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Circle Diffeomorphisms: Quasi-reducibility and
Commuting Diffeomorphisms

Mostapha Benhenda∗

February 27, 2012

Abstract

In this article, we show two related results on circle diffeomorphisms. The first
result is on quasi-reducibility: for a Baire-dense set of α, for any diffeomorphism
f of rotation number α, it is possible to accumulate Rα with a sequence hn f h−1

n ,
hn being a diffeomorphism. The second result is: for a Baire-dense set of α, given
two commuting diffeomorphisms f and g, such that f has α for rotation number,
it is possible to approach each of them by commuting diffeomorphisms fn and gn

that are differentiably conjugated to rotations.
In particular, it implies that for α in this Baire-dense set, and if β is an irrational

number such that (α, β) are not simultaneously Diophantine, the set of commuting
diffeomorphisms ( f , g) with singular conjugacy, and with rotation numbers (α, β)
respectively, is C∞-dense in the set of commuting diffeomorphisms with rotation
numbers (α, β).

1 Introduction
It is well-known that there are circle diffeomorphisms with Liouville rotation numbers
(i.e. non-Diophantine) that are not smoothly conjugated to rotations [1, 7, 8, 9]. A nat-
ural question arises, namely, the problem of smooth quasi-reducibility: given a smooth
diffeomorphism f of rotation number α, is it possible to accumulate Rα in the C∞-norm,
with a sequence h−1

n f hn, hn being a smooth diffeomorphism? In this case, we say that
f is smoothly quasi-reducible to Rα. Quasi-reducibility is a question that has been
studied by Herman [7, pp.93-99], who showed that for any C2-diffeomorphism f of ir-
rational rotation number α, it is possible to accumulate Rα in the C1+bv-norm, with a se-
quence h−1

n f hn, hn being a C2-diffeomorphism (i.e. the total variation of D(h−1
n f hn−Rα)

converges towards zero). Quasi-reducibility is also related to a problem solved by Yoc-
coz [10], who showed that it is possible to accumulate a smooth diffeomorphism f
in the C∞-norm with a sequence hnRαh−1

n , hn being a smooth diffeomorphism. How-
ever, these two problems are not the same, and the method used by Yoccoz does not
directly yield our result. In our case, we determine a Baire-dense set of rotation num-
bers α such that for any smooth diffeomorphism f of rotation number α, f is smoothly
quasi-reducible.
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Connected to the problem of quasi-reducibility is the following question, raised
by Mather: given two commuting C∞-diffeomorphisms f and g, is it possible to ap-
proach each of them in the C∞-norm by commuting smooth diffeomorphisms that are
smoothly conjugated to rotations? In this paper, we determine a Baire-dense set of
rotation numbers α such that if f and g are commuting C∞-diffeomorphisms, with f
of rotation number α, then f and g are accumulated in the C∞ norm by commuting
C∞-diffeomorphisms that are C∞-conjugated to a rotation. This result is related to
a theorem of Fayad and Khanin [6]. They showed that if (α, α′) are simultaneously
Diophantine (i.e. there is Cd > 0, β ≥ 0 such that for any p, p′ ∈ �, any q ≥ 1,
max(|α − p/q|, |α′ − p′/q|) ≥ Cd/q2+β. This set includes some pairs (α, α′) with α and
α′ Liouvillean), and if f and g are commuting C∞-diffeomorphisms, with f and g of
rotation numbers α and α′ respectively, then f and g are smoothly linearizable. Fayad
and Khanin’s result implies our result of quasi-reducibility in the particular case when
the rotation numbers of f and g are simultaneously Diophantine. However, in general,
our result is not implied by theirs. Indeed, our result holds for a set (α, α′) that is Baire-
dense in �2 (because α belongs to a Baire-dense set of � and α′ is arbitrary), whereas
the set of simultaneously Diophantine numbers is not Baire-dense.1

Moreover, for Diophantine rotation numbers, which are of full Lebesgue measure,
the question of quasi-reducibility and Mather’s problem are trivial, because in this case,
the diffeomorphism f is smoothly conjugated to a rotation. Therefore, these two ques-
tions remain open for a meagre set of rotation numbers of zero Lebesgue measure.

In order to derive our results, we use estimates of the conjugacy to rotations of dif-
feomorphisms having rotation numbers of Diophantine constant type. These estimates
were obtained in [2].

The circle is denoted �1. For r ∈ �+ ∪ {+∞}, we work in the universal cover
Dr(�1), which is the group of diffeomorphisms f of class Cr of the real line such that
f − Id is �-periodic. For α ∈ � , we denote Rα ∈ D∞(�1) the map x 7→ x + α.

Let f ∈ D0(�1) be a homeomorphism and x ∈ �. The sequence (( f n(x) − x)/n)n≥1
admits a limit independent of x, denoted ρ( f ). This limit is called the rotation number
of f . This is a real number invariant by conjugacy.

Theorem 1.1. There is a Baire-dense set A1 ⊂ � such that for any f ∈ D∞(�1) of
rotation number α ∈ A1, there is a sequence hn ∈ D∞(�1) such that h−1

n f hn → Rα in
the C∞-topology.

Theorem 1.2. There is a Baire-dense set A2 ⊂ � such that for any f ∈ D∞(�1) of
rotation number α ∈ A2 and any g of class C∞ with f g = g f , f and g are accumu-
lated in the C∞-topology by commuting C∞-diffeomorphisms that are C∞-conjugated
to rotations.

1The complementary in �2 of simultaneously Diophantine numbers (noted S Dc) is Baire-dense. Indeed,
we have:

S Dc = ∩k∈�∗ ∩n∈�∗ ∪q≥n(Aq,k × Aq,k)

with:

Aq,k =

{
α ∈ � /there is an integerp ∈ �,

∣∣∣∣∣α − p
q

∣∣∣∣∣ < 1
qk

}
.

Aq,k is open (and so is Aq,k × Aq,k), and for any integer n, ∪q≥n(Aq,k × Aq,k) is dense, because it contains all
pairs of rational numbers (if α = p1/q1 and α′ = p2/q2, then (α, α′) ∈ (A jq1q2 ,k ×A jq1q2 ,k) for any j, k ∈ �∗).
Therefore, S Dc is Baire-dense.
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Remark 1.3. The proof of theorem 1.1 also gives that hnRαh−1
n → f in the C∞-topology

if α ∈ A1.

Remark 1.4. Combined with [6, p. 965], theorem 1.2 implies that if α ∈ A2, and (α, β)
are not simultaneously Diophantine, then S α,β, the set of couples ( f , g) of smooth com-
muting circle diffeomorphisms with singular conjugacies to Rα and Rβ respectively,
is C∞-dense in Fα,β, the set of couples ( f , g) of smooth commuting circle diffeomor-
phisms with rotation numbers α and β respectively.

Indeed, our result shows that Oα,β is C∞-dense in Fα,β. Moreover, in [6, p. 965], for
(α, β) not simultaneously Diophantine, Fayad and Khanin described the construction
of a couple of ( f , g) of smooth commuting circle diffeomorphisms with singular conju-
gacies to Rα and Rβ respectively. This construction relies on the method of successive
conjugacies, which can be made C∞-dense in Oα,β [5].

2 Preliminaries

2.1 Basic properties
When the rotation number α of f is irrational, and if f is of class C2, Denjoy showed
that f is topologically conjugated to Rα. However, this conjugacy is not always differ-
entiable. It depends on the Diophantine properties of the rotation number α.

Let α = a0 + 1/(a1 + 1/(a2 + ...)) be the development of α ∈ � in continued fraction
(see [4]). It is denoted α = [a0, a1, a2, ...]. Let p−2 = q−1 = 0, p−1 = q−2 = 1. For
n ≥ 0, we define integers pn and qn by:

pn = an pn−1 + pn−2

qn = anqn−1 + qn−2

We have q0 = 1, qn ≥ 1 for n ≥ 1. The rationals pn/qn are called the convergents
of α. Remember that qn+2 ≥ 2qn, for n ≥ −1.

For any real number β ≥ 0, α ∈ � − � is Diophantine of order β and constant Cd

(a set denoted DC(Cd, β)) if there is a constant Cd > 0 such that for any p/q ∈ �, we
have: ∣∣∣∣∣α − p

q

∣∣∣∣∣ > Cd

q2+β

Each of the following relations characterizes DC(Cd, β):

1. |α − pn/qn| > Cd/q
2+β
n for any n ≥ 0

2. an+1 <
1

Cd
qβn for any n ≥ 0

3. qn+1 <
1

Cd
q1+β

n for any n ≥ 0

4. αn+1 > Cdα
1+β
n for any n ≥ 0

DC(Cd, 0) is the set of irrational numbers of constant type Cd. The first derivative
of f ∈ D1(�1) is denoted D f .
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2.2 Some useful lemmas
For any n integer, let αn = [a0, ..., an, 1, ...].

Let Vα(n) = max0≤i≤n ai. Observe that αn ∈ DC(1/Vα(n), 0). We will need the
lemma:

Lemma 2.1. Let α be an irrational number, qn its convergents and αn = [a0, ..., an, 1, ...].
We have:

|αn − α| ≤
2
q2

n
≤

4
2n

Proof. Let α̃n = [a0, ..., an, 0, ...]. By induction, we can show that α̃n = pn/qn. More-
over, α̃n is also the nth convergent of αn. Therefore, by the best rational approximation
theorem, |α − pn/qn| ≤ 1/q2

n and |αn − pn/qn| ≤ 1/q2
n. Moreover, since qn+2 ≥ qn, then

qn ≥ (
√

2)n−1.
�

We need the lemma:

Lemma 2.2. Let φ : �→ �+ be such that φ(n)→n→+∞ +∞. Let

A = {α ∈ � /Vα(n) < φ(n) for an infinity of n}

Then A is Baire-dense.

Proof. First, we show that for any positive integers n and i,
Ai,n = {α such that ai < φ(n)} is open. Let u(x) = bxc, v(x) = 1

x and w(x) =

v(x) − u(v(x)). We have: ak+1 = v(wk(x)) − wk+1(x). Since v is continuous and u is
upper semi-continuous and non-negative, then w is lower semi-continuous. Moreover,
w is non-negative. Therefore, wk and wk+1 are also lower semi-continuous and non-
negative. Since v is decreasing, then v ◦ wk − wk+1 is upper semi-continuous. We
conclude that Ai,n is open.

Moreover, for any p ≥ 0,
∪n≥p ∩i≤n Ai,n

is dense. Indeed, since φ(n) → +∞, then it contains all numbers of constant type,
which are dense. This set is also open and therefore,

A = ∩p≥0 ∪n≥p ∩i≤nAi,n

is Baire-dense.
�

2.3 Notations
• For any real numbers a and b, a ∨ b denotes max(a, b).

• For φ a real �-periodic Cr function, 0 ≤ r < +∞, we define:

‖φ‖r = max
0≤ j≤r

max
x∈�
|D jφ(x)|

Note that for f , g ∈ Dr(�1), f − g is �-periodic, and for 1 ≤ j ≤ r, D j f is
�-periodic. For f ∈ Dr(�1), we also define:
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‖ f ‖r = max
(
‖ f − id‖0, max

1≤ j≤r
‖D j f ‖0

)

Note that the notation ‖ f ‖r is not a norm when f ∈ Dr(�1), since Dr(�1) is not a
vector space.

• In all the paper, C denotes a constant depending on u. W( f ) denotes the total
variation of log D f , and S f denotes the Schwartzian derivative of f .

2.4 Estimates of the conjugacy [2]
The following theorem gives an estimate of the linearization of a diffeomorphism hav-
ing a rotation numbers of Diophantine constant type. This estimate, obtained in the
previous chapter, is necessary to derive our results.

Theorem 2.3. Let l ≥ 3 be an integer and η > 0. Let f ∈ Dl(�1) be of rotation number
α, such that α is of constant type Cd. There exists a diffeomorphism h ∈ Dl−1−η(�1)
conjugating f to Rα, and a function B of Cd, l, η,W( f ), ‖S f ‖l−3, which satisfy the esti-
mate:

max
(

1
min Dh

, ‖h‖l−1−η

)
≤ B(Cd, l, η,W( f ), ‖S f ‖l−3) (1)

In particular, we remark that if fn is a sequence of diffeomorphisms of rotation
number αn, if the sequences W( fn) and ‖S fn‖l−3 are bounded (this will hold in our
case, because we will take fn = λn + f for a properly chosen λn ∈ �), if Vα(n) → +∞

and if hn is the conjugacy to a rotation associated with fn, then there is a real function
E(Vα(n)) such that, for n sufficiently large, we have:

max
(

1
min Dhn

, ‖hn‖l−1−η

)
≤ E(Vα(n))

3 Quasi-Reducibility

Theorem 3.1. Let l ≥ 3 be an integer, f ∈ Dl(�1) be of rotation number α ∈ �1.
Let η > 0 be a real number. There exists a numerical sequence F(n), going to +∞ as
n→ +∞, such that, if

lim inf
Vα(n)
F(n)

= 0

then there is a sequence hn of class Cl−1−η such that h−1
n f hn → Rα in the Cl−2−η-

topology.

By applying lemma 2.2, we obtain the corollary:

Corollary 3.2. There is a Baire-dense set A1 ⊂ � such that if l ≥ 3 is an integer,
f ∈ Dl(�1) of rotation number α ∈ A1 and η > 0, then f is Cl−2−η-quasi-reducible:
there is a sequence hn ∈ Dl−1−η(�1) such that h−1

n f hn → Rα in the Cl−2−η-topology.
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Proof of theorem 1.1. We let η = l/3 in corollary 3.2. Since f is smooth, then there
is a sequence (hn,l)n≥0 ∈ D∞(�1) such that, for any integer l ≥ 3 fixed,

‖h−1
n,l f hn,l − Rα‖2( l

3−1) →n→+∞ 0

In particular, there is n(l) such that:

‖h−1
n(l),l f hn(l),l − Rα‖2( l

3−1) ≤
1
l

Let hl = hn(l),l. Let ε > 0, and let k > 0 be an integer. There is l0 ≥ 0 such that for
any l ≥ l0, we have: ε ≥ 1/l, k ≤ 2

(
l
3 − 1

)
and:

‖h−1
l f hl − Rα‖k ≤ ‖h−1

l f hl − Rα‖2( l
3−1) ≤

1
l
≤ ε

Therefore, h−1
l f hl →l→+∞ Rα in the Ck-topology, for any k, and therefore, this

convergence holds in the C∞-topology.
�

3.1 The one-parameter family Rλ f

To prove theorem 3.1, we need to consider the one-parameter family Rλ f = f + λ [7,
p.31]. We have the lemma:

Lemma 3.3. Let l ≥ 3 be an integer, f ∈ Dl(�1), 0 < η ≤ l − 3, α = ρ( f ). Let α̃ be an
irrational number of constant type. There exists λ0 ∈ � and a Cl−1−η-diffeomorphism
h such that h−1Rλ0 f h = Rα̃. Moreover,

|λ0|

min Dh
≥ |α̃ − α| ≥

|λ0|

‖Dh‖0

Proof. Let µ(λ) = ρ(Rλ f ). µ is continuous, non-decreasing and µ(�) = � (see [7, p.
31]). Therefore, there exists λ0 ∈ � such that α̃ = ρ(Rλ0 f ). Since α̃ is of constant
type, there exists a Cl−1−η-diffeomorphism h such that h−1Rλ0 f h = Rα̃ and that satisfies
estimate (1) of theorem 2.3. By the mean value theorem, for any x, there is c(x) such
that:

α̃ + x − h−1 f h(x) = Rα̃(x) − h−1 f h(x) = h−1Rλ0 f h(x) − h−1 f h(x) = D(h−1)(c(x))λ0

By integrating this equation on an invariant measure of h−1 f h, we get lemma 3.3.
Note that since h ∈ D1(�1), then Dh(x) > 0 for any x, and min Dh > 0.

�

3.2 The speed of approximation of Rα

The proof of theorem 3.1 is also based on the lemma:

Lemma 3.4. Let l ≥ 3 be an integer, f ∈ Dl(�1), 0 < η ≤ l − 3, α = ρ( f ). Let α̃ be
an irrational number of constant type, and let λ0 ∈ � and h the Cl−1−η-diffeomorphism
be given by lemma 3.3. Recall that C denotes a constant that only depends on u,
0 ≤ u ≤ l − 2 − η. We have the estimate:

‖h−1 f h − Rα‖u ≤ C‖ f ‖Cu ‖h‖
C
u+1

1
(min Dh)C |α̃ − α|
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Before proving lemma 3.4, we show how theorem 3.1 is derived from it.

proof of theorem 3.1. If α is of constant type, then f is reducible and there is nothing
to prove. Therefore, we can suppose that Vα(n)→n→+∞ +∞. By applying theorem 2.3,
there exists a real function F̃ strictly increasing with Vα(n), such that, for αn and for its
associated diffeomorphism hn given by lemma 3.3, we have, for n sufficiently large:

‖h−1
n f hn − Rα‖l−2−η ≤ exp

(
F̃ (Vα(n))

)
|αn − α|

Let F (n) = F̃−1(n1/2). By extracting, we can suppose that lim Vα(n)
F(n) = 0. Therefore,

Vα(n) ≤ F (n) for n sufficiently large and therefore,

F̃ (Vα(n)) ≤ n1/2

We get, for n sufficiently large,

‖h−1
n f hn − Rα‖l−2−η ≤ e−

n log 2
4 →n→+∞ 0

Hence theorem 3.1.
�

Now, we show lemma 3.4:

proof of lemma 3.4. We need the Faa-di-Bruno formula (see e.g. [3]):

Lemma 3.5. For every integer u ≥ 0 and functions φ and ψ of class Cu, we have:

Du [
φ(ψ(x))

]
=

u∑
j=0

D jφ(ψ(x))Bu, j

(
Dψ(x),D2ψ(x), . . . ,D(u− j+1)ψ(x)

)
The Bu, j are the Bell polynomials, defined by Bu,0 = 1 and, for j ≥ 1:

Bu, j(x1, x2, . . . , xu− j+1) =
∑ u!

l1!l2! · · · lu− j+1!

( x1

1!

)l1 ( x2

2!

)l2
· · ·

(
xu− j+1

(u − j + 1)!

)lu− j+1

The sum extends over all sequences l1, l2, l3, ..., lu− j+1 of non-negative integers such
that:l1 + l2 + ... = j and l1 + 2l2 + 3l3 + ... = u.

Therefore, for any x, we have the estimate:∣∣∣∣Bu, j

(
Dψ(x),D2ψ(x), . . . ,D(u− j+1)ψ(x)

)∣∣∣∣ ≤ C
(
1 ∨ ‖ψ‖ j

u

)
(2)

Combining this estimate with lemma 3.5, we obtain the corollary:

Corollary 3.6. For every integer u ≥ 0 and functions φ and ψ of class Cu, we have:

‖φ ◦ ψ‖u ≤ C max
0≤ j≤u

‖D jφ ◦ ψ‖0
(
1 ∨ ‖ψ‖uu

)

7



We apply this corollary to estimate ‖h−1‖u. We let φ(x) = 1/x and ψ = Dh ◦ h−1.
We observe that D(h−1) = 1

Dh◦h−1 = φ ◦ ψ. Since there is x0 such that Dh(x0) = 1, then
‖Dh‖0 ≥ 1 (and we also have 1 ≥ min Dh > 0). Therefore, we get:

‖D(h−1)‖u ≤ C max
0≤ j≤u

1

‖
(
Dh ◦ h−1) j+1

‖0
‖Dh ◦ h−1‖Cu

By corollary 3.6, we also have:

‖Dh ◦ h−1‖u ≤ C‖Dh‖u‖h−1‖Cu

By combining these two estimations, we get:

‖D(h−1)‖u ≤ C
1

(min Dh)C ‖Dh‖Cu ‖h
−1‖Cu

We iterate this estimate to estimate ‖h−1‖u, for u ≥ 1. We get:

‖h−1‖u+1 ≤ C
1

(min Dh)C ‖h‖
C
u+1‖h

−1‖C1 (3)

Now, we estimate the Cu-distance of h−1 f h to Rα. Let α̃, λ0 be as in lemma 3.3. We
have:

h−1 f h − Rα = h−1 f h − h−1Rλ0 f h + Rα̃ − Rα

Therefore,

‖h−1 f h − Rα‖u ≤ ‖h−1 f h − h−1Rλ0 f h‖u + |α̃ − α| (4)

On the other hand, by the Faa-di-Bruno formula, we have:

Du
[
h−1 f h − h−1Rλ0 f h

]
(x) =

u∑
j=0

Bu, j

(
D( f h)(x), ...,Du− j+1( f h)(x)

)
[
D j(h−1)( f h(x)) − D j(h−1)( f h(x) + λ0)

]
Since |D j(h−1)( f h(x)) − D j(h−1)( f h(x) + λ0)| ≤ ‖D j+1(h−1)‖0|λ0|, then by applying

estimate (2), we get:

‖h−1 f h − h−1Rλ0 f h‖u ≤ C‖ f ◦ h‖Cu ‖h
−1‖u+1|λ0|

By applying corollary 3.6, we get:

‖h−1 f h − h−1Rλ0 f h‖u ≤ C‖ f ‖Cu ‖h‖
C
u ‖h

−1‖u+1|λ0|

By applying (3), we obtain:

‖h−1 f h − h−1Rλ0 f h‖u ≤ C‖ f ‖Cu ‖h‖
C
u

1
(min Dh)C ‖h‖

C
u+1‖h

−1‖C1 |α̃ − α|‖Dh‖0

‖h−1 f h − h−1Rλ0 f h‖u ≤ C‖ f ‖Cu ‖h‖
C
u+1

|α̃ − α|

(min Dh)C

By estimate (4), we obtain:

‖h−1 f h − Rα‖u ≤ C‖ f ‖Cu ‖h‖
C
u+1

1
(min Dh)C |α̃ − α| (5)

Hence lemma 3.4.
�
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4 Application to commuting diffeomorphisms
Theorem 4.1. There exists a numerical sequence G(n), going to +∞ as n→ +∞, such
that, for any l ≥ 3 an integer, f ∈ Dl(�1) of rotation number α ∈ �, η > 0 and g of
class Cl such that f g = g f , if

lim inf
Vα(n)
G(n)

= 0

then there exists two sequences of diffeomorphisms fn and gn that are Cl−1−η-
conjugated to rotations, such that fngn = gn fn, and with fn and gn converging re-
spectively towards f and g in the Cl−2−η-norm.

Corollary 4.2. There is a Baire-dense set A2 ⊂ � such that if l ≥ 3 is an integer,
f ∈ Dl(�1) has a rotation number α ∈ A2, g is of class Cl such that f g = g f and
η ∈ �+, then there exists two sequences of diffeomorphisms fn and gn that are Cl−1−η-
conjugated to rotations, such that fngn = gn fn and with fn and gn converging respec-
tively towards f and g in the Cl−2−η-norm.

We derive theorem 1.2 from corollary 4.2 by following the same argument as in the
proof of theorem 1.1.

4.1 The speed of approximation of g by a linearizable and com-
muting diffeomorphism

To prove theorem 4.1, we consider (hn)n≥0, the sequence of conjugating diffeomor-
phisms constructed in the proof of theorem 3.1, (λn)n≥0 the associated sequence of
real numbers such that fn = Rλn f = hnRαn h−1

n . We also consider g′n = h−1
n ghn and

gn = hnRg′n(0)h−1
n . The diffeomorphisms fn and gn commute, and fn → f in the Cl−2−η-

norm. To prove theorem 4.1, it suffices to show that gn → g in the Cl−2−η-norm. This
convergence is based on the lemma:

Lemma 4.3. Let l ≥ 3 be an integer, f ∈ Dl(�1) of rotation number α ∈ �, η > 0,
0 ≤ u ≤ l − 2 − η, and g ∈ Dl(�1) be such that f g = g f . Let (qt)t≥0 be the sequence of
denominators of the convergents of α, and let r ≥ 0 be an integer. Let α̃ be an irrational
number of constant type, λ0 ∈ � the associated number and h the associated Cl−1−η

diffeomorphism given by lemma 3.3. Let f ′ = h−1 f h and g′ = h−1gh. We have the
estimate:

‖g − hRg′(0)h−1‖u ≤ C‖h‖Cu+1‖ f ‖
C
u ‖g‖

C
u+1

(
1
qr

+ |α̃ − α|

(
(C‖h‖u+1‖ f ‖u+1)Cqr

(min Dh)C

))
Proof of theorem 4.1. Assuming lemma 4.3, we show theorem 4.1.

Let α̃ = αn and hn be the associated diffeomorphism given by lemma 3.3. Since
Vα(n) → +∞, by applying the estimate for the conjugacy hn, there exists G̃(x) strictly
increasing with x such that, for n sufficiently large:

‖g − hnRg′n(0)h−1
n ‖l−2−η ≤ eCG̃(Vα(n))

 1
qr

+
eCG̃(Vα(n))qr

2n


Moreover, since qn = anqn−1 + qn−2, and qn−2 ≤ qn−1, then

9



(
√

2)n−1 ≤ qn ≤

n∏
k=1

(ak + 1) (6)

Therefore, we get:

‖g − hnRg′n(0)h−1
n ‖l−2−η ≤ eCG̃(Vα(n))− 1

2 (r−1) log 2 + eCG̃(Vα(n))+CG̃(Vα(n))(Vα(r)+1)r−n log 2 (7)

Let G(n) = G̃−1((log n)1/2). By extracting in the sequence Vα(n)/G(n), we can
suppose that:

Vα(n)
G(n)

→ 0

Therefore, for n sufficiently large, we have:

G̃(Vα(n)) ≤ (log n)1/2

Moreover, for n sufficiently large, we can take an integer rn such that:

(log n)3/4 ≤ rn ≤ (log n)7/8

we get:

(Vα(rn) + 1)rn = ern log(Vα(rn)+1) ≤ e(log n)15/16

The first term in estimate (7) tends towards 0. Moreover, since,for n sufficiently
large,

(log n)1/2e(log n)15/16
≤

n
2

log 2

then the second term also tends towards 0. Hence theorem 4.1.
�

4.2 Higher-order analogous of the mean value theorem
Proof of lemma 4.3. We need two higher-order analogous of the mean value theorem.
The first one is:

Lemma 4.4. Let u ≥ 0, s, t ∈ Du(�1). Let δ ∈ �. We have:

‖st − Rδt‖u ≤ C‖s‖u+1‖s − Rδ‖u‖t‖uu

Observe the presence of the term ‖s‖u+1, which is absent in the mean value formula.
This is because of the estimate (2) on the Bell polynomial, in the Faa-di-Bruno formula.

Proof. If u = 0, the estimate is trivial. We suppose u ≥ 1. For any x ∈ �, the Faa-di-
Bruno formula gives:

Du(st)(x) − Du(Rδt)(x) =

u∑
j=0

(
(D js)(t(x)) − (D jRδ)(t(x))

)
Bu, j

(
Dt(x), ...,Du− j+1t(x)

)

10



Therefore, by estimate (2), and since ‖t‖u ≥ 1,

|Du(st)(x) − Du(Rδt)(x)| ≤ C‖s‖u+1‖s − Rδ‖u‖t‖uu

Hence lemma 4.4.
�

The second higher-order analogous of the mean value theorem is:

Lemma 4.5. Let u ≥ 0, s ∈ Du+1(�1), t ∈ Du(�1), δ ∈ �. We have:

‖st − sRδ‖u ≤ C‖s‖u+1‖t‖uu‖t − Rδ‖u

Observe the presence of the term ‖t‖u, which is absent in the mean value formula.
As in lemma 4.4, this is because of an estimate on the Bell polynomial, in the Faa-di-
Bruno formula.

Proof. If u = 0, the estimate holds. We suppose u ≥ 1. We use the following lemma:

Lemma 4.6. Let u ≥ 1, j ≤ u be integers and a1, ..., au− j+1, x1, ..., xu− j+1 ≥ 0. Let
x ≥ max{|xk | ∨ 1; 1 ≤ k ≤ u − j + 1} and let a ≥ max{|ak |; 1 ≤ k ≤ u − j + 1}. Let Bu, j

be a Bell polynomial. We have:

|Bu, j(x1 + a1, ..., xu− j+1 + au− j+1) − Bu, j(x1, ..., xu− j+1)| ≤ Ca(x + a)u

Proof. Let p ≥ 1 and l1, ..., lp be integers. Then we have:

(x1+a1)l1 ...(xp+ap)lp−xl1
1 ...x

lp
p =

p∑
i=1

xl1
1 ...x

li−1
i−1(xi+ai)li ...(xp+ap)lp−xl1

1 ...x
li
i (xi+1+ai+1)li+1 ...(xp+ap)lp

(x1+a1)l1 ...(xp+ap)lp−xl1
1 ...x

lp
p =

p∑
i=1

xl1
1 ...x

li−1
i−1(xi+1+ai+1)li+1 ...(xp+ap)lp

[
(xi + ai)li − xli

i

]
(with the conventions xl1

1 ...x
l0
0 = 1 and xlp+1

p+1...x
lp
p = 1).

Since (xi + ai)li − xli
i ≤ li|ai|(|xi| + |ai|)li−1 ≤ lia(|xi| + a)li−1, 1 ≤ li ≤ u and x + a ≥ 1

(because x ≥ 1), we obtain:

|Bu, j(x1 + a1, ..., xu− j+1 + au− j+1)− Bu, j(x1, ..., xu− j+1)| ≤ a(u− j + 1)uBu, j(x + a, ..., x + a)

By the formula giving the Bell polynomials, we have:

Bu, j(x + a, ..., x + a) ≤ C(x + a)u

�

To show lemma 4.5, For any 0 ≤ v ≤ u, we write:

Dv(st)(x)−Dv(sRδ)(x) =

v∑
j=0

D js(t(x))
[
Bv, j

(
Dt(x), ...,Dv− j+1t(x)

)
− Bv, j

(
DRδ(x), ...,Dv− j+1Rδ(x)

)]
+

11



[
D js(t(x)) − D js(Rδ(x))

]
Bv, j

(
DRδ(x), ...,Dv− j+1Rδ(x)

)
We apply lemma 4.6 with a = ‖t − Rδ‖u and x = ‖Rδ‖u ≥ 1. Since t ∈ Du(�1), then

‖t‖u ≥ 1. We get:∣∣∣∣Bv, j

(
Dt(x), ...,Dv− j+1t(x)

)
− Bv, j

(
DRδ(x), ...,Dv− j+1Rδ(x)

)∣∣∣∣ ≤ C‖t−Rδ‖u(1+ ‖t−Rδ‖u)u

∣∣∣∣Bv, j

(
Dt(x), ...,Dv− j+1t(x)

)
− Bv, j

(
DRδ(x), ...,Dv− j+1Rδ(x)

)∣∣∣∣ ≤ C‖t−Rδ‖u(2+‖t‖u)u ≤ C‖t−Rδ‖u‖t‖uu

�

4.3 Successive estimations
To prove lemma 4.3, we also need these successive estimations:

Lemma 4.7. Let l ≥ 3 be an integer, f ∈ Dl(�1) of rotation number α ∈ �, η > 0,
0 ≤ u ≤ l − 2 − η, and g ∈ Dl(�1) be such that f g = g f . Let (qt)t≥0 be the sequence of
denominators of the convergents of α. Let α̃ be an irrational number of constant type,
λ0 ∈ � the associated number and h the associated Cl−1−η diffeomorphism given by
lemma 3.3. Let f ′ = h−1 f h and g′ = h−1gh. We have the estimates:

A1,u = ‖h−1‖u ≤ C‖h‖Cu
1

(min Dh)C (8)

A2,u = ‖ f ′‖u ≤ CA1,u‖ f ‖Cu ‖h‖
C
u (9)

A3,u(m) = ‖ f ′m‖u ≤ CmAmC
2,u (10)

A4,u = ‖ f ′ − Rα‖u ≤ C‖h‖Cu+1‖ f ‖
C
u

1
(min Dh)C |α̃ − α| (11)

A5,u(m) = ‖ f ′m − Rmα‖u ≤ mCA4,uAC
2,u max

k≤m−1
A3,u+1(k) (12)

A6,u = ‖g′‖u ≤ CA1,u‖g‖Cu ‖h‖
C
u (13)

and for any integer r ≥ 0, we have:

A7,u = ‖g′ −Rg′(0)‖u ≤
A6,u+1 + 1

qr
+ max

m≤2qr

(
A6,u+1AC

3,u(m)A5,u(m) + AC
6,uA3,u+1(m)A5,u(m)

)
(14)

A8,u = ‖g′h−1 − Rαh−1‖u ≤ CA6,u+1A7,uAC
1,u (15)

A9,u = ‖hg′h−1 − hRg′(0)h−1‖u ≤ C‖g‖Cu A8,uAC
1,u‖h‖u+1 (16)

12



The crucial estimate is (14), which is obtained by approaching modulo 1 each x ∈ �
by a m(x)α, with m(x) ≤ qr. If qr increases, x − m(x)α is smaller modulo 1, but the
bound on A3,u(m(x)) and A5,u(m(x)) increases. In the proof of theorem 4.1, we make a
proper choice of r (and qr).

estimate (11) corresponds to estimate (5) of the proof of the result of quasi-reducibility.
The other estimations, namely, estimations (8),(9),(10), (12),(13), (15) and (16) are

derived from applications of the Faa-di-Bruno formula: either corollary 3.6, lemma 4.4
or lemma 4.5.

Proof of lemma 4.7. For A1,u, by estimate (3), we have:

‖h−1‖u ≤ C‖h‖Cu
1

(min Dh)C

Hence estimate (8).

For A2,u, by applying corollary 3.6 twice, we have,

‖ f ′‖u ≤ CA1,u‖ f ‖Cu ‖h‖
C
u

Hence estimate (9).

For A3,u, by applying corollary 3.6 again, we have, for any m,

‖ f ′m+1‖u ≤ C‖ f ′m‖u‖ f ′‖Cu

and therefore, by iteration, we get:

‖ f ′m‖u ≤ Cm‖ f ′‖mC
u

Hence (10).

estimate (11) is a direct application of estimate (5).

For estimate (12), we observe that for any 0 ≤ v ≤ u:

Dv f ′m − DvRmα = Dv
m−1∑
k=0

f ′m−kRkα − f ′m−k−1R(k+1)α

Dv f ′m − DvRmα =

m−1∑
k=0

Dv
(

f ′m−k−1 f ′
)

Rkα − Dv
(

f ′m−k−1Rα

)
Rkα

By applying lemma 4.5, and by noting that for any k, ‖ f ′m−k−1‖u+1 ≤ max0≤k≤m−1 ‖ f ′k‖u+1,
we get:

‖ f ′m − Rmα‖u ≤ mC‖ f ′‖Cu max
0≤k≤m−1

‖ f ′k‖u+1‖ f ′ − Rα‖u

Hence (12).

For A6,u, estimate (13) is the same as (9):
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‖g′‖u ≤ C‖h−1‖u‖g‖Cu ‖h‖
C
u

Hence (13).

For A7,u, let m ≥ 0 and u ≥ v ≥ 1. For any x, DvRα(x) =
∫ 1

0 Dvg′(y) dy. Therefore,

|Dvg′(x) − DvRα(x)| =

∣∣∣∣∣∣Dvg′(x) −
∫ 1

0
Dvg′(y) dy

∣∣∣∣∣∣ =∣∣∣∣∣∣
∫ 1

0

(
Dvg′(x) − Dvg′(y)

)
dy

∣∣∣∣∣∣ ≤ max
x,y∈[0,1]

|Dvg′(x) − Dvg′(y)|

On the other hand, we have:

Dvg′(x) − Dvg′(y) = Dvg′(x) − Dvg′(y + mα) + Dvg′(Rmα(y)) − Dv(g′ f ′m(y)) +

Dv( f ′mg′(y)) − Dvg′(y)

Moreover, we have:

|Dvg′(x) − Dvg′(y + mα)| ≤ |Du+1g′|0|x − y − mα|

By lemma 4.5, we also have:

|Dvg′(Rmα(y)) − Dv(g′ f ′m(y))| ≤ C‖g′‖u+1‖ f ′m‖Cu ‖ f
′m − Rmα‖u

Finally, by lemma 4.4, we have:

|Dv( f ′mg′(y)) − Dv(Rmαg′(y))| ≤ C‖ f ′m‖u+1‖ f ′m − Rmα‖u‖g′‖Cu

Since Rmαg′(y) = g′(y) + mα, and v ≥ 1, then Dv(Rmαg′(y)) = Dv(Rmαg′(y)). There-
fore, the same estimate holds for |Dv( f ′mg′(y)) − Dv(g′(y))|.

By combining these estimations, we obtain:

|Dvg′(x) − Dvg′(y)| ≤ ‖g′‖u+1|x − y − mα| + C‖g′‖u+1‖ f ′m‖Cu ‖ f
′m − Rmα‖u +

C‖ f ′m‖u+1‖ f ′m − Rmα‖u‖g′‖Cu

Moreover, for any r ≥ 0, any x, y ∈ �, there is an integer m(x, y) ≤ 2qr, there are
real numbers x′, y′ such that x′−x ∈ �, y′−y ∈ � and such that |x′−y′−m(x, y)α| ≤ 1/qr.
Since v ≥ 1, then |Dvg′(x) − Dvg′(y)| = |Dvg′(x′) − Dvg′(y′)|. We apply the former
estimate with x′ and y′ and we get:

max
1≤v≤u

∥∥∥Dvg′ − DvRg′(0)
∥∥∥

0 ≤
A6,u+1 + 1

qr
+max

m≤2qr

(
A6,u+1AC

3,u(m)A5,u(m) + AC
6,uA3,u+1(m)A5,u(m)

)
If v = 0, we note that for any r ≥ 0, any x ∈ �, there is an integer m(x) ≤ qr and a

real number x′ ∈ � such that x′ − x ∈ �, and such that |x′ − m(x)α| ≤ 1/qr. Moreover,
we have: g′(x) − Rg′(0)(x) = g′(x′) − Rg′(0)(x′), and
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g′(x′)−Rg′(0)(x′) = g′(x′)−g′(mα)+g′(mα)−g′ f
′m(0)+ f

′mg′(0)−Rmα(g′(0))+Rg′(0)(mα)−Rg′(0)(x′)

Hence estimate (14).

For A8,u, estimate (15) follows immediately from lemma 4.4.

For A9,u, let x ∈ �. Let 0 ≤ v ≤ u. By the Faa-di-Bruno formula:

Dv
(
hg′h−1

)
(x) − Dv

(
hRg′(0)h−1

)
(x) =

v∑
j=0

D jh(g′h−1(x))Bv, j

(
D

(
g′h−1

)
(x), ...,Dv− j+1

(
g′h−1(x)

))
−

D jh(g′h−1(x))Bv, j

(
D

(
Rg′(0)h−1

)
(x), ...,Dv− j+1

(
Rg′(0)h−1(x)

))
=

v∑
j=0

D jh(g′h−1(x))[
Bv, j

(
D

(
g′h−1

)
(x), ...,Dv− j+1

(
g′h−1(x)

))
− Bv, j

(
D

(
Rg′(0)h−1

)
(x), ...,Dv− j+1

(
Rg′(0)h−1(x)

))]
−[

D jh(Rg′(0)h−1(x)) − D jh(g′h−1(x))
]

Bv, j

(
D

(
Rg′(0)h−1

)
(x), ...,Dv− j+1

(
Rg′(0)h−1(x)

))
since ‖h−1‖u ≥ 1, then lemma 4.6 gives,

∣∣∣∣Bv, j

(
D

(
g′h−1

)
(x), ...,Dv− j+1

(
g′h−1(x)

))
− Bv, j

(
D

(
Rg′(0)h−1

)
(x), ...,Dv− j+1

(
Rg′(0)h−1(x)

))∣∣∣∣ ≤
C‖g′h−1‖Cu ‖g

′h−1 − Rg′(0)h−1‖u

Since g′h−1 = h−1g and ‖h−1g‖u ≤ C‖h−1‖u‖g‖Cu , we get,

∣∣∣∣Dv
(
hg′h−1

)
(x) − Dv

(
hRg′(0)h−1

)
(x)

∣∣∣∣ ≤
C‖g‖Cu ‖h‖u‖h

−1‖Cu ‖g
′h−1 − Rg′(0)h−1‖u + C‖h‖u+1‖g′h−1 − Rg′(0)h−1‖u‖h−1‖Cu

Hence estimate (16). This completes the proof of lemma 4.7.
�

By combining these estimations, we obtain:

A9,u ≤ CAC
1,u+1‖h‖

C
u+1‖g‖

C
u+1

(
1
qr

+ max
m≤2qr

(
AC

3,u+1(m)A5,u(m)
))

A9,u ≤ C‖h‖Cu+1‖ f ‖
C
u ‖g‖

C
u+1

(
1
qr

+ |α̃ − α|

(
(C‖h‖u+1‖ f ‖u+1)Cqr

(min Dh)C

))
Hence lemma 4.3. Notice the loss of one derivative for h.

�
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