norm, with a sequence h -1 n f h n , h n being a smooth diffeomorphism? In this case, we say that f is smoothly quasi-reducible to R α . Quasi-reducibility is a question that has been studied by Herman [7,, who showed that for any C 2 -diffeomorphism f of irrational rotation number α, it is possible to accumulate R α in the C 1+bv -norm, with a sequence h -1 n f h n , h n being a C 2 -diffeomorphism (i.e. h -1 n f h n → R α in the C 1 -norm, and the total variation of D(h -1 n f h n -R α ) converges towards zero). Quasi-reducibility is also related to a problem solved by Yoccoz [START_REF] Yoccoz | Petits diviseurs en dimension un[END_REF], who showed that it is possible to accumulate a smooth diffeomorphism f in the C ∞ -norm with a sequence h n R α h -1 n , h n being a smooth diffeomorphism. However, these two problems are not the same, and the method used by Yoccoz does not directly yield our result. In our case, we determine a Baire-dense set of rotation numbers α such that for any smooth diffeomorphism f of rotation number α, f is smoothly quasi-reducible.

Connected to the problem of quasi-reducibility is the following question, raised by Mather: given two commuting C ∞ -diffeomorphisms f and g, is it possible to approach each of them in the C ∞ -norm by commuting smooth diffeomorphisms that are smoothly conjugated to rotations? In this paper, we determine a Baire-dense set of rotation numbers α such that if f and g are commuting C ∞ -diffeomorphisms, with f of rotation number α, then f and g are accumulated in the C ∞ norm by commuting C ∞ -diffeomorphisms that are C ∞ -conjugated to a rotation. This result is related to a theorem of Fayad and Khanin [START_REF] Fayad | Smooth linearization of commuting circle diffeomorphisms[END_REF]. They showed that if (α, α ) are simultaneously Diophantine (i.e. there is C d > 0, β ≥ 0 such that for any p, p ∈ , any q ≥ 1, max(|αp/q|, |αp /q|) ≥ C d /q 2+β . This set includes some pairs (α, α ) with α and α Liouvillean), and if f and g are commuting C ∞ -diffeomorphisms, with f and g of rotation numbers α and α respectively, then f and g are smoothly linearizable. Fayad and Khanin's result implies our result of quasi-reducibility in the particular case when the rotation numbers of f and g are simultaneously Diophantine. However, in general, our result is not implied by theirs. Indeed, our result holds for a set (α, α ) that is Bairedense in2 (because α belongs to a Baire-dense set of and α is arbitrary), whereas the set of simultaneously Diophantine numbers is not Baire-dense. 1Moreover, for Diophantine rotation numbers, which are of full Lebesgue measure, the question of quasi-reducibility and Mather's problem are trivial, because in this case, the diffeomorphism f is smoothly conjugated to a rotation. Therefore, these two questions remain open for a meagre set of rotation numbers of zero Lebesgue measure.

In order to derive our results, we use estimates of the conjugacy to rotations of diffeomorphisms having rotation numbers of Diophantine constant type. These estimates were obtained in [START_REF] Benhenda | Estimates of the linearization of circle diffeomorphisms[END_REF].

The circle is denoted 1 . For r ∈ + ∪ {+∞}, we work in the universal cover D r ( 1 ), which is the group of diffeomorphisms f of class C r of the real line such that f -Id is -periodic. For α ∈ , we denote R α ∈ D ∞ ( 1 ) the map x → x + α.

Let f ∈ D 0 ( 1 ) be a homeomorphism and x ∈ . The sequence (( f n (x)x)/n) n≥1 admits a limit independent of x, denoted ρ( f ). This limit is called the rotation number of f . This is a real number invariant by conjugacy.

Theorem 1.1. There is a Baire-dense set A 1 ⊂ such that for any f ∈ D ∞ ( 1 ) of rotation number α ∈ A 1 , there is a sequence h n ∈ D ∞ ( 1 ) such that h -1 n f h n → R α in the C ∞ -topology. Theorem 1.2. There is a Baire-dense set A 2 ⊂
such that for any f ∈ D ∞ ( 1 ) of rotation number α ∈ A 2 and any g of class C ∞ with f g = g f , f and g are accumulated in the C ∞ -topology by commuting C ∞ -diffeomorphisms that are C ∞ -conjugated to rotations.

S D c = ∩ k∈ * ∩ n∈ * ∪ q≥n (A q,k × A q,k ) with: A q,k = α ∈ /there is an integerp ∈ , α - p q < 1 q k .
A q,k is open (and so is A q,k × A q,k ), and for any integer n, ∪ q≥n (A q,k × A q,k ) is dense, because it contains all pairs of rational numbers (if α = p 1 /q 1 and α = p 2 /q 2 , then (α, α ) ∈ (A jq 1 q 2 ,k × A jq 1 q 2 ,k ) for any j, k ∈ * ). Therefore, S D c is Baire-dense.

Remark 1.3. The proof of theorem 1.1 also gives that

h n R α h -1 n → f in the C ∞ -topology if α ∈ A 1 .
Remark 1.4. Combined with [6, p. 965], theorem 1.2 implies that if α ∈ A 2 , and (α, β) are not simultaneously Diophantine, then S α,β , the set of couples ( f, g) of smooth commuting circle diffeomorphisms with singular conjugacies to R α and R β respectively, is C ∞ -dense in F α,β , the set of couples ( f, g) of smooth commuting circle diffeomorphisms with rotation numbers α and β respectively. Indeed, our result shows that O α,β , the set of couples ( f, g) of smooth commuting circle diffeomorphisms with smooth conjugacies to R α and R β respectively, is C ∞ -dense in F α,β . Moreover, in [6, p.965], for (α, β) not simultaneously Diophantine, Fayad and Khanin described the construction of a couple ( f, g) of smooth commuting circle diffeomorphisms with singular conjugacies to R α and R β respectively. This construction relies on the method of successive conjugacies, which can be made C ∞ -dense in O α,β [START_REF] Fayad | Constructions in elliptic dynamics[END_REF].

Moreover, by slightly modifying [7, p.160, p.167], this implies that (O 1 α,β ) c , the set of couples ( f, g) of smooth commuting circle diffeomorphisms with non-C 1 conjugacies to rotations R α and R β , is C ∞ -generic in F α,β . See appendix A for a short proof.

Preliminaries

Basic properties

When the rotation number α of f is irrational, and if f is of class C 2 , Denjoy showed that f is topologically conjugated to R α . However, this conjugacy is not always differentiable. It depends on the Diophantine properties of the rotation number α.

Let α = a 0 + 1/(a 1 + 1/(a 2 + ...)) be the development of α ∈ in continued fraction (see [START_REF] Dajani | Ergodic theory of numbers[END_REF]). It is denoted α = [a 0 , a 1 , a 2 , ...]. Let p -2 = q -1 = 0, p -1 = q -2 = 1. For n ≥ 0, we define integers p n and q n by: p n = a n p n-1 + p n-2 q n = a n q n-1 + q n-2 .

We have q 0 = 1, q n ≥ 1 for n ≥ 1. The rationals p n /q n are called the convergents of α. Remember that q n+2 ≥ 2q n , for n ≥ -1.

For any real number β ≥ 0, α ∈is Diophantine of order β and constant C d (a set denoted DC(C d , β)) if there is a constant C d > 0 such that for any p/q ∈ , we have:

α - p q > C d q 2+β .
Each of the following relations characterizes DC(C d , β) (see e.g. [11, pp.50-51]):

1. |α -p n /q n | > C d /q 2+β n for any n ≥ 0 2. a n+1 < 1 C d q β n for any n ≥ 0 3. q n+1 < 1 C d q 1+β n for any n ≥ 0 4. α n+1 > C d α 1+β n for any n ≥ 0. DC(C d , 0) is the set of irrational numbers of constant type C d . The first derivative of f ∈ D 1 ( 1 ) is denoted D f .

Some useful lemmas

For any n integer, let

α n = [a 0 , ..., a n , 1, ...]. Let V α : N → R defined by: V α (n) = max 0≤i≤n a i . Observe that α n ∈ DC(1/V α (n), 0
). We will need the lemma: Lemma 2.1. Let α be an irrational number, q n its convergents and α n = [a 0 , ..., a n , 1, ...]. We have:

|α n -α| ≤ 2 q 2 n ≤ 4 2 n .
Proof. Let αn = [a 0 , ..., a n , 0, ...]. By induction, we can show that αn = p n /q n . Moreover, αn is also the n th convergent of α n . Therefore, by the best rational approximation theorem, |α -

p n /q n | ≤ 1/q 2 n and |α n -p n /q n | ≤ 1/q 2 n . Moreover, since q n+2 ≥ q n , then q n ≥ ( √ 2) n-1 .
We need the lemma:

Lemma 2.2. Let φ : → + be such that φ(n) → n→+∞ +∞. Let A = {α ∈ /V α (n) < φ(n) for an infinity of n}.
Then A is Baire-dense.

Proof. First, we show that for any positive integers n and i,

A i,n = {α such that a i < φ(n)} is open. Let u(x) = x , v(x) = 1 x and w(x) = v(x) -u(v(x)).
We have: a k+1 = v(w k (x))w k+1 (x). Since v is continuous and u is upper semi-continuous and non-negative, then w is lower semi-continuous. Moreover, w is non-negative. Therefore, w k and w k+1 are also lower semi-continuous and nonnegative. Since v is decreasing, then v • w kw k+1 is upper semi-continuous. We conclude that A i,n is open.

Moreover, for any p ≥ 0,

∪ n≥p ∩ i≤n A i,n
is dense. Indeed, since φ(n) → +∞, then it contains all numbers of constant type, which are dense. This set is also open and therefore,

A = ∩ p≥0 ∪ n≥p ∩ i≤n A i,n
is Baire-dense.

Notations

• For any real numbers a and b, a ∨ b denotes max(a, b).

• For φ a real -periodic C r function, 0 ≤ r < +∞, we define:

φ r = max 0≤ j≤r max x∈ |D j φ(x)|.
Note that for f, g ∈ D r ( 1 ), fg is -periodic, and for 1 ≤ j ≤ r, D j f is -periodic. For f ∈ D r ( 1 ), we also define:

f r = max f -id 0 , max 1≤ j≤r D j f 0 .
Note that the notation f r is not a norm when f ∈ D r ( 1 ), since D r ( 1 ) is not a vector space.

• In all the paper, C denotes a constant depending on u. W( f ) denotes the total variation of log D f , and S f denotes the Schwartzian derivative of f .

Estimates of the conjugacy

The following theorem gives an estimate of the linearization of a diffeomorphism having a rotation numbers of Diophantine constant type. This estimate, obtained in [START_REF] Benhenda | Estimates of the linearization of circle diffeomorphisms[END_REF], is necessary to derive our results.

Theorem 2.3. Let l ≥ 3 be an integer and η > 0. Let f ∈ D l ( 1 ) be of rotation number α, such that α is of constant type C d . There exists a diffeomorphism h ∈ D l-1-η ( 1 ) conjugating f to R α , and a function B of C d , l, η, W( f ), S f l-3 , which satisfy the estimate:

max 1 min Dh , h l-1-η ≤ B(C d , l, η, W( f ), S f l-3 ). (1) 
In particular, we remark that if f n is a sequence of diffeomorphisms of rotation number α n , if the sequences W( f n ) and S f n l-3 are bounded (this will hold in our case, because we will take f n = λ n + f for a properly chosen λ n ∈ ), if V α (n) → +∞ and if h n is the conjugacy to a rotation associated with f n , then there is a real function E(V α (n)) such that, for n sufficiently large, we have:

max 1 min Dh n , h n l-1-η ≤ E(V α (n)).
3 Quasi-Reducibility Theorem 3.1. Let l ≥ 3 be an integer, f ∈ D l ( 1 ) be of rotation number α ∈ 1 . Let η > 0 be a real number. There exists a numerical sequence F(n), going to +∞ as n → +∞, such that, if

lim inf V α (n) F(n) = 0 then there is a sequence h n of class C l-1-η such that h -1 n f h n → R α in the C l-2-η - topology.
By applying lemma 2.2, we obtain the corollary:

Corollary 3.2. There is a Baire-dense set A 1 ⊂ such that if l ≥ 3 is an integer, f ∈ D l ( 1 ) of rotation number α ∈ A 1 and η > 0, then f is C l-2-η -quasi-reducible: there is a sequence h n ∈ D l-1-η ( 1 ) such that h -1 n f h n → R α in the C l-2-η -topology.
The idea of the proof of theorem 3.1 is the following. We observe that for any sequence φ(n) → +∞, the set of numbers α such that for an infinity of n,

sup k≤n a k ≤ φ(n), is Baire-dense (lemma 2.2).
The truncated sequence of constant type numbers α n = [a 0 , ..., a n , 1, ...] converges towards α at a controlled speed: |α -α n | ≤ 4/2 n (lemma 2.1).

Following an idea of Herman [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF], we perturbate f to R λ n f = f + λ n of rotation number α n , which is linearizable by a conjugacy h n (lemma 3.3). By writing:

h -1 n f h n -R α = h -1 n f h n -h -1 n R λ n f h n + R α n -R α
and by applying the Faa-di-Bruno formula, we obtain a control of the norm of h -1 n f h n -R α in function of the norm of h n , and in function of |α -α n | (lemma 3.4). Moreover, we have an estimate of the norm of h n in function of sup k≤n a k .

Thus, if we choose the speed of growth of the sequence sup k≤n a k sufficiently small with respect to the speed of convergence of α n towards α, then h -1 n f h n converges towards R α , and f is quasi-reducible.

Proof of theorem 1.1. We let η = l/3 in corollary 3.2. Since f is smooth, then there is a sequence (h n,l ) n≥0 ∈ D ∞ ( 1 ) such that, for any integer l ≥ 3 fixed,

h -1
n,l f h n,l -R α 2( l 3 -1) → n→+∞ 0. In particular, there is n(l) such that:

h -1 n(l),l f h n(l),l -R α 2( l 3 -1) ≤ 1 l .
Let h l = h n(l),l . Let > 0, and let k > 0 be an integer. There is l 0 ≥ 0 such that for any l ≥ l 0 , we have: ≥ 1/l, k ≤ 2 l 3 -1 and:

h -1 l f h l -R α k ≤ h -1 l f h l -R α 2( l 3 -1) ≤ 1 l ≤ .
Therefore, h -1 l f h l → l→+∞ R α in the C k -topology, for any k, and therefore, this convergence holds in the C ∞ -topology.

The one-parameter family R λ f

To prove theorem 3.1, we need to consider the one-parameter family R λ f = f + λ (see [7, p.31]). We have the lemma: Lemma 3.3. Let l ≥ 3 be an integer, f ∈ D l ( 1 ), 0 < η ≤ l -3, α = ρ( f ). Let α be an irrational number of constant type. There exists λ 0 ∈ and a C l-1-η -diffeomorphism h such that h

-1 R λ 0 f h = R α. Moreover, |λ 0 | min Dh ≥ | α -α| ≥ |λ 0 | Dh 0 .
Proof. Let µ(λ) = ρ(R λ f ). µ is continuous, non-decreasing and µ( ) = (see [7, p. 31]). Therefore, there exists λ 0 ∈ such that α = ρ(R λ 0 f ). Since α is of constant type, there exists a C l-1-η -diffeomorphism h such that h -1 R λ 0 f h = R α and that satisfies estimate (1) of theorem 2.3. By the mean value theorem, for any x, there is c(x) such that:

α + x -h -1 f h(x) = R α(x) -h -1 f h(x) = h -1 R λ 0 f h(x) -h -1 f h(x) = D(h -1 )(c(x))λ 0 .
By integrating this equation on an invariant measure of h -1 f h, we get lemma 3.3. Note that since h ∈ D 1 ( 1 ), then Dh(x) > 0 for any x, and min Dh > 0.

The speed of approximation of R α

The proof of theorem 3.1 is also based on the lemma: Lemma 3.4. Let l ≥ 3 be an integer, f ∈ D l ( 1 ), 0 < η ≤ l -3, α = ρ( f ). Let α be an irrational number of constant type, and let λ 0 ∈ and h the C l-1-η -diffeomorphism be given by lemma 3.3. Recall that C denotes a constant that only depends on u, 0 ≤ u ≤ l -2 -η. We have the estimate:

h -1 f h -R α u ≤ C f C u h C u+1 1 (min Dh) C | α -α|.
Before proving lemma 3.4, we show how theorem 3.1 is derived from it.

proof of theorem 3.1. If α is of constant type, then f is reducible and there is nothing to prove. Therefore, we can suppose that V α (n) → n→+∞ +∞. By applying theorem 2.3, there exists a real function F strictly increasing with V α (n), such that for α n , and for its associated diffeomorphism h n given by lemma 3.3, we have, for n sufficiently large:

h -1 n f h n -R α l-2-η ≤ exp F (V α (n)) |α n -α|. Let F (n) = F-1 (n 1/2 )
. By extracting, we can suppose that lim

V α (n) F(n) = 0. Therefore, V α (n) ≤ F (n) for n sufficiently large and therefore, F (V α (n)) ≤ n 1/2 .
We get, for n sufficiently large,

h -1 n f h n -R α l-2-η ≤ e -n log 2 4 → n→+∞ 0.
Hence theorem 3.1.

Now, we show lemma 3.4:

proof of lemma 3.4. We need the Faa-di-Bruno formula (see e.g. [START_REF] Craik | Prehistory of Faá di Bruno's formula[END_REF]):

Lemma 3.5. For every integer u ≥ 0 and functions φ and ψ of class C u , we have:

D u φ(ψ(x)) = u j=0 D j φ(ψ(x))B u, j Dψ(x), D 2 ψ(x), . . . , D (u-j+1) ψ(x) .
The B u, j are the Bell polynomials, defined by B u,0 = 1 and, for j ≥ 1:

B u, j (x 1 , x 2 , . . . , x u-j+1 ) = u! l 1 !l 2 ! • • • l u-j+1 ! x 1 1! l 1 x 2 2! l 2 • • • x u-j+1 (u -j + 1)! l u-j+1
.

The sum extends over all sequences l 1 , l 2 , l 3 , ..., l u-j+1 of non-negative integers such that:l 1 + l 2 + ... = j and l 1 + 2l 2 + 3l 3 + ... = u.

Therefore, for any x, we have the estimate:

B u, j Dψ(x), D 2 ψ(x), . . . , D (u-j+1) ψ(x) ≤ C 1 ∨ ψ j u . (2) 
Combining this estimate with lemma 3.5, we obtain the corollary:

Corollary 3.6. For every integer u ≥ 0 and functions φ and ψ of class C u , we have:

φ • ψ u ≤ C max 0≤ j≤u D j φ • ψ 0 1 ∨ ψ u u .
We apply this corollary to estimate h -1 u . We let φ(x) = 1/x and

ψ = Dh • h -1 . We observe that D(h -1 ) = 1 Dh•h -1 = φ • ψ.
Since there is x 0 such that Dh(x 0 ) = 1, then Dh 0 ≥ 1 (and we also have 1 ≥ min Dh > 0). Therefore, we get:

D(h -1 ) u ≤ C max 0≤ j≤u 1 Dh • h -1 j+1 0 Dh • h -1 C u .
By corollary 3.6, we also have:

Dh • h -1 u ≤ C Dh u h -1 C u .
By combining these two estimates, we get:

D(h -1 ) u ≤ C 1 (min Dh) C Dh C u h -1 C u .
We iterate this estimate to estimate h -1 u , for u ≥ 1. We get:

h -1 u+1 ≤ C 1 (min Dh) C h C u+1 h -1 C 1 . (3) 
Now, we estimate the C u -distance of h -1 f h to R α . Let α, λ 0 be as in lemma 3.3. We have:

h -1 f h -R α = h -1 f h -h -1 R λ 0 f h + R α -R α .
Therefore,

h -1 f h -R α u ≤ h -1 f h -h -1 R λ 0 f h u + | α -α|. ( 4 
)
On the other hand, by the Faa-di-Bruno formula, we have:

D u h -1 f h -h -1 R λ 0 f h (x) = u j=0 B u, j D( f h)(x), ..., D u-j+1 ( f h)(x) D j (h -1 )( f h(x)) -D j (h -1 )( f h(x) + λ 0 ) . Since |D j (h -1 )( f h(x)) -D j (h -1 )( f h(x) + λ 0 )| ≤ D j+1 (h -1
) 0 |λ 0 |, then by applying estimate (2), we get:

h -1 f h -h -1 R λ 0 f h u ≤ C f • h C u h -1 u+1 |λ 0 |.
By applying corollary 3.6, we get:

h -1 f h -h -1 R λ 0 f h u ≤ C f C u h C u h -1 u+1 |λ 0 |.
By applying (3), we obtain:

h -1 f h -h -1 R λ 0 f h u ≤ C f C u h C u 1 (min Dh) C h C u+1 h -1 C 1 | α -α| Dh 0 h -1 f h -h -1 R λ 0 f h u ≤ C f C u h C u+1 | α - (min Dh) C .
By estimate (4), we obtain:

h -1 f h -R α u ≤ C f C u h C u+1 1 (min Dh) C | α -α|. ( 5 
)
Hence lemma 3.4.

Application to commuting diffeomorphisms

Theorem 4.1. There exists a numerical sequence G(n), going to +∞ as n → +∞, such that, for any l ≥ 3 an integer, f ∈ D l ( 1 ) of rotation number α ∈ , η > 0 and g of class C l such that f g = g f , if

lim inf V α (n) G(n) = 0
then there exists two sequences of diffeomorphisms f n and g n that are C l-1-ηconjugated to rotations, such that f n g n = g n f n , and with f n and g n converging respectively towards f and g in the C l-2-η -norm.

Corollary 4.2.

There is a Baire-dense set A 2 ⊂ such that if l ≥ 3 is an integer, f ∈ D l ( 1 ) has a rotation number α ∈ A 2 , g is of class C l such that f g = g f and η ∈ + , then there exists two sequences of diffeomorphisms f n and g n that are C l-1-ηconjugated to rotations, such that f n g n = g n f n and with f n and g n converging respectively towards f and g in the C l-2-η -norm.

We derive theorem 1.2 from corollary 4.2 by following the same argument as in the proof of theorem 1.1.

The speed of approximation of g by a linearizable and commuting diffeomorphism

To prove theorem 4.1, we consider (h n ) n≥0 , the sequence of conjugating diffeomorphisms constructed in the proof of theorem 3.1, (λ n ) n≥0 the associated sequence of real numbers such that

f n = R λ n f = h n R α n h -1 n .
We also consider g n = h -1 n gh n and

g n = h n R g n (0) h -1
n . The diffeomorphisms f n and g n commute, and f n → f in the C l-2-ηnorm. To prove theorem 4.1, it suffices to show that g n → g in the C l-2-η -norm. This convergence is based on the lemma: Lemma 4.3. Let l ≥ 3 be an integer, f ∈ D l ( 1 ) of rotation number α ∈ , η > 0, 0 ≤ u ≤ l -2 -η, and g ∈ D l ( 1 ) be such that f g = g f . Let (q t ) t≥0 be the sequence of denominators of the convergents of α, and let r ≥ 0 be an integer. Let α be an irrational number of constant type, λ 0 ∈ the associated number and h the associated C l-1-η diffeomorphism given by lemma 3.3. Let f = h -1 f h and g = h -1 gh. We have the estimate:

g -hR g (0) h -1 u ≤ C h C u+1 f C u g C u+1 1 q r + | α -α| (C h u+1 f u+1 ) Cq r (min Dh) C .
To show this lemma, the basic idea is the following: we approach modulo 1 points x ∈ R by p(x)α mod 1, where p(x) ≤ q r is an integer, and where the integer r will be fixed later. We have a control of |xp(x)α| mod 1 in function of q r . Then, by using the assumption of commutation g f p = f p g , we can write:

g (x)-R g (0) (x) = g (x)-g (pα)+g (pα)-g f p (0)+ f p g (0)-R pα (g (0))+R g (0) (pα)-R g (0) (x).
We use the distance of f p to R pα , which depends on q r and the norm of f -R α . This distance has been estimated in the proof of the result of quasi-reductibility. We also use C k analogues, k ≥ 2, of the mean value theorem, obtained with the Faa-di-Bruno formula. This allows to estimate the norm of g -hR g (0) h -1 in function of the norm of g -R g (0) .

To obtain theorem 4.1 from lemma 4.3, we take α = α n , and we consider the associated sequences f n , g n , f n , g n , h n . The integer q r must be chosen sufficiently large with respect to the conjugacy h n , so that |x -pα| mod 1 is sufficiently small. However, this integer q r must not be too large, to keep the norm of f p n -R pα sufficiently small. This integer q r is controlled with sup k≤r a k , which itself controls the norm of h r . Thus, it suffices to properly choose the integer r in function of n, in order to obtain the convergence of g n towards g. Proof of theorem 4.1. Assuming lemma 4.3, we show theorem 4.1.

Let α = α n and h n be the associated diffeomorphism given by lemma 3.3. Since V α (n) → +∞, by applying the estimate for the conjugacy h n , there exists G(x) strictly increasing with x such that, for n sufficiently large:

g -h n R g n (0) h -1 n l-2-η ≤ e C G(V α (n))       1 q r + e C G(V α (n))q r 2 n       .
Moreover, since q n = a n q n-1 + q n-2 , and q n-2 ≤ q n-1 , then

( √ 2) n-1 ≤ q n ≤ n k=1 (a k + 1). (6) 
The second higher-order analogous of the mean value theorem is:

Lemma 4.5. Let u ≥ 0, s ∈ D u+1 ( 1 ), t ∈ D u ( 1 ), δ ∈ . We have:

st -sR δ u ≤ C s u+1 t u u t -R δ u . Observe the presence of the term t u , which is absent in the mean value formula. As in lemma 4.4, this is because of an estimate on the Bell polynomial, in the Faa-di-Bruno formula.

Proof. If u = 0, the estimate holds. We suppose u ≥ 1. We use the following lemma: Lemma 4.6. Let u ≥ 1, j ≤ u be integers and a 1 , ..., a u-j+1 , x 1 , ...,

x u-j+1 ≥ 0. Let x ≥ max{|x k | ∨ 1; 1 ≤ k ≤ u -j + 1} and let a ≥ max{|a k |; 1 ≤ k ≤ u -j + 1}. Let B u, j
be a Bell polynomial. We have:

|B u, j (x 1 + a 1 , ..., x u-j+1 + a u-j+1 ) -B u, j (x 1 , ..., x u-j+1 )| ≤ Ca(x + a) u .
Proof. Let p ≥ 1 and l 1 , ..., l p be integers. Then we have:

(x 1 +a 1 ) l 1 ...(x p +a p ) l p -x l 1 1 ...x l p p = p i=1 x l 1 1 ...x l i-1 i-1 (x i +a i ) l i ...(x p +a p ) l p -x l 1 1 ...x l i i (x i+1 +a i+1 ) l i+1 ...(x p +a p ) l p (x 1 +a 1 ) l 1 ...(x p +a p ) l p -x l 1 1 ...x l p p = p i=1 x l 1 1 ...x l i-1 i-1 (x i+1 +a i+1 ) l i+1 ...(x p +a p ) l p (x i + a i ) l i -x l i i (with the conventions x l 1 1 ...x l 0 0 = 1 and x l p+1 p+1 ...x l p p = 1). Since (x i + a i ) l i -x l i i ≤ l i |a i |(|x i | + |a i |) l i -1 ≤ l i a(|x i | + a) l i -1
, 1 ≤ l i ≤ u and x + a ≥ 1 (because x ≥ 1), we obtain: |B u, j (x 1 + a 1 , ..., x u-j+1 + a u-j+1 ) -B u, j (x 1 , ..., x u-j+1 )| ≤ a(uj + 1)uB u, j (x + a, ..., x + a).

By the formula giving the Bell polynomials, we have:

B u, j (x + a, ..., x + a) ≤ C(x + a) u .
To show lemma 4.5, For any 0 ≤ v ≤ u, we write:

D v (st)(x)-D v (sR δ )(x) = v j=0 D j s(t(x)) B v, j Dt(x), ..., D v-j+1 t(x) -B v, j DR δ (x), ..., D v-j+1 R δ (x) + D j s(t(x)) -D j s(R δ (x)) B v, j DR δ (x), ..., D v-j+1 R δ (x) .
We apply lemma 4.6 with a = t -R δ u and x = R δ u ≥ 1. Since t ∈ D u ( 1 ), then t u ≥ 1. We get:

B v, j Dt(x), ..., D v-j+1 t(x) -B v, j DR δ (x), ..., D v-j+1 R δ (x) ≤ C t -R δ u (1 + t -R δ u ) u B v, j Dt(x), ..., D v-j+1 t(x) -B v, j DR δ (x), ..., D v-j+1 R δ (x) ≤ C t-R δ u (2+ t u ) u ≤ C t-R δ u t u u . f u ≤ CA 1,u f C u h C u .
Hence estimate [START_REF] Katznelson | Sigma-finite invariant measures for smooth mappings of the circle[END_REF].

For A 3,u , by applying corollary 3.6 again, we have, for any m,

f m+1 u ≤ C f m u f C u
and therefore, by iteration, we get:

f m u ≤ C m f mC u .
Hence [START_REF] Yoccoz | Petits diviseurs en dimension un[END_REF].

estimate ( 11) is a direct application of estimate [START_REF] Fayad | Constructions in elliptic dynamics[END_REF].

For estimate (12), we observe that for any 0 ≤ v ≤ u:

D v f m -D v R mα = D v m-1 k=0 f m-k R kα -f m-k-1 R (k+1)α D v f m -D v R mα = m-1 k=0 D v f m-k-1 f R kα -D v f m-k-1 R α R kα .
By applying lemma 4.5, and by noting that for any k, f m-k-1 u+1 ≤ max 0≤k≤m-1 f k u+1 , we get:

f m -R mα u ≤ mC f C u max 0≤k≤m-1 f k u+1 f -R α u .
Hence (12).

For A 6,u , estimate (13) is the same as (9):

g u ≤ C h -1 u g C u h C u .
Hence (13).

For A 7,u , let m ≥ 0 and u ≥ v ≥ 1. For any x, D v R α (x) = By lemma 4.5, we also have:

|D v g (R mα (y)) -D v (g f m (y))| ≤ C g u+1 f m C u f m -R mα u .
Finally, by lemma 4.4, we have:

|D v ( f m g (y)) -D v (R mα g (y))| ≤ C f m u+1 f m -R mα u g C u .
Since R mα g (y) = g (y) + mα, and v ≥ 1, then D v (R mα g (y)) = D v (R mα g (y)). Therefore, the same estimate holds for |D v ( f m g (y)) -D v (g (y))|.

By combining these estimates, we obtain:

|D v g (x) -D v g (y)| ≤ g u+1 |x -y -mα| + C g u+1 f m C u f m -R mα u + C f m u+1 f m -R mα u g C u .
Moreover, for any r ≥ 0, any x, y ∈ , there is an integer m(x, y) ≤ 2q r , there are real numbers x , y such that x -x ∈ , y -y ∈ and such that |x -y -m(x, y)α| ≤ 1/q r . Since v ≥ 1, then |D v g (x) -D v g (y)| = |D v g (x ) -D v g (y )|. We apply the former estimate with x and y and we get: max 1≤v≤u D v g -D v R g (0) 0 ≤ A 6,u+1 + 1 q r +max m≤2q r A 6,u+1 A C 3,u (m)A 5,u (m) + A C 6,u A 3,u+1 (m)A 5,u (m) .

If v = 0, we note that for any r ≥ 0, any x ∈ , there is an integer m(x) ≤ q r and a real number x ∈ such that xx ∈ , and such that |xm(x)α| ≤ 1/q r . Moreover, we have: g (x) -R g (0) (x) = g (x ) -R g (0) (x ), and g (x )-R g (0) (x ) = g (x )-g (mα)+g (mα)-g f m (0)+ f m g (0)-R mα (g (0))+R g (0) (mα)-R g (0) (x ).

Hence estimate (14).

For A 8,u , estimate (15) follows immediately from lemma 4.4.

For A 9,u , let x ∈ . Let 0 ≤ v ≤ u. By the Faa-di-Bruno formula:

D v hg h -1 (x) -D v hR g (0) h -1 (x) = v j=0
D j h(g h -1 (x))B v, j D g h -1 (x), ..., D v-j+1 g h -1 (x) -D j h(g h -1 (x))B v, j D R g (0) h -1 (x), ..., D v-j+1 R g (0) h -1 (x)

1 0 1 0D v g (y) dy = 1 0

 111 D v g (y) dy. Therefore,|D v g (x) -D v R α (x)| = D v g (x) -D v g (x) -D v g (y) dy ≤ max x,y∈[0,1] |D v g (x) -D v g (y)|.On the other hand, we have:D v g (x) -D v g (y) = D v g (x) -D v g (y + mα) + D v g (R mα (y)) -D v (g f m (y)) + D v ( f m g (y)) -D v g (y).Moreover, we have:|D v g (x) -D v g (y + mα)| ≤ |D u+1 g | 0 |xy -mα|.

The complementary in

of simultaneously Diophantine numbers (noted S D c ) is Baire-dense. Indeed, we have:

Therefore, we get:

n l-2-η ≤ e C G(V α (n))-1 2 (r-1) log 2 + e C G(V α (n))+C G(V α (n))(V α (r)+1) r -n log 2 . [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF] Let G(n) = G-1 ((log n) 1/2 ). By extracting in the sequence V α (n)/G(n), we can suppose that:

Therefore, for n sufficiently large, we have:

Moreover, for n sufficiently large, we can take an integer r n such that:

We get:

The first term in estimate ( 7) tends towards 0. Moreover, since,for n sufficiently large,

then the second term also tends towards 0. Hence theorem 4.1.

Higher-order analogous of the mean value theorem

Proof of lemma 4.3. We need two higher-order analogous of the mean value theorem. The first one is:

Observe the presence of the term s u+1 , which is absent in the mean value formula. This is because of the estimate (2) on the Bell polynomial, in the Faa-di-Bruno formula.

Proof. If u = 0, the estimate is trivial. We suppose u ≥ 1. For any x ∈ , the Faa-di-Bruno formula gives:

Therefore, by estimate (2), and since t u ≥ 1,

Hence lemma 4.4.

Successive estimates

To prove lemma 4.3, we also need these successive estimates:

Lemma 4.7. Let l ≥ 3 be an integer, f ∈ D l ( 1 ) of rotation number α ∈ , η > 0, 0 ≤ u ≤ l -2 -η, and g ∈ D l ( 1 ) be such that f g = g f . Let (q t ) t≥0 be the sequence of denominators of the convergents of α. Let α be an irrational number of constant type, λ 0 ∈ the associated number and h the associated C l-1-η diffeomorphism given by lemma 3.3. Let f = h -1 f h and g = h -1 gh. We have the estimates:

and for any integer r ≥ 0, we have:

The crucial estimate is (14), which is obtained by approaching modulo 1 each x ∈ by a m(x)α, with m(x) ≤ q r . If q r increases, xm(x)α is smaller modulo 1, but the bound on A 3,u (m(x)) and A 5,u (m(x)) increases. In the proof of theorem 4.1, we make a proper choice of r (and q r ).

estimate [START_REF] Yoccoz | Small divisors: Number theory in dynamical systems[END_REF] corresponds to estimate (5) of the proof of the result of quasi-reducibility. The other estimates, namely, estimates (8),( 9),( 10), ( 12),( 13), ( 15) and ( 16) are derived from applications of the Faa-di-Bruno formula: either corollary 3.6, lemma 4.4 or lemma 4.5.

Proof of lemma 4.7. For A 1,u , by estimate (3), we have:

Hence estimate (8).

For A 2,u , by applying corollary 3.6 twice, we have,

Hence estimate (16). This completes the proof of lemma 4.7.

By combining these estimates, we obtain:

Hence lemma 4.3. Notice the loss of one derivative for h.