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Circle Diffeomorphisms: Quasi-reducibility and
Commuting Diffeomorphisms

Mostapha Benhenda∗

September 30, 2011

Abstract

We show two related results on circle diffeomorphisms. The first result is on
quasi-reducibility: for a Baire-dense set of α, for any diffeomorphism f of rota-
tion number α, it is possible to accumulate Rα with a sequence hn f h−1

n , hn being
a diffeomorphism. The second result is: for a Baire-dense set of α, given two
commuting diffeomorphisms f and g, such that f has α for rotation number, it is
possible to approach each of them by commuting diffeomorphisms fn and gn that
are differentiably conjugated to rotations.

1 Introduction
It is well-known that there are circle diffeomorphisms with Liouville rotation num-
bers (i.e. non-Diophantine) that are not smoothly conjugated to rotations [1, 5, 6, 7].
A natural question arises, namely, the problem of smooth quasi-reducibility: given a
smooth diffeomorphism f of rotation number α, is it possible to accumulate Rα in the
C∞-norm, with a sequence h−1

n f hn, hn being a smooth diffeomorphism? In this case, we
say that f is smoothly quasi-reducible to Rα. Quasi-reducibility is a question that has
been studied by Herman [5, pp.93-99], who showed that for any C2-diffeomorphism f
of irrational rotation number α, it is possible to accumulate Rα in the C1+bv-norm, with
a sequence h−1

n f hn, hn being a C2-diffeomorphism. Quasi-reducibility is also related to
a problem solved by Yoccoz [8], who showed that it is possible to accumulate a smooth
diffeomorphism f in the C∞-norm with a sequence hnRαh−1

n , hn being a smooth diffeo-
morphism. However, these two problems are not the same, and the method used by
Yoccoz does not directly yield our result. In our case, we determine a Baire-dense set
of rotation numbers α such that for any smooth diffeomorphism f of rotation number
α, f is smoothly quasi-reducible.

Connected to the problem of quasi-reducibility is the following question, raised
by Mather: given two commuting C∞-diffeomorphisms f and g, is it possible to ap-
proach each of them in the C∞-norm by commuting smooth diffeomorphisms that are
smoothly conjugated to rotations? In this paper, we determine a Baire-dense set of
rotation numbers α such that if f and g are commuting C∞-diffeomorphisms, with f
of rotation number α, then f and g are accumulated in the C∞ norm by commuting
C∞-diffeomorphisms that are C∞-conjugated to a rotation.
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Moreover, for Diophantine rotation numbers, which are of full Lebesgue measure,
the question of quasi-reducibility and Mather’s problem are trivial, because in this case,
the diffeomorphism f is smoothly conjugated to a rotation. Therefore, these two ques-
tions remain open for a meagre set of rotation numbers of zero Lebesgue measure.

In order to derive our results, we use estimates of the conjugacy to rotations of dif-
feomorphisms having rotation numbers of Diophantine constant type. These estimates
were obtained in [2].

The circle is noted �1. For r ∈ �+ ∪ {+∞}, we work in the universal cover Dr(�1),
which is the group of diffeomorphisms f of class Cr of the real line such that f − Id is
�-periodic. For α ∈ � , we denote Rα ∈ D∞(�1) the map x 7→ x + α.

Let f ∈ D0(�1) be a homeomorphism and x ∈ �. The sequence (( f n(x) − x)/n)n≥1
admits a limit independent of x, noted ρ( f ). This limit is called the rotation number of
f . This is a real number invariant by conjugacy.

1.1 Statement of the results
Theorem 1.1. There is a Baire-dense set A1 ⊂ � such that for any f ∈ D∞(�1) of
rotation number α ∈ A1, there is a sequence hn ∈ D∞(�1) such that h−1

n f hn → Rα in
the C∞-topology.

Theorem 1.2. There is a Baire-dense set A2 ⊂ � such that for any f ∈ D∞(�1) of
rotation number α ∈ A2 and any g of class C∞ with f g = g f , f and g are accumu-
lated in the C∞-topology by commuting C∞-diffeomorphisms that are C∞-conjugated
to rotations.

Remark 1.3. The proof of theorem 1.1 also gives that hnRαh−1
n → f in the C∞-topology

if α ∈ A1.

2 Preliminaries
When the rotation number α of f is irrational, and if f is of class C2, Denjoy showed
that f was topologically conjugated to Rα. However, this conjugacy is not always
differentiable. It depends on the Diophantine properties of the rotation number α.

Let α = a0 + 1/(a1 + 1/(a2 + ...)) be the development of α ∈ � in continued fraction
(see [4]). It is noted α = [a0, a1, a2, ...]. Let p−2 = q−1 = 0, p−1 = q−2 = 1. For n ≥ 0,
we define integers pn and qn by:

pn = an pn−1 + pn−2

qn = anqn−1 + qn−2

We have q0 = 1, qn ≥ 1 for n ≥ 1. The rationals pn/qn are called the convergents
of α. Remember that qn+2 ≥ 2qn, for n ≥ −1.

For any real number β ≥ 0, α ∈ �−� is Diophantine of order β and constant Cd (a
set noted DC(Cd, β)) if there is a constant Cd > 0 such that for any p/q ∈ �, we have:∣∣∣∣∣α − p

q

∣∣∣∣∣ ≥ Cd

q2+β

One of the following relations characterizes DC(Cd, β):

2



1. |α − pn/qn| > Cd/q
1+β
n for any n ≥ 0

2. an+1 <
1

Cd
qβn for any n ≥ 0

3. qn+1 <
1

Cd
q1+β

n for any n ≥ 0

4. αn+1 > Cdα
1+β
n for any n ≥ 0

DC(Cd, 0) is the set of irrational numbers of constant type Cd. The first derivative
of f ∈ D1(�1) is noted D f . For u integer, we note ‖ f ‖u = max0≤ j≤u maxx∈[0,1] |D j f (x)|.

For any n integer, let αn = [a0, ..., an, 1, ...].
Let Vα(n) = max0≤i≤n ai. Observe that αn ∈ DC(1/Vα(n), 0). We will need the

lemma:

Lemma 2.1. We have:
|αn − α| ≤

2
q2

n
≤

4
2n

Proof. Let α̃n = [a0, ..., an, 0, ...]. By induction, we can show that α̃n = pn/qn. More-
over, α̃n is also the nth convergent of αn. Therefore, by the best rational approximation
theorem, |α − pn/qn| ≤ 1/q2

n and |αn − pn/qn| ≤ 1/q2
n. Moreover, since qn+2 ≥ qn, then

qn ≥ (
√

2)n−1.
�

We need the lemma:

Lemma 2.2. Let φ :→ �+ such that φ(n)→n→+∞ +∞. Let

A = {α ∈ � /Vα(n) < φ(n) for an infinity of n}

is Baire-dense.

Proof. First, we show that for any positive integers n and i,
Ai,n = {α such that ai < φ(n)} is open. Let u(x) = bxc, v(x) = 1

x and w(x) =

v(x) − u(v(x)). We have: ak+1 = v(wk(x)) − wk+1(x). Since v is continuous and u is
upper semi-continuous and non-negative, then w is lower semi-continuous. Moreover,
w is non-negative. Therefore, wk and wk+1 are also lower semi-continuous and non-
negative. Since v is decreasing, then v ◦ wk − wk+1 is upper semi-continuous. We
conclude that Ai,n is open.

Moreover, for any p ≥ 0,
∪n≥p ∩i≤n Ai,n

is dense. Indeed, since φ(n) → +∞, then it contains all numbers of constant type,
which are dense. This set is also open and therefore,

A = ∩p≥0 ∪n≥p ∩i≤nAi,n

is Baire-dense.
�

• For any real numbers a and b, a ∨ b denotes max(a, b).

3



• For φ a real �-periodic Cr function, 0 ≤ r < +∞, we define:

‖φ‖r = max
0≤ j≤r

max
x∈�
|D jφ(x)|

Note that for f , g ∈ Dr(�1), f − g is �-periodic, and for 1 ≤ j ≤ r, D j f is
�-periodic. For f ∈ Dr(�1), we also define:

‖ f ‖r = max
(
‖ f − id‖0, max

1≤ j≤r
‖D j f ‖0

)

Note that the notation ‖ f ‖r is not a norm when f ∈ Dr(�1), since Dr(�1) is not a
vector space.

• In all the paper, C denotes a constant depending on u. W( f ) denotes the total
variation of log D f , and S f denotes the Schwartzian derivative of f .

The following theorem gives an estimation of the norm of the linearization of a dif-
feomorphism having a rotation numbers of Diophantine constant type. This estimation,
obtained in [2], is necessary to derive our results.

Theorem 2.3. Let l ≥ 3 an integer and η > 0. Let f ∈ Dl(�1) of rotation number α,
such that α is of constant type Cd. There exists a diffeomorphism h ∈ Dl−1−η(�1) conju-
gating f to Rα, and a function B of Cd, l, η,W( f ), ‖S f ‖l−3, which satisfy the estimation:

max
(

1
min Dh

, ‖h‖l−1−η

)
≤ B(Cd, l, η,W( f ), ‖S f ‖l−3) (1)

In particular, we remark that if fn is a sequence of diffeomorphisms of rotation
number αn, if the sequences W( fn) and ‖S fn‖l−3 are bounded (this will hold in our
case, because we will take fn = λn + f for a properly chosen λn ∈ �), if Vα(n) → +∞

and if hn is the conjugacy to a rotation associated with fn, then there is a real function
E(Vα(n)) such that, for n sufficiently large, we have:

max
(

1
min Dhn

, ‖hn‖l−1−η

)
≤ E(Vα(n))

3 Quasi-Reducibility

Theorem 3.1. Let l ≥ 3 an integer, f ∈ Dl(�1) of rotation number α ∈ �1. Let η > 0 a
real number. There exists a numerical sequence F(n), going to +∞ as n → +∞, such
that, if

lim inf
Vα(n)
F(n)

= 0

then there is a sequence hn ∈ Cl−1−η such that h−1
n f hn → Rα in the Cl−2−η-topology.

By applying lemma 2.2, we obtain the corollary:
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Corollary 3.2. There is a Baire-dense set A1 ⊂ � such that if l ≥ 3 is an integer,
f ∈ Dl(�1) of rotation number α ∈ A1 and η > 0, then f is Cl−2−η-quasi-reducible:
there is a sequence hn ∈ Dl−1−η(�1) such that h−1

n f hn → Rα in the Cl−2−η-topology.

Proof of theorem 1.1. We let η = l/3 in corollary 3.2. Since f is smooth, then there
is a sequence (hn,l)n≥0 ∈ D∞(�1) such that, for any integer l ≥ 3 fixed,

‖h−1
n,l f hn,l − Rα‖2( l

3−1) →n→+∞ 0

In particular, there is n(l) such that:

‖h−1
n(l),l f hn(l),l − Rα‖2( l

3−1) ≤
1
l

Let hl = hn(l),l. Let ε > 0 and k > 0 an integer. There is l0 ≥ 0 such that for any
l ≥ l0, we have: ε ≥ 1/l, k ≤ 2

(
l
3 − 1

)
and:

‖h−1
l f hl − Rα‖k ≤ ‖h−1

l f hl − Rα‖2( l
3−1) ≤

1
l
≤ ε

Therefore, h−1
l f hl →l→+∞ Rα in the Ck-topology, for any k, and therefore, this

convergence holds in the C∞-topology.
�

To prove theorem 3.1, we need to consider the one-parameter family Rλ f [5, p.31].
We have the lemma:

Lemma 3.3. Let α = ρ( f ). Let α̃ an irrational Diophantine number. There exists
λ0 ∈ � and a C1-diffeomorphism h such that h−1Rλ0 f h = Rα̃. Moreover,

|λ0|

min Dh
≥ |α̃ − α| ≥

|λ0|

‖Dh‖0

Proof. Let µ(λ) = ρ(Rλ f ). µ is continuous, non-decreasing and µ(�) = � (see [5, p.
31]). Therefore, there exists λ0 ∈ � such that α̃ = ρ(Rλ0 f ). Since α̃ is Diophantine,
there exists a C1-diffeomorphism h such that h−1Rλ0 f h = Rα̃ and that satisfies esti-
mation (1) of theorem 2.3. By the mean value theorem, for any x, there is c(x) such
that:

α̃ + x − h−1 f h(x) = Rα̃(x) − h−1 f h(x) = h−1Rλ0 f h(x) − h−1 f h(x) = D(h−1)(c(x))λ0

By integrating this equation on an invariant measure of f , we get lemma 3.3. Note
that since h ∈ D1(�1), then Dh(x) > 0 for any x, and min Dh > 0.

�

Proof. The proof of theorem 3.1 is also based on the lemma:

Lemma 3.4. Let α = ρ( f ). Let α̃ an irrational Diophantine number, and λ0 ∈ � and h
the C1-diffeomorphism given by lemma 3.3. Recall that C denotes a constant that only
depends on u, 0 ≤ u ≤ l − 2 − η. We have the estimation:

‖h−1 f h − Rα‖u ≤ C‖ f ‖Cu ‖h‖
C
u+1

1
(min Dh)C |α̃ − α|
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Before proving lemma 3.4, we show how theorem 3.1 is derived from it.
If α is of constant type, then f is reducible and there is nothing to prove. Therefore,

we can suppose that Vα(n) →n→+∞ +∞. By applying theorem 2.3, there exists a real
function F̃ strictly increasing with Vα(n), such that, for n sufficiently large:

‖h−1
n f hn − Rα‖l−2−η ≤ exp

(
F̃ (Vα(n))

)
|αn − α|

Let F (n) = F̃−1(n1/2). By extracting, we can suppose that lim Vα(n)
F(n) = 0. Therefore,

Vα(n) ≤ F (n) for n sufficiently large and therefore,

F̃ (Vα(n)) ≤ n1/2

We get, for n sufficiently large,

‖h−1
n f hn − Rα‖l−2−η ≤ e−

n log 2
4 →n→+∞ 0

Hence theorem 3.1.

Now, we show lemma 3.4. We need the Faa-di-Bruno formula (see e.g. [3]):

Lemma 3.5. For every integer u ≥ 0 and functions φ and ψ of class Cu, we have:

Du [
φ(ψ(x))

]
=

u∑
j=0

D jφ(ψ(x))Bu, j

(
Dψ(x),D2ψ(x), . . . ,D(u− j+1)ψ(x)

)
The Bu, j are the Bell polynomials, defined by Bu,0 = 1 and, for j ≥ 1:

Bu, j(x1, x2, . . . , xu− j+1) =
∑ u!

l1!l2! · · · lu− j+1!

( x1

1!

)l1 ( x2

2!

)l2
· · ·

(
xu− j+1

(u − j + 1)!

)lu− j+1

The sum extends over all sequences l1, l2, l3, ..., lu− j+1 of non-negative integers such
that:l1 + l2 + ... = j and l1 + 2l2 + 3l3 + ... = u.

Therefore, for any x, we have the estimation:∣∣∣∣Bu, j

(
Dψ(x),D2ψ(x), . . . ,D(u− j+1)ψ(x)

)∣∣∣∣ ≤ C
(
1 ∨ ‖ψ‖ j

u

)
(2)

Combining this estimation with lemma 3.5, we obtain the corollary:
Corollary 3.6.

‖φ ◦ ψ‖u ≤ C max
0≤ j≤u

‖D jφ ◦ ψ‖0
(
1 ∨ ‖ψ‖uu

)
We apply this corollary to estimate ‖h−1‖u. We let φ(x) = 1/x and ψ = Dh ◦ h−1.

We observe that D(h−1) = 1
Dh◦h−1 = φ ◦ ψ. Since there is x0 such that Dh(x0) = 1, then

‖Dh‖0 ≥ 1 (and we also have 1 ≥ min Dh > 0). Therefore, we get:

‖D(h−1)‖u ≤ C max
0≤ j≤u

1

‖
(
Dh ◦ h−1) j+1

‖0
‖Dh ◦ h−1‖Cu

By corollary 3.6, we also have:

‖Dh ◦ h−1‖u ≤ C‖Dh‖u‖h−1‖Cu

6



By combining these two estimations, we get:

‖D(h−1)‖u ≤ C
1

(min Dh)C ‖Dh‖Cu ‖h
−1‖Cu

We iterate this estimation to estimate ‖h−1‖u, for u ≥ 1. We get:

‖h−1‖u+1 ≤ C
1

(min Dh)C ‖h‖
C
u+1‖h

−1‖C1 (3)

Now, we estimate the Cu-distance of h−1 f h to Rα. Let α̃, λ0 as in lemma 3.3. We
have:

h−1 f h − Rα = h−1 f h − h−1Rλ0 f h + Rα̃ − Rα

Therefore,

‖h−1 f h − Rα‖u ≤ ‖h−1 f h − h−1Rλ0 f h‖u + |α̃ − α| (4)

On the other hand, by the Faa-di-Bruno formula, we have:

Du
[
h−1 f h − h−1Rλ0 f h

]
(x) =

u∑
j=0

Bu, j

(
D( f h)(x), ...,Du− j+1( f h)(x)

)
[
D j(h−1)( f h(x)) − D j(h−1)( f h(x) + λ0)

]
Since |D j(h−1)( f h(x)) − D j(h−1)( f h(x) + λ0)| ≤ ‖D j+1(h−1)‖0|λ0|, then by applying

estimation (2), we get:

‖h−1 f h − h−1Rλ0 f h‖u ≤ C‖ f ◦ h‖Cu ‖h
−1‖u+1|λ0|

By applying corollary 3.6, we get:

‖h−1 f h − h−1Rλ0 f h‖u ≤ C‖ f ‖Cu ‖h‖
C
u ‖h

−1‖u+1|λ0|

By applying (3), we obtain:

‖h−1 f h − h−1Rλ0 f h‖u ≤ C‖ f ‖Cu ‖h‖
C
u

1
(min Dh)C ‖h‖

C
u+1‖h

−1‖C1 |α̃ − α|‖Dh‖0

‖h−1 f h − h−1Rλ0 f h‖u ≤ C‖ f ‖Cu ‖h‖
C
u+1

|α̃ − α|

(min Dh)C

By estimation (4), we obtain:

‖h−1 f h − Rα‖u ≤ C‖ f ‖Cu ‖h‖
C
u+1

1
(min Dh)C |α̃ − α| (5)

Hence lemma 3.4.
�
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4 Application to commuting diffeomorphisms
Theorem 4.1. There exists a numerical sequence G(n), going to +∞ as n→ +∞, such
that, for any l ≥ 3 an integer, f ∈ Dl(�1) of rotation number α ∈ �, η > 0 and g of
class Cl such that f g = g f , if

lim inf
Vα(n)
G(n)

= 0

then there exists two sequences of diffeomorphisms fn and gn that are Cl−1−η-
conjugated to rotations, such that fngn = gn fn, and with fn and gn converging re-
spectively towards f and g in the Cl−2−η-norm.

Corollary 4.2. There is a Baire-dense set A2 ⊂ � such that if l ≥ 3 is an integer,
f ∈ Dl(�1) has a rotation number α ∈ A2, g is of class Cl such that f g = g f and
η ∈ �+, then there exists two sequences of diffeomorphisms fn and gn that are Cl−1−η-
conjugated to rotations, such that fngn = gn fn and with fn and gn converging respec-
tively towards f and g in the Cl−2−η-norm.

We derive theorem 1.2 from lemma 4.2 by following the same argument as in the
proof of theorem 1.1.

To prove theorem 4.1, we consider (hn)n≥0, the sequence of conjugating diffeo-
morphisms constructed in the proof of theorem 3.1, (λn)n≥0 the associated sequence
of real numbers such that fn = Rλn f = hnRαn h−1

n . We also consider g′n = h−1
n ghn and

gn = hnRg′n(0)h−1
n . The diffeomorphisms fn and gn commute, and fn → f in the Cl−2−η-

norm. To prove theorem 4.1, it suffices to show that gn → g in the Cl−2−η-norm. This
convergence is based on the lemma:

Lemma 4.3. Let l ≥ 3 an integer, f ∈ Dl(�1) of rotation number α ∈ �, η > 0, 0 ≤ u ≤
l − 2 − η, and g ∈ Dl(�1) such that f g = g f . Let (qt)t≥0 the sequence of denominators
of the convergents of α, and r ≥ 0 an integer. Let α̃ an irrational Diophantine number,
λ0 ∈ � the associated number and h the associated diffeomorphism given by lemma
3.3. Let f ′ = h−1 f h and g′ = h−1gh. We have the estimation:

‖g − hRg′(0)h−1‖u ≤ C‖h‖Cu+1‖ f ‖
C
u ‖g‖

C
u+1

(
1
qr

+ |α̃ − α|

(
(C‖h‖u+1‖ f ‖u+1)Cqr

(min Dh)C

))
Proof of theorem 4.1. Assuming lemma 4.3, we show theorem 4.1.

Let α̃ = αn and hn the associated diffeomorphism given by lemma 3.3. Since
Vα(n)→ +∞, by applying the estimation for the conjugacy hn, there exists G̃(x) strictly
increasing with x such that, for n sufficiently large:

‖g − hnRg′n(0)h−1
n ‖l−2−η ≤ eCG̃(Vα(n))

 1
qr

+
eCG̃(Vα(n))qr

2n


Moreover, since qn = anqn−1 + qn−2, and qn−2 ≤ qn−1, then

(
√

2)n−1 ≤ qn ≤

n∏
k=1

(ak + 1) (6)

Therefore, we get:
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‖g − hnRg′n(0)h−1
n ‖l−2−η ≤ eCG̃(Vα(n))− 1

2 (r−1) log 2 + eCG̃(Vα(n))+CG̃(Vα(n))(Vα(r)+1)r−n log 2 (7)

Let G(n) = G̃−1((log n)1/2). By extracting in the sequence Vα(n)/G(n), we can
suppose that:

Vα(n)
G(n)

→ 0

Therefore, for n sufficiently large, we have:

G̃(Vα(n)) ≤ (log n)1/2

Moreover, for n sufficiently large, we can take an integer rn such that:

(log n)3/4 ≤ rn ≤ (log n)7/8

we get:

(Vα(rn) + 1)rn = ern log(Vα(rn)+1) ≤ e(log n)15/16

The first term in estimation (7) tends towards 0. Moreover, since,for n sufficiently
large,

(log n)1/2e(log n)15/16
≤

n
2

log 2

then the second term also tends towards 0. Hence theorem 4.1.
�

Proof of lemma 4.3. We need two higher-order analogous of the mean value theorem.
The first one is:

Lemma 4.4. Let u ≥ 0, s, t ∈ Du(�1). Let δ ∈ �. We have:

‖st − Rδt‖u ≤ C‖s‖u+1‖s − Rδ‖u‖t‖uu

Proof. If u = 0, the estimate is trivial. We suppose u ≥ 1. For any x ∈ �, the Faa-di-
Bruno formula gives:

Du(st)(x) − Du(Rδt)(x) =

u∑
j=0

(
(D js)(t(x)) − (D jRδ)(t(x))

)
Bu, j

(
Dt(x), ...,Du− j+1t(x)

)
Therefore, by estimation (2), and since ‖t‖u ≥ 1,

|Du(st)(x) − Du(Rδt)(x)| ≤ C‖s‖u+1‖s − Rδ‖u‖t‖uu

Hence lemma 4.4.
�

The second higher-order analogous of the mean value theorem is:
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Lemma 4.5. Let u ≥ 0, s ∈ Du+1(�1), t ∈ Du(�1), δ ∈ �. We have:

‖st − sRδ‖u ≤ C‖s‖u+1‖t‖uu‖t − Rδ‖u

Proof. If u = 0, the estimate holds. We suppose u ≥ 1. We use the following lemma:

Lemma 4.6. Let u ≥ 1, j ≤ u be integers and a1, ..., au− j+1, x1, ..., xu− j+1 ≥ 0. Let
x ≥ max{|xk | ∨ 1; 1 ≤ k ≤ u − j + 1} and let a ≥ max{|ak |; 1 ≤ k ≤ u − j + 1}. Let Bu, j

be a Bell polynomial. We have:

|Bu, j(x1 + a1, ..., xu− j+1 + au− j+1) − Bu, j(x1, ..., xu− j+1)| ≤ Ca(x + a)u

Proof. Let p ≥ 1 and l1, ..., lp be integers. Then we have:

(x1+a1)l1 ...(xp+ap)lp−xl1
1 ...x

lp
p =

p∑
i=1

xl1
1 ...x

li−1
i−1(xi+ai)li ...(xp+ap)lp−xl1

1 ...x
li
i (xi+1+ai+1)li+1 ...(xp+ap)lp

(x1+a1)l1 ...(xp+ap)lp−xl1
1 ...x

lp
p =

p∑
i=1

xl1
1 ...x

li−1
i−1(xi+1+ai+1)li+1 ...(xp+ap)lp

[
(xi + ai)li − xli

i

]
(with the conventions xl1

1 ...x
l0
0 = 1 and xlp+1

p+1...x
lp
p = 1).

Since (xi + ai)li − xli
i ≤ li|ai|(|xi| + |ai|)li−1 ≤ lia(|xi| + a)li−1, 1 ≤ li ≤ u and x + a ≥ 1

(because x ≥ 1), we obtain:

|Bu, j(x1 + a1, ..., xu− j+1 + au− j+1)− Bu, j(x1, ..., xu− j+1)| ≤ a(u− j + 1)uBu, j(x + a, ..., x + a)

By the formula giving the Bell polynomials, we have:

Bu, j(x + a, ..., x + a) ≤ C(x + a)u

�

To show lemma 4.5, For any 0 ≤ v ≤ u, we write:

Dv(st)(x)−Dv(sRδ)(x) =

v∑
j=0

D js(t(x))
[
Bv, j

(
Dt(x), ...,Dv− j+1t(x)

)
− Bv, j

(
DRδ(x), ...,Dv− j+1Rδ(x)

)]
+

[
D js(t(x)) − D js(Rδ(x))

]
Bv, j

(
DRδ(x), ...,Dv− j+1Rδ(x)

)
We apply lemma 4.6 with a = ‖t − Rδ‖u and x = ‖Rδ‖u ≥ 1. Since t ∈ Du(�1), then

‖t‖u ≥ 1. We get:∣∣∣∣Bv, j

(
Dt(x), ...,Dv− j+1t(x)

)
− Bv, j

(
DRδ(x), ...,Dv− j+1Rδ(x)

)∣∣∣∣ ≤ C‖t−Rδ‖u(1+ ‖t−Rδ‖u)u

∣∣∣∣Bv, j

(
Dt(x), ...,Dv− j+1t(x)

)
− Bv, j

(
DRδ(x), ...,Dv− j+1Rδ(x)

)∣∣∣∣ ≤ C‖t−Rδ‖u(2+‖t‖u)u ≤ C‖t−Rδ‖u‖t‖uu

�
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To prove lemma 4.3, we also need these successive estimations:

Lemma 4.7. Let 1 ≤ u ≤ k − 2 − η. We have:

A1,u = ‖h−1‖u ≤ C‖h‖Cu
1

(min Dh)C (8)

A2,u = ‖ f ′‖u ≤ CA1,u‖ f ‖Cu ‖h‖
C
u (9)

A3,u(m) = ‖ f ′m‖u ≤ CmAmC
2,u (10)

A4,u = ‖ f ′ − Rα‖u ≤ C‖h‖Cu+1‖ f ‖
C
u

1
(min Dh)C |α̃ − α| (11)

A5,u(m) = ‖ f ′m − Rmα‖u ≤ mCA4,uAC
2,u max

k≤m−1
A3,u+1(k) (12)

A6,u = ‖g′‖u ≤ CA1,u‖g‖Cu ‖h‖
C
u (13)

For any r > 0,

A7,u = ‖g′ −Rg′(0)‖u ≤
A6,u+1 + 1

qr
+ max

m≤2qr

(
A6,u+1AC

3,u(m)A5,u(m) + AC
6,uA3,u+1(m)A5,u(m)

)
(14)

A8,u = ‖g′h−1 − Rαh−1‖u ≤ CA6,u+1A7,uAC
1,u (15)

A9,u = ‖hg′h−1 − hRg′(0)h−1‖u ≤ C‖g‖Cu A8,uAC
1,u‖h‖u+1 (16)

The crucial estimate is (14), which is obtained by approaching modulo 1 each x ∈ �
by a m(x)α, with m(x) ≤ qr. If qr increases, x − m(x)α is smaller modulo 1, but the
bound on A3,u(m(x)) and A5,u(m(x)) increases. In the proof of theorem 4.1, a proper
choice of r is made.

Estimation (11) corresponds to estimate (5) of the proof of the result of quasi-
reducibility.

The other estimations, namely, estimations (8),(9),(10), (12),(13), (15) and (16) are
derived from applications of the Faa-di-Bruno formula: either corollary 3.6, lemma 4.4
or lemma 4.5.

Proof of lemma 4.7. For A1,u, by estimation (3), we have:

‖h−1‖u ≤ C‖h‖Cu
1

(min Dh)C

Hence estimation (8).

For A2,u, by applying corollary 3.6 twice, we have,

‖ f ′‖u ≤ CA1,u‖ f ‖Cu ‖h‖
C
u

Hence estimation (9).

For A3,u, by applying corollary 3.6 again, we have, for any m,

11



‖ f ′m+1‖u ≤ C‖ f ′m‖u‖ f ′‖Cu

and therefore, by iteration, we get:

‖ f ′m‖u ≤ Cm‖ f ′‖mC
u

Hence (10).

Estimation (11) is a direct application of estimation (5).

For estimation (12), we observe that for any 0 ≤ v ≤ u:

Dv f ′m − DvRmα = Dv
m−1∑
k=0

f ′m−kRkα − f ′m−k−1R(k+1)α

Dv f ′m − DvRmα =

m−1∑
k=0

Dv
(

f ′m−k−1 f ′
)

Rkα − Dv
(

f ′m−k−1Rα

)
Rkα

By applying lemma 4.5, and by noting that for any k, ‖ f ′m−k−1‖u+1 ≤ max0≤k≤m−1 ‖ f ′k‖u+1,
we get:

‖ f ′m − Rmα‖u ≤ mC‖ f ′‖Cu max
0≤k≤m−1

‖ f ′k‖u+1‖ f ′ − Rα‖u

Hence (12).

For A6,u, estimation (13) is the same as (9):

‖g′‖u ≤ C‖h−1‖u‖g‖Cu ‖h‖
C
u

Hence (13).

For A7,u, let m ≥ 0 and u ≥ v ≥ 1. For any x, DvRα(x) =
∫ 1

0 Dvg′(y) dy. Therefore,

|Dvg′(x) − DvRα(x)| =

∣∣∣∣∣∣Dvg′(x) −
∫ 1

0
Dvg′(y) dy

∣∣∣∣∣∣ =∣∣∣∣∣∣
∫ 1

0

(
Dvg′(x) − Dvg′(y)

)
dy

∣∣∣∣∣∣ ≤ max
x,y∈[0,1]

|Dvg′(x) − Dvg′(y)|

On the other hand, we have:

Dvg′(x) − Dvg′(y) = Dvg′(x) − Dvg′(y + mα) + Dvg′(Rmα(y)) − Dv(g′ f ′m(y)) +

Dv( f ′mg′(y)) − Dvg′(y)

Moreover, we have:

|Dvg′(x) − Dvg′(y + mα)| ≤ |Du+1g′|0|x − y − mα|

12



By lemma 4.5, we also have:

|Dvg′(Rmα(y)) − Dv(g′ f ′m(y))| ≤ C‖g′‖u+1‖ f ′m‖Cu ‖ f
′m − Rmα‖u

Finally, by lemma 4.4, we have:

|Dv( f ′mg′(y)) − Dv(Rmαg′(y))| ≤ C‖ f ′m‖u+1‖ f ′m − Rmα‖u‖g′‖Cu

By combining these estimations, we obtain:

|Dvg′(x) − Dvg′(y)| ≤ ‖g′‖u+1|x − y − mα| + C‖g′‖u+1‖ f ′m‖Cu ‖ f
′m − Rmα‖u +

C‖ f ′m‖u+1‖ f ′m − Rmα‖u‖g′‖Cu

Moreover, for any r ≥ 0, any x, y ∈ �, there is an integer m(x, y) ≤ 2qr, there are
real numbers x′, y′ such that x′−x ∈ �, y′−y ∈ � and such that |x′−y′−m(x, y)α| ≤ 1/qr.
Since v ≥ 1, then |Dvg′(x) − Dvg′(y)| = |Dvg′(x′) − Dvg′(y′)|. We apply the former
estimation with x′ and y′ and we get:

max
1≤v≤u

∥∥∥Dvg′ − DvRg′(0)
∥∥∥

0 ≤
A6,u+1 + 1

qr
+max

m≤2qr

(
A6,u+1AC

3,u(m)A5,u(m) + AC
6,uA3,u+1(m)A5,u(m)

)
If v = 0, we note that for any r ≥ 0, any x ∈ �, there is an integer m(x) ≤ qr and a

real number x′ ∈ � such that x′ − x ∈ �, and such that |x′ − m(x)α| ≤ 1/qr. Moreover,
we have: g′(x) − Rg′(0)(x) = g′(x′) − Rg′(0)(x′), and

g′(x′)−Rg′(0)(x′) = g′(x′)−g′(mα)+g′(mα)−g′ f
′m(0)+ f

′mg′(0)−Rmα(g′(0))+Rg′(0)(mα)−Rg′(0)(x′)

Hence estimation (14).

For A8,u, estimation (15) follows immediately from lemma 4.4.

For A9,u, let x ∈ �. Let 0 ≤ v ≤ u. By the Faa-di-Bruno formula:

Dv
(
hg′h−1

)
(x) − Dv

(
hRg′(0)h−1

)
(x) =

v∑
j=0

D jh(g′h−1(x))Bv, j

(
D

(
g′h−1

)
(x), ...,Dv− j+1

(
g′h−1(x)

))
−

D jh(g′h−1(x))Bv, j

(
D

(
Rg′(0)h−1

)
(x), ...,Dv− j+1

(
Rg′(0)h−1(x)

))
=

v∑
j=0

D jh(g′h−1(x))[
Bv, j

(
D

(
g′h−1

)
(x), ...,Dv− j+1

(
g′h−1(x)

))
− Bv, j

(
D

(
Rg′(0)h−1

)
(x), ...,Dv− j+1

(
Rg′(0)h−1(x)

))]
−[

D jh(Rg′(0)h−1(x)) − D jh(g′h−1(x))
]

Bv, j

(
D

(
Rg′(0)h−1

)
(x), ...,Dv− j+1

(
Rg′(0)h−1(x)

))
since ‖h−1‖u ≥ 1, then lemma 4.6 gives,

∣∣∣∣Bv, j

(
D

(
g′h−1

)
(x), ...,Dv− j+1

(
g′h−1(x)

))
− Bv, j

(
D

(
Rg′(0)h−1

)
(x), ...,Dv− j+1

(
Rg′(0)h−1(x)

))∣∣∣∣ ≤
C‖g′h−1‖Cu ‖g

′h−1 − Rg′(0)h−1‖u
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Since g′h−1 = h−1g and ‖h−1g‖u ≤ C‖h−1‖u‖g‖Cu , we get,

∣∣∣∣Dv
(
hg′h−1

)
(x) − Dv

(
hRg′(0)h−1

)
(x)

∣∣∣∣ ≤
C‖g‖Cu ‖h‖u‖h

−1‖Cu ‖g
′h−1 − Rg′(0)h−1‖u + C‖h‖u+1‖g′h−1 − Rg′(0)h−1‖u‖h−1‖Cu

Hence estimation (16). This completes the proof of lemma 4.7.
�

By combining these estimations, we obtain:

A9,u ≤ CAC
1,u+1‖h‖

C
u+1‖g‖

C
u+1

(
1
qr

+ max
m≤2qr

(
AC

3,u+1(m)A5,u(m)
))

A9,u ≤ C‖h‖Cu+1‖ f ‖
C
u ‖g‖

C
u+1

(
1
qr

+ |α̃ − α|

(
(C‖h‖u+1‖ f ‖u+1)Cqr

(min Dh)C

))
Hence lemma 4.3. Notice the loss of one derivative for h.

�
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