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Abstract

In this article, we show two related results on circle diffeomorphisms. The first
result is on quasi-reducibility: for a Baire-dense set of «, for any diffeomorphism
f of rotation number «, it is possible to accumulate R, with a sequence h, [/,
h, being a diffeomorphism. The second result is: for a Baire-dense set of a, given
two commuting diffeomorphisms f and g, such that f has « for rotation number,
it is possible to approach each of them by commuting diffeomorphisms f, and g,
that are differentiably conjugated to rotations.

In particular, it implies that if « is in this Baire-dense set, and if § is an ir-
rational number such that (@, 8) are not simultaneously Diophantine, then the set
of commuting diffeomorphisms (f, g) with singular conjugacy, and with rotation
numbers (e, B) respectively, is C*°-dense in the set of commuting diffeomorphisms
with rotation numbers (@, ).

1 Introduction

It is well-known that there are circle diffeomorphisms with Liouville rotation num-
bers (i.e. non-Diophantine) that are not smoothly conjugated to rotations [1, 7, 8, 9].
A natural question arises, namely, the problem of smooth quasi-reducibility: given a
smooth diffeomorphism f of rotation number «, is it possible to accumulate R, in the
C®-norm, with a sequence ;' fh,, h, being a smooth diffeomorphism? In this case, we
say that f is smoothly quasi-reducible to R,. Quasi-reducibility is a question that has
been studied by Herman [7, pp.93-99], who showed that for any C>-diffeomorphism f
of irrational rotation number a, it is possible to accumulate R,, in the C 1+0v_norm, with
a sequence i, fh,, h, being a C2-diffeomorphism (i.e. h;'fh, — R, in the C'-norm,
and the total variation of D(h;1 fh, — R,) converges towards zero). Quasi-reducibility
is also related to a problem solved by Yoccoz [10], who showed that it is possible to
accumulate a smooth diffeomorphism f in the C*-norm with a sequence ,R,h;", h,
being a smooth diffeomorphism. However, these two problems are not the same, and
the method used by Yoccoz does not directly yield our result. In our case, we determine
a Baire-dense set of rotation numbers a such that for any smooth diffeomorphism f of
rotation number «a, f is smoothly quasi-reducible.
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Connected to the problem of quasi-reducibility is the following question, raised
by Mather: given two commuting C*-diffeomorphisms f and g, is it possible to ap-
proach each of them in the C*-norm by commuting smooth diffeomorphisms that are
smoothly conjugated to rotations? In this paper, we determine a Baire-dense set of
rotation numbers a such that if f and g are commuting C*-diffeomorphisms, with f
of rotation number «, then f and g are accumulated in the C* norm by commuting
C*>-diffeomorphisms that are C*-conjugated to a rotation. This result is related to
a theorem of Fayad and Khanin [6]. They showed that if (a, @’) are simultaneously
Diophantine (i.e. there is C; > 0, 8 > 0 such that for any p,p’ € Z, any g > 1,
max(la — p/ql, |’ = p’'/ql) = Cq/q**~. This set includes some pairs (@, a’) with a and
a’ Liouvillean), and if f and g are commuting C*-diffeomorphisms, with f and g of
rotation numbers @ and @’ respectively, then f and g are smoothly linearizable. Fayad
and Khanin’s result implies our result of quasi-reducibility in the particular case when
the rotation numbers of f and g are simultaneously Diophantine. However, in general,
our result is not implied by theirs. Indeed, our result holds for a set (a, @’) that is Baire-
dense in R? (because a belongs to a Baire-dense set of R and o is arbitrary), whereas
the set of simultaneously Diophantine numbers is not Baire-dense.!

Moreover, for Diophantine rotation numbers, which are of full Lebesgue measure,
the question of quasi-reducibility and Mather’s problem are trivial, because in this case,
the diffeomorphism f is smoothly conjugated to a rotation. Therefore, these two ques-
tions remain open for a meagre set of rotation numbers of zero Lebesgue measure.

In order to derive our results, we use estimates of the conjugacy to rotations of dif-
feomorphisms having rotation numbers of Diophantine constant type. These estimates
were obtained in [2].

The circle is denoted T!. For r € R, U {+o0}, we work in the universal cover
D'(T"), which is the group of diffeomorphisms f of class C” of the real line such that
f — Id is Z-periodic. For @ € R , we denote R, € D*(T") the map x + x + a.

Let f € D(T") be a homeomorphism and x € R. The sequence ((f™(x) — X)/n)s1
admits a limit independent of x, denoted p(f). This limit is called the rotation number
of f. This is a real number invariant by conjugacy.

Theorem 1.1. There is a Baire-dense set A C R such that for any f € D®(T') of
rotation number @ € A, there is a sequence h, € D>(T") such that h;lfh,, — R, in
the C*™-topology.

Theorem 1.2. There is a Baire-dense set Ay C R such that for any f € D®(T") of
rotation number a € A, and any g of class C* with fg = gf, f and g are accumu-
lated in the C*-topology by commuting C*-diffeomorphisms that are C*-conjugated
to rotations.

' The complementary in R? of simultaneously Diophantine numbers (noted S D¢) is Baire-dense. Indeed,
we have:

SD¢ = NkeN* NpeN* Uthl(Aq.k X Aq,k)

with:

1
Agr = {a € R /there is an integerp € Z, 'a - E‘ < 7} .
q q
Ay is open (and so is Ay X Agx), and for any integer n, Ug>n(Agx X Agx) is dense, because it contains all
pairs of rational numbers (if @ = p1/q) and @’ = p2/q2, then (o, @) € (A} 4, k XA jg,q,4) fOr any j, k € N¥).
Therefore, S D¢ is Baire-dense.



Remark 1.3. The proof of theorem 1.1 also gives that 4,R,h,! — f in the C*-topology
ifaeA.

Remark 1.4. Combined with [6, p. 965], theorem 1.2 implies that if & € A,, and (a, 5)
are not simultaneously Diophantine, then S, g, the set of couples (f, g) of smooth com-
muting circle diffeomorphisms with singular conjugacies to R, and Rg respectively,
is C™-dense in F,g, the set of couples (f, g) of smooth commuting circle diffeomor-
phisms with rotation numbers « and S8 respectively.

Indeed, our result shows that O, g, the set of couples (f, g) of smooth commuting
circle diffeomorphisms with smooth conjugacies to R, and R respectively, is C*-dense
in F,pz. Moreover, in [6, p.965], for (@, ) not simultaneously Diophantine, Fayad
and Khanin described the construction of a couple (f, g) of smooth commuting circle
diffeomorphisms with singular conjugacies to R, and Rg respectively. This construction
relies on the method of successive conjugacies, which can be made C*-dense in Oy g
[5].

Moreover, by slightly modifying [7, p.160, p.167], this implies that (O(llﬁ)", the set
of couples (f, g) of smooth commuting circle diffeomorphisms with non-C' conjuga-
cies to rotations R, and Rg, is C*-generic in F,g. See appendix A for a short proof.

2 Preliminaries

2.1 Basic properties

When the rotation number a of f is irrational, and if f is of class C2, Denjoy showed
that f is topologically conjugated to R,. However, this conjugacy is not always differ-
entiable. It depends on the Diophantine properties of the rotation number «.

Leta = ag+1/(a; +1/(a; +...)) be the development of @ € R in continued fraction
(see [4]). It is denoted a = [ag,a;,as,...]. Let p-» = g-1 =0, p_.1 = g» = 1. For
n > 0, we define integers p, and g, by:

Pn = GnPp-1 + Pn-2

qn = Qnqn-1 t qn-2-

We have g9 = 1, g, > 1 for n > 1. The rationals p,/q, are called the convergents
of @. Remember that ¢,,,» > 2¢,, forn > —1.

For any real number § > 0, @ € R — Q is Diophantine of order § and constant C,
(a set denoted DC(Cy,B)) if there is a constant C; > 0 such that for any p/q € Q, we
have:

q2+/3 :

Each of the following relations characterizes DC(Cy, B) (see e.g. [11, pp.50-51]):
1. |@ — pu/gnl > Cd/qiw foranyn >0

2. Ape1 < Cquf,g foranyn >0

3. Gui1 < Cl]q;’ﬁ for any n > 0



4. @, > Cdarlfﬁ for any n > 0.

DC(C4,0) is the set of irrational numbers of constant type Cy. The first derivative
of f € D'(T") is denoted Df.

2.2  Some useful lemmas

For any n integer, let «,, = [ao, ..., ay, 1, ...].
LetV, : N — R defined by: V,(n) = maxo<;<, a;. Observe that @,, € DC(1/V,(n),0).
We will need the lemma:

Lemma 2.1. Let a be an irrational number, q, its convergents and «,, = [a, ..., an, 1, ...].
We have:

2 4

—_ S —_

la, —a] < 25

Proof. Let &, = [ap, ..., ay,0,...]. By induction, we can show that &, = p,/g,. More-
over, @, is also the n* convergent of a,. Therefore, by the best rational approximation
theorem, |& — p,/q,| < 1/¢% and |, — p,/q.] < 1/q>. Moreover, since gns2 > ¢y, then
= (V2.

O
We need the lemma:

Lemma 2.2. Let ¢ : N — R, be such that ¢(n) —,_ 10 +0. Let
A ={a € R /V,(n) < ¢(n) for an infinity of n}.
Then A is Baire-dense.

Proof. First, we show that for any positive integers n and i,

A;, = {asuchthata; < ¢(n)} is open. Let u(x) = [x], v(x) = }( and w(x) =
v(x) — u(v(x)). We have: ai.1 = v(wk(x)) — w**1(x). Since v is continuous and u is
upper semi-continuous and non-negative, then w is lower semi-continuous. Moreover,
w is non-negative. Therefore, w€ and w**! are also lower semi-continuous and non-
negative. Since v is decreasing, then v o w* — wk*! is upper semi-continuous. We
conclude that A;, is open.

Moreover, for any p > 0,

Uan Nizn Ai,n

is dense. Indeed, since ¢(n) — +oo, then it contains all numbers of constant type,
which are dense. This set is also open and therefore,

A= Np>0 Unzp miSnAi,n

is Baire-dense.



2.3 Notations
e For any real numbers a and b, a V b denotes max(a, b).

e For ¢ a real Z-periodic C” function, 0 < r < +o0, we define:
lgll, = max max [D/¢(x)l.
0<j<r xeR

Note that for f,g € D'(T'), f — g is Z-periodic, and for 1 < j < r, D/f is
Z-periodic. For f € D'(T"), we also define:

/1l = max (Ilf— id|lo, max ||D/ fllo | -
1<j<r

Note that the notation || f||, is not a norm when f € D"(T"), since D"(T") is not a
vector space.

e In all the paper, C denotes a constant depending on u. W(f) denotes the total
variation of log Df, and S f denotes the Schwartzian derivative of f.

2.4 Estimates of the conjugacy

The following theorem gives an estimate of the linearization of a diffeomorphism hav-
ing a rotation numbers of Diophantine constant type. This estimate, obtained in [2], is
necessary to derive our results.

Theorem 2.3. Let | > 3 be an integer and n > 0. Let f € D'(T") be of rotation number
@, such that « is of constant type C,. There exists a diffeomorphism h € D'='"1(T")
conjugating f to R, and a function B of Cy,1,n, W(f), IS fl;=3, which satisfy the esti-
mate:

maX(;, ”h”I—l—n) < B(Ca, L, W(HL IS flli-3)- ey
min Dh

In particular, we remark that if f, is a sequence of diffeomorphisms of rotation
number «,, if the sequences W(f,) and ||S f,|[;-3 are bounded (this will hold in our
case, because we will take f, = A, + f for a properly chosen 4, € R), if V,(n) — +o0
and if A, is the conjugacy to a rotation associated with f;,, then there is a real function
E(V,(n)) such that, for n sufficiently large, we have:

1
_ 1| < E .
maX(minDhn,llhnllz 1 n) < E(Vo(m)

3  Quasi-Reducibility

Theorem 3.1. Let | > 3 be an integer, f € D'(T') be of rotation number o € T
Let n > 0 be a real number. There exists a numerical sequence F(n), going to +oo as
n — +oo, such that, if




then there is a sequence h,, of class C'='~" such that h;' fh, — R, in the C'=>7"-
topology.

By applying lemma 2.2, we obtain the corollary:

Corollary 3.2. There is a Baire-dense set Ay C R such that if | > 3 is an integer,
f € DI(T") of rotation number « € Ay and 7 > 0, then f is C'=*-quasi-reducible:
there is a sequence h,, € DF1(TY such that h,j] fh, = R, in the Cl’z"’—topology.

The idea of the proof of theorem 3.1 is the following. We observe that for any
sequence ¢(n) — +oo, the set of numbers a such that for an infinity of #n,

SUp;<, ak < ¢(n), is Baire-dense (lemma 2.2).

The truncated sequence of constant type numbers «, = [aq, ..., dy, 1, ...] converges
towards « at a controlled speed: |a — ;| < 4/2" (lemma 2.1).

Following an idea of Herman [7], we perturbate f to R, f = f + 4, of rotation
number «,, which is linearizable by a conjugacy 4, (lemma 3.3). By writing:

hglfhn _Ra/ = hglfhn - h;lR/lnfhn +Ra,, _Ra

and by applying the Faa-di-Bruno formula, we obtain a control of the norm of
h,‘,l fh, — R, in function of the norm of #,, and in function of |a@ — a,| (lemma 3.4).
Moreover, we have an estimate of the norm of 4, in function of sup,, ax.

Thus, if we choose the speed of growth of the sequence sup,, a; sufficiently small
with respect to the speed of convergence of , towards a, then /' fh, converges to-
wards R,, and f is quasi-reducible.

Proof of theorem 1.1. We let n = [/3 in corollary 3.2. Since f is smooth, then there
is a sequence (A, 1)n>0 € D>(T") such that, for any integer [ > 3 fixed,

iy} Flins = Rallagi 1y =nosseo 0.
In particular, there is n(l) such that:
-1 l
Wty f it = Rallos -1y < 7-

Let h; = hy,. Let € > 0, and let k > 0 be an integer. There is [y > 0 such that for
any [ > Iy, we have: € > 1/, k < 2(% - l) and:

- _ 1
WAy fh = Rolle < " fhu = Rallyspy < 5 < €.

Therefore, hl‘1 fhy =540 R, in the Ck-topology, for any k, and therefore, this
convergence holds in the C*-topology.
|

3.1 The one-parameter family R, f

To prove theorem 3.1, we need to consider the one-parameter family R, f = f + A (see
[7, p.31]). We have the lemma:



Lemma 3.3. Let [ > 3 be an integer, f € D/(T'), 0 <5 <1-3, @ = p(f). Let & be an
irrational number of constant type. There exists Ay € R and a C™'7-diffeomorphism
h such that h™'R,, fh = Ry. Moreover,

A A
Mol g s Ml
min Dh ||DAllo

Proof. Let u(d) = p(R,f). u is continuous, non-decreasing and u(R) = R (see [7, p.
31]). Therefore, there exists 49 € R such that @ = p(R,,f). Since & is of constant
type, there exists a C'~!~"-diffeomorphism /4 such that 4~'R,, fh = R; and that satisfies
estimate (1) of theorem 2.3. By the mean value theorem, for any x, there is c(x) such
that:

a+x—hfh(x) = Ry(x) — B~ fh(x) = k™' Ry, fh(x) — k™" fh(x) = DA™ )(c(x))Ao.

By integrating this equation on an invariant measure of h~! fh, we get lemma 3.3.
Note that since 1 € D'(T"), then Dh(x) > 0 for any x, and min Dh > 0.
O

3.2 The speed of approximation of R,
The proof of theorem 3.1 is also based on the lemma:

Lemma 3.4. Let [ > 3 be an integer, f € D(T'), 0 <5 <1-3, @ = p(f). Let & be
an irrational number of constant type, and let Ay € R and h the C'~'7-diffeomorphism
be given by lemma 3.3. Recall that C denotes a constant that only depends on u,
0 <u <1—-2—mn. We have the estimate:

1
' fh = Roll, < CIAISIAIS, | ————=ld@ — al.
=" f Il < CIFIL ”““(minDh)Cla al

Before proving lemma 3.4, we show how theorem 3.1 is derived from it.

proof of theorem 3.1. If « is of constant type, then f is reducible and there is nothing
to prove. Therefore, we can suppose that V,(n) =, e +00. By applying theorem 2.3,
there exists a real function F strictly increasing with V,(n), such that for «,, and for its
associated diffeomorphism /%, given by lemma 3.3, we have, for n sufficiently large:

”h;llfhn - Ra”l—2—7] < exp (F (Va(n))) |a/n — al.

Let F (n) = F~'(n'/?). By extracting, we can suppose that lim
Vu(n) < F (n) for n sufficiently large and therefore,

Vaon) _
Foy = 0. Therefore,

F (Vy(n)) < n'/?.

We get, for n sufficiently large,

nlog?2

-1 _
W, fhy — Rollico—y £ €% —p400 0.

Hence theorem 3.1.

Now, we show lemma 3.4:



proof of lemma 3.4. We need the Faa-di-Bruno formula (see e.g. [3]):

Lemma 3.5. For every integer u > 0 and functions ¢ and  of class C*, we have:
D' [p@(0)] = ) DIg@(x)Bu; (DY(x), DY(x), ..., DT Vy(x)
j=0

The B, ; are the Bell polynomials, defined by B, o = 1 and, for j > 1:
u! X1\t xp )\ Xu—j+1 i
PRI S 4 4 S O
SO une) = ) Ll 1) A2 w—j+1)

The sum extends over all sequences l1,15,1, ..., 1, j.1 of non-negative integers such
that:ly + L + ... = ]and L +2L+3+..=u

Therefore, for any x, we have the estimate:

Buj (Do), D2 (), .., DI Vy())| < € (1 v W) )
Combining this estimate with lemma 3.5, we obtain the corollary:

Corollary 3.6. For every integer u > 0 and functions ¢ and y of class C*, we have:
llg o ¢llu < € max [ID’¢ o gl (1 V [ly) -
0<j<u

We apply this corollary to estimate [|4~"||,. We let ¢(x) = 1/x and ¥ = Dho h™'.
We observe that D(h™") = Dhcl)h,, = ¢ o . Since there is x( such that Dh(x) = 1, then
[[Dhllo > 1 (and we also have 1 > min Dh > 0). Therefore, we get:

1
ID(h™ Y|l < C max

ax ———————||Dho h”'[C.
0<izu || (Dh o h=')'" [l

By corollary 3.6, we also have:

DR o k™'l < CIIDAILIIRS.

By combining these two estimates, we get:

1
ID(A L, < CWIIDhIISIIh"IIf~

We iterate this estimate to estimate || ~'||,, for u > 1. We get:

I s < € Nl o1 3)

u+l

(min Dh)¢

Now, we estimate the C"-distance of h™! fhtoR,. Let &, Ay be as in lemma 3.3. We
have:

W'fh—R, =h"fh—h™ 'Ry fh+ Ry — R,.
Therefore,

I~ fh = Rolle < 07" fh— ™' Ry, fhll + 1@ — al. (4)



On the other hand, by the Faa-di-Bruno formula, we have:

D*[n7 fh— ™' Ry, fh] (x) = Z B j (D(fR)(), ... D7 (fh)(x)

Jj=0
[P/ () = DIH(FR(x) + Ao)]

Since |D/(h~")(fh(x)) — D/(h"NY(fh(x) + A0)| < |ID7*(h~Y)|lolAgl, then by applying
estimate (2), we get:

W™t fh = ™' Ry fhlly < CIIf © RIS L1140
By applying corollary 3.6, we get:
WA~ fh— B Ry, fhlle < CUAISIAIS A st 1 ol-

By applying (3), we obtain:

A~ fh = h™' Ry fhll. < CIAISIANS IAIIE, Ik~ 1@ — alllDAllo

u+1

(min Dh)¢
Wl — HER, il < CILACHAIC,  — 2=
=" f oSl < CIA ”“”(minDh)C

By estimate (4), we obtain:

1
' fh = Roll, < CIAISIAIS, | ————=ld — al. 5
=" f Al < CIFIL ”““(minDh)Cla al &)

Hence lemma 3.4.

4 Application to commuting diffeomorphisms

Theorem 4.1. There exists a numerical sequence G(n), going to +o0 as n — +oo, such
that, for any 1 > 3 an integer, f € D'(T") of rotation number @ € R, n > 0 and g of
class C! such that fg = gf, if

then there exists two sequences of diffeomorphisms f, and g, that are C'='7-
conjugated to rotations, such that f,8, = gnfn, and with f, and g, converging re-
spectively towards f and g in the C"~>"-norm.

Corollary 4.2. There is a Baire-dense set A, C R such that if | > 3 is an integer,
f € DI(TY) has a rotation number @ € A,, g is of class C' such that fg = gf and
n € Ry, then there exists two sequences of diffeomorphisms f, and g, that are C'=177-
conjugated to rotations, such that f,g, = g.f, and with f, and g, converging respec-
tively towards f and g in the C"=>""-norm.

We derive theorem 1.2 from corollary 4.2 by following the same argument as in the
proof of theorem 1.1.



4.1 The speed of approximation of g by a linearizable and com-
muting diffeomorphism

To prove theorem 4.1, we consider (4,),>0, the sequence of conjugating diffeomor-
phisms constructed in the proof of theorem 3.1, (4,),»0 the associated sequence of
real numbers such that f, = R, f = h,R, h,'. We also consider g/, = h,'gh, and
gn = haRy o), The diffeomorphisms f, and g, commute, and f, — f in the C'=27"-
norm. To prove theorem 4.1, it suffices to show that g, — g in the C/~>"7-norm. This

convergence is based on the lemma:

Lemma 4.3. Let | > 3 be an integer, f € D'(T") of rotation number @ € R, > 0,
0<u<l-2-n, and g e D'(T") be such that fg = gf. Let (q;)»0 be the sequence of
denominators of the convergents of a, and let r > 0 be an integer. Let & be an irrational
number of constant type, Ay € R the associated number and h the associated C'~'="
diffeomorphism given by lemma 3.3. Let f' = h™' fh and g = h™'gh. We have the
estimate:

(CllAlL 1 1Tl 1) % ))

1
-1 C C C =
llg = ARy yh™ llu < ClIAll i L1 181y (_qr +la - al( (min Dh)C

To show this lemma, the basic idea is the following: we approach modulo 1 points
x € Rby p(x)a mod 1, where p(x) < ¢, is an integer, and where the integer r will be
fixed later. We have a control of |x — p(x)@| mod 1 in function of ¢,. Then, by using the
assumption of commutation g’ f? = fPg’, we can write:

g ()=Ry0)(x) = g(x)—g (pa)+g (pa)—g £ P(0)+f g (0)—R o (g (0))+Ry 0)(pa)—Ry (0)(X).

We use the distance of 7 to Ry, which depends on g, and the norm of f —R,.
This distance has been estimated in the proof of the result of quasi-reductibility. We
also use C* analogues, k > 2, of the mean value theorem, obtained with the Faa-di-
Bruno formula. This allows to estimate the norm of g — iRy oyh~" in function of the
norm of g’ — Ry (o).

To obtain theorem 4.1 from lemma 4.3, we take @ = «,, and we consider the as-
sociated sequences f,, gu. f,» &, in. The integer g, must be chosen sufficiently large
with respect to the conjugacy A, so that |[x — pa| mod 1 is sufficiently small. How-
ever, this integer g, must not be too large, to keep the norm of f,;p — R, sufficiently
small. This integer g, is controlled with sup,,. ax, which itself controls the norm of 4.
Thus, it suffices to properly choose the integer r in function of #, in order to obtain the
convergence of g, towards g.

Proof of theorem 4.1. Assuming lemma 4.3, we show theorem 4.1.

Let @ = a, and h, be the associated diffeomorphism given by lemma 3.3. Since
V,(n) — +oo, by applying the estimate for the conjugacy #,, there exists G(x) strictly
increasing with x such that, for n sufficiently large:

CG(V, ,
» COWatm) 1 eCO(Va(n)g
llg = hnRg )l llim2—n < € —

qr 2"

Moreover, since g, = d,gn-1 + qn—2, and g,—» < q—1, then

(V' <gu <[ J@+ . (©6)
k=1
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Therefore, we get:

. , - . ,
g = fn Rg;(O)h;1||l—2—n < COVatm=3=Dlog2 | COVamHCGVat)(Valr)+1Y -nlog2 (7

Let G(n) = G’l((log n)'?). By extracting in the sequence V,(n)/G(n), we can
suppose that:
Va(n)

G - 0.

Therefore, for n sufficiently large, we have:
G(Vy(n)) < (logn)'/?.
Moreover, for n sufficiently large, we can take an integer r,, such that:
(log n)3/4 <r, <(log n)7/8.
We get:
(Va(r) + 1) = e loeValrrt ) o pllogm"/1e.

The first term in estimate (7) tends towards 0. Moreover, since,for n sufficiently
large,
6 N
(log n)!/2elloem™ < 5 log2

then the second term also tends towards 0. Hence theorem 4.1.

4.2 Higher-order analogous of the mean value theorem

Proof of lemma 4.3. We need two higher-order analogous of the mean value theorem.
The first one is:

Lemmad4.4. Letu >0, s,t € DT"). Let § € R. We have:
lIst = Rstlly < Clisllus1lls — Rsllallzlly-

Observe the presence of the term ||s||,+1, which is absent in the mean value formula.
This is because of the estimate (2) on the Bell polynomial, in the Faa-di-Bruno formula.

Proof. If u = 0, the estimate is trivial. We suppose # > 1. For any x € R, the Faa-di-
Bruno formula gives:

u

D“(st)(x) = D"Rs1)(x) = Y ((D5)(2(x)) = (DR5)(1(x)) Buoj (DH(), .., DT 1(x))..

J=0

Therefore, by estimate (2), and since ||#||, > 1,

ID*(s1)(x) = D*(Rs)(X)] < Cllsllus1lls = Rllull#lly-

u

Hence lemma 4.4.
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The second higher-order analogous of the mean value theorem is:

Lemma 4.5. Letu >0, s € D*I(T"), t € D*(T"), 6 € R. We have:

llsz = sRsllu < Clisllu+1llell e = Risllu-

Observe the presence of the term |[|¢||,, which is absent in the mean value formula.
As in lemma 4.4, this is because of an estimate on the Bell polynomial, in the Faa-di-
Bruno formula.

Proof. If u = 0, the estimate holds. We suppose u > 1. We use the following lemma:

Lemma 4.6. Let u > 1, j < u be integers and ay, ..., Qy—js1, X1, ..o, Xu—jr1 = 0. Let
x2max{|x|V1; 1<k<u-j+1}andleta>max{la; 1 <k<u-j+1}. Let B,
be a Bell polynomial. We have:

|Bu j(x1 + @i, ooy Xy ji1 + yju) = By (X1, ooy Xy jp)| < Calx + a)".
Proof. Letp > 1and/,...,I, be integers. Then we have:

l L 1 Ip ! lie I; L .l A I; I
(x1+a)"..(xptay)?—x|..xy = lel-nxi,ll(xi"'ai) w(ptap)?—xi X (X1 +ai) ™ (xptap)

P
i=1

P
nol Lo . -
(xl+a1)l‘...(x,,+a,,)l"—x1'...x,§’ = E xl‘...xif‘l(xm+a,~+1)l*‘...(x,,+ap)l” [(x,- +a;) —xi]
i=1

It

lo _ ]p+1 ln —
LXg =landx /7 ..x; = 1).

(with the conventions x
p+l

Since (x; + ;)" — xfi < Llail(x] + laD)" ' < La(xi] + @), 1 <, <uand x+a > 1
(because x > 1), we obtain:

|Bu,j(X1+at, oy Xumjut +Qu—ju1) = By j(x1, ooy Xy jr )l < a(u— j+DuB, j(x+a, ..., x+a).
By the formula giving the Bell polynomials, we have:

B,j(x+a,...,x+a) < C(x+a)".

To show lemma 4.5, For any 0 < v < u, we write:

D'(st)(x)-D"(sRs)(x) = Z DIs(t(x)) [By.j (Di(x), ... D"*'1(x)) = By, (DRs(x), ..., D" "' Ry(x)) | +
j=0

|D5(t(x)) = DY s(Rs(x))| B, j (DRs(x), ..., D"+ Rs())

We apply lemma 4.6 with a = ||t — Rs||, and x = ||[Rs||, > 1. Since 1 € D*(T"), then
ll#]l, = 1. We get:

By (DHCO), ., D 1(0)) = By j (DRy(x), .o D' Ry(0)| < Cllt = Rolu(1 + 1l = Roll)*

By (D), ., D" 14(0)) = By j (DR (1) ., DT Ro()| < Cllt=Rollu2+1Ill)" < Cllt=Rs el

]
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4.3 Successive estimates
To prove lemma 4.3, we also need these successive estimates:

Lemma 4.7. Let | > 3 be an integer, f € D'(T") of rotation number @ € R, > 0,
0<u<l-2-n, andg € D'(T") be such that fg = gf. Let (q,)s0 be the sequence of
denominators of the convergents of a. Let @ be an irrational number of constant type,
Ao € R the associated number and h the associated C'='™" diffeomorphism given by
lemma 3.3. Let f' = h™' fhand g’ = h™'gh. We have the estimates:

A=, < Al ——— 8
L = 1Al (Al (min DIC (8)
Asu = I e < CALNAC RIS 9

Az (m) = || f"l < C’"A'éf (10)

Asy =" = Rolle < CIANS, NAIS ——=—=la — al (11

’ ' ut “ (min Dh)€

As(m) = |f™ = Rpallu < mCA4,uA§,L, Jmax Az 1 (k) (12)
Ao =118l < CALNIGIS RIS (13)

and for any integer r > 0, we have:

, Agur1 +1 c c
A7u = 8" =Ry ©llu < q— + ;2221;( (Aé,u+1A3,u(m)A5,u(m) + A6,MA3su+l(m)A5»u(m))
(14)
Agu = llg'h™" = Roh 7'l < CAg 1 A7,AT, (15)
Aoy = 1hg'h™" = hRyoyh ™" [l < ClIIIS Ag A IAllus 1 (16)

The crucial estimate is (14), which is obtained by approaching modulo 1 each x € R
by a m(x)a, with m(x) < g,. If g, increases, x — m(x)a is smaller modulo 1, but the
bound on A3, (m(x)) and As ,(m(x)) increases. In the proof of theorem 4.1, we make a
proper choice of r (and g,).

estimate (11) corresponds to estimate (5) of the proof of the result of quasi-reducibility.

The other estimates, namely, estimates (8),(9),(10), (12),(13), (15) and (16) are
derived from applications of the Faa-di-Bruno formula: either corollary 3.6, lemma 4.4
or lemma 4.5.

Proof of lemma 4.7. For A, ,, by estimate (3), we have:

h ! u < Cllh C—.
Hence estimate (8)

For A, ,, by applying corollary 3.6 twice, we have,
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1 1l < CALIAICIRIC.

Hence estimate (9).
For A3, by applying corollary 3.6 again, we have, for any m,

1 C
I e < CIE™ LN

and therefore, by iteration, we get:

C
1"l < C™ I

Hence (10).
estimate (11) is a direct application of estimate (5).

For estimate (12), we observe that for any 0 < v < u:

m—=1
DVf/m _ DVRma =D Z f’m_kRka _ flm_k_lR(k+1)(l
k=0

m=1
D'f™ = D'Rya = . D (" 1) Ria = D' ("' Ry) Riar
k=0

By applying lemma 4.5, and by noting that for any &, || £ "l.s1 < maxXo<rem_1 [1f *lus1s
we get:

1" = Rualle <mClANE max £ lustllf = Rallu-
0<k<m—1
Hence (12).
For Ag 4, estimate (13) is the same as (9):

lg'lle < CIA~ LIS IAIIS .

Hence (13).

For A7,,letm > 0and u > v > 1. For any x, D"R,(x) = fol DVg’'(y) dy. Therefore,

1
ID"g’(x) = D"Ro(x)] = ‘D"g’(X) - fo D'g'(y) dy' =

< max |[D'g(x)—D"g' ()l
x,y€[0,1]

1
‘ fo (D"g'(x) - D"g'(y)) dy

On the other hand, we have:
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D'¢'(x)—D"¢'(y) = D¢’ (x) - D'g'(y + ma) + D"g'(R,o(y)) — D' (g' ™ () +
D'(f"¢'(y)) = D"g ().

Moreover, we have:
ID"g’(x) — D'g'(y + ma)| < |ID**'g’|olx — y — mal.

By lemma 4.5, we also have:

ID"g' (Rua () = D*(&' " O < CllE' i 1™ I NS ™ = Rl

Finally, by lemma 4.4, we have:

ID"(f"¢' () = D' Rypag O < CUF ™ s tllf™ = Runallullg’ Il -

Since Rye g’ (y) = 8'(y) + ma, and v > 1, then D¥(Ryag’ () = D' (Rpna g’ (). There-
fore, the same estimate holds for |[D"(f""g’(y)) — D"(g’ ))|.
By combining these estimates, we obtain:

ID"g’(x) = D" I < g llus11x = y = mal + Cllg' L ILF ™ NG 1™ = Rinallu +
Clf" st ILF™ = Ruallallgl -

Moreover, for any r > 0, any x,y € R, there is an integer m(x,y) < 2q,, there are
real numbers x’, ¥’ such that x'—x € Z, y'—y € Z and such that |x"'—y' —m(x, y)a| < 1/q,.
Since v > 1, then |D"g’(x) — D"g’'(y)| = |D"g’(x") — D'g’(y")|. We apply the former

estimate with x’" and y’ and we get:

max HD"g’ - DVRgr(o)HO < Aour ¥ 1

1<v<u

+max (A1 AS, (MAs u(m) + AS, Az 1 (m)As u(m)).

If v = 0, we note that for any » > 0, any x € R, there is an integer m(x) < g, and a
real number x” € R such that X" — x € Z, and such that [x" — m(x)a| < 1/¢,. Moreover,
we have: g'(x) — Ry 0)(x) = g'(x") = Rg0)(x’), and

g’ ()=Ry0)(x') = g'(x") =g (ma)+g (ma)—g' f " (0)+f g  (0)=Rina(g’ (0)+Ryg o) (ma)—Ry0)(x").
Hence estimate (14).
For Ag,, estimate (15) follows immediately from lemma 4.4.
For Ag,, let x € R. Let 0 < v < u. By the Faa-di-Bruno formula:

D' (hg'h™") (x) = D" (hRgoyh™") (x) =

D DI ()B,; (D (gh7) (0, ., DT (g0 () -
j=0

DIn(g' k™ (x)By; (D (Ryh™") (), . D! (R o)h ™' ()

15



= > Dihg'h ()

Jj=0
[B..; (D ('n7") (), .. D7 (W71 (3))) = Buj (D (Rer0yh ™) (1), s D" (R0 ™ ()] =
[th(Rg/(o)h*1 (x)) — th(g’hfl(x))] B,.; (D (Rgoh™) (x), .. D" (R0~ ().

Since [|A7"]|, > 1, then lemma 4.6 gives,

B, (D (g'h-l) (x), ..., D" (g'h-1 (x))) - B,; (D (Rg,(o)h—l) (x), ..., D" (Rg,(o)h—l(x)))| <
Clig'h "I51Ig’ ™" = Ryoyh ™ lu-

Since g'h™"' = h~'g and 1" gll. < ClIE'[LIgIIT, we get,

u?’

D' (hg'h™") () = D (hRyo)h™") (x)‘ <
CllglS Al IS g A" = Ryoyh™ Nl + Cllhllus1llg ™" = Re oy lullh™ ]IS

Hence estimate (16). This completes the proof of lemma 4.7.

O
By combining these estimates, we obtain:
1
Ao, < CAS . IRIC, lgllS, (— + ma (A;,H(m)As,u(m)))
’ Qr mSZQr ?
[ (CllAllur 1 1f s 1)<
c CllolIC
Agy < ClIAl 111 g (E +la - al( (r;inDhL;C
Hence lemma 4.3. Notice the loss of one derivative for 4.
O

A Appendix: proof of the C*-genericity of (O, ,) in
Fop

To show that (0[11,/3)" is C*-generic in F,g, we slightly modify [7, p.160, p.167]. Let
H : Fop — R. U {+00) be defined by H(f, g) = sup,; (IDS"llo. [ Dg"llo)-

The map H is lower semi-continuous, because it is an upper bound of a family of
continuous maps. Therefore, {(f,g) € FoglH(f, g) > n} is open, and

H'(+00) = Nys1{(f, 8) € FoplH(f,g) > n}is a Gs-set (i.e. a countable intersection
of open sets).

By [7, p.52], (Oclyﬁ)c = H!'(+0) (f and g are C'-conjugated to a rotation if and
only if H(f,g) = +o0). By the first part of remark 1.4, §,5 C (O}Yﬁ)c is C*-dense.
Since C!-open sets are C*-open (if ¢, does not converge to ¢ in the C' norm, then

¢, does not converge to ¢ in the C* norm), we conclude that (Oéﬁ)" is C*-generic in
Fyp.
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