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Abstract

A celebrated theorem by Herman and Yoccoz asserts that if the rotation number
a of a C*-diffeomorphism of the circle f satisfies a Diophantine condition, then
f is C*-conjugated to a rotation. In this paper, we establish explicit relationships
between the C* norms of this conjugacy and the Diophantine condition on a. To
obtain these estimates, we follow a suitably modified version of Yoccoz’s proof.

1 Introduction

In his seminal work, M. Herman [5] shows the existence of a set A of Diophantine
numbers of full Lebesgue measure such that for any rotation number @ € A of a cir-
cle diffeomorphism f of class C¢ (resp. C*), there is a C“-diffeomorphism (resp.
C>-diffeomorphism) / such that Afh~' = R,. In the C* case, J. C. Yoccoz [14] ex-
tended this result to all Diophantine rotation numbers. Results in analytic class and
in finite differentiability class subsequently enriched the global theory of circle dif-
feomorphisms [11, 9, 8, 13, 7, 15, 4, 10]. In the perturbative theory, KAM theorems
usually provide a bound on the norm of the conjugacy that involves the norm of the
perturbation and the Diophantine constants of the number « (see [5, 12, 3] for exam-
ple). We place ourselves in the global setting, we compute a bound on the norms of
this conjugacy 4 in function of k, |[D flo, W(f), |S flk-3, 8 and Cy.

To obtain these estimates, we follow a suitably modified version of Yoccoz’s proof.
Indeed, Yoccoz’s proof needs to be modified because a priori, it does not exclude the
fact that the set:

Ex = {IDhlo /3f € Diff{(T"), f = h™'Ryh, @ € DC(B, Cy), max (k. B, Ca, IDflo, W(f), IS flis) < X}

could be unbounded for any fixed X > 0.

These estimates have natural applications to the global study of circle diffeomor-
phisms with Liouville rotation number: in [2], they allow to show the following results:
1) Given a diffeomorphism f of rotation number «, for a Baire-dense set of a, it is pos-
sible to accumulate R, with a sequence #, fh,;l, h, being a diffeomorphism. 2) Given
two commuting diffeomorphisms f and g, with the rotation number @ of f belonging
to a specified Baire-dense set, it is possible to approach each of them by commuting
diffeomorphisms f, and g, that are differentiably conjugated to rotations.
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1.1

Notations

‘We follow the notations of [14].

The circle is noted T!. The group of orientation-preserving circle diffeomor-
phisms of class C” is denoted Diff’,(T!). The group of Z-periodic diffeomor-
phisms of class C” of the real line is noted C"(T'). We often work in the uni-
versal cover D"(T"), which is the group of diffeomorphisms f of class C" of the
real line such that f — Id € C"(T'). Note that if f € D’(T') and r > 1, then
Df € C~I(TY).

The derivative of f € D'(T') is noted Df. The Schwartzian derivative S f of
f € D3(T") is defined by:
1
Sf=D?logDf - E(Dlong)2

The total variation of the logarithm of the first derivative of f is:

W(f)= sup > llog Df (i)~ log Df(a)

ap<...<a, i=0

For any continuous and Z-periodic function ¢, let:
[¢lo = llgllo = sup l¢(x)l
xeR

Let0 <y < 1. ¢ € CO(T") is Holder of order y’ if:

1600 — 609
Wby =sup =y <t

Let y > 1 be a real number. In all the paper, we write y = r + 3’ with r € N and
0<y <1.

A function ¢ € C"(T") is said to be of class C” if D"¢ € C¥(T"). The space of
these functions is noted C?(T"') and is given the norm:

lI¢ll, = max (maX 1D/ ¢llo. ID" ¢l
0<j<r

If y =0ory > 1, the C”-norm of ¢ is indifferently denoted ||¢||, or |#],. Thus,
when possible, we favor the simpler notation |¢], .

For a € R (respectively, @ € T'), we denote R, € D*(T") (respectively, R, €
Diff(T!)). the map x — x + a.

An irrational number @ € DC(Cy, ) satisfies a Diophantine condition of order
B > 0 and constant C; > 0 if for any rational number p/g, we have:

Cy

= 2
q**P

a - —

‘ p
q

Moreover, if 8 = 0, then « is of constant type C,.



e leta, = a, ay = 1. Forn > 0, we define a real number «, (the Gauss
sequence of @) and an integer a, by the relations 0 < @, < @,-; and

Up-2 = App—1 + Ay

o In the following statements, C;[a, b, ...] denotes a positive numerical function of
real variables a, b, ..., with an explicit formula that we compute.

Cla, b, ...] denotes a numerical function of a, b, ..., with an explicit formula that
we do not compute.

e We use the notations a A b = a’, ¢™ A x the n- iterate of x — exp x, | x| for
the largest integer such that [ x| < x, and [x] for the smallest integer such that
[x] > x.

We recall Yoccoz’s theorem [14]:

Theorem 1.1. Let k > 3 an integer and f € DN(T'). We suppose that the rotation
number « of f is Diophantine of order B. If k > 23 + 1, there exists a diffeomorphism
h € D'(T") conjugating f to R,. Moreover, for any n > 0, h is of class C<~'=P",

1.2 Statement of the results
1.2.1 C! estimations

Theorem 1.2. Let f € D3(T') of rotation number a, such that « is of constant type
Cy. There exists a diffeomorphism h € D'(T') conjugating f to R,, which satisfies the
estimation:

IDHlo < e A (w)

Cy
The expression of Cy is given page 10.

More generally, for a Diophantine rotation number @ € DC(Cy, ), we have:

Theorem 1.3. Let k > 3 be an integer and f € D*(T"). Let @ € DC(Cy, ) be the rota-
tion number of f. If k > 28 + 1, there exists a diffeomorphism h € D' (T") conjugating
f to Ry, which satisfies the estimation:

|Dhly < Calk, B, Ca, ID flo, W(), IS flk-3] 1
The expression of C, is given page 23.

Moreover, if k > 38+ 9/2, we have:

Dhly < ¢ A (C3IBICAICAICSIID flo, W(F), IS flolC6llS flizgraml) )
The expressions of C3,Cs,Cs, Cg are given page 28.

Let 6 =k —2B8— 1. When 6 — 0, we have:

Cld]

1
\Dh < e“)A(ga [k, Cas IDflos WIS flo] + —5-

Clk, Ca, D flo, W(f), 1S flo, |Sf|k—3])

3)
where C[0] =40 0. The expression of C7 is given page 30.



Remark 1.4. Katznelson and Ornstein [9] showed that the assumption £ > 28 + 1 in
Yoccoz’s theorem is not optimal (instead it is k > 8 + 2). Therefore, the divergence of
the bound given by estimation (3) is because we compute the bound of the conjugacy
by following the Herman-Yoccoz method.

Remark 1.5. Let a, be the Gauss sequence associated with @. Yoccoz’s proof already
gives the following result: if kK > 38 + 9/2 and if, for any n > 0,

Ap+l

2 Cgn, k, W(f), 1S fli-s] “4)

then:

IDHly < exp (Colk, W(/).1S flis]*®) IDSE

The expressions of Cg, Cy, Cj¢ are given page 30.

1.2.2 C* estimations

Theorem 1.6. Let k > 3 an integer, n > 0 and f € D*(T'). Let « € DC(Cy,8) be the
rotation number of f. If k > 28 + 1, there exists a diffeomorphism h € D*1=8-1(T")
conjugating f to R,, which satisfies the estimation:

(IDhlg-2-p—y < (Mo =2 10211 /GBI A ([, k, B, s IDflos W(F), IS Flis])
4)
The expression of Cy, is given page 48.

Moreover, if k > 38+ 9/2, we have:

DAl sy < e A (Cialkle® A 2+ C3IBICAICACSID flo, W), IS flo1ClIS fli-3D)
(6)
The expression of Cy, is given page 46.
If a is of constant type, for any k > 3, we have:
CiUW().IS flol |
DAy < e (clg[k] [CM[WU), S fleal + W] ] @

The expressions of C13 and C4 are given page 47.

2 Preliminaries

Let f € D°(T') be a homeomorphism and x € R. When n tends towards infinity,
(f"(x) — x)/n admits a limit independent of x, noted p(f). We call it the translation
number of f. Two lifts of f € Diff? (T") only differ by a constant integer, so this is also
the case for their translation numbers. We call the class of p(f) mod Z the rotation
number of f. We still denote it p(f). It is invariant by conjugacy. Let f € D*(T").
When a = p(f) is irrational, Denjoy showed that f is topologically conjugated to R,.
However, this conjugacy is not always differentiable (see [1, 5, 7, 15]). The regularity



of this conjugacy depends on the Diophantine properties of the rotation number « (see
Yoccoz’s theorem 1.1).

Let @ be an irrational number. Let the distance of « to the closest integer be:
llall = ]l)relg | = pl
Forn > 1,a, > 1. Leta = ap + 1/(a; + 1/(ay + ...)) be the development of @ in

continued fraction. We denote it @ = [ag, a1, a2, ...]. Let p_o = g1 =0, p_;1 =g = 1.
For n > 0, let p,, and g, be:

Pn = GnPp-1 + Pn-2

qn = Anqn-1 + qn-2

We have ¢p = 1, g, > 1 for n > 1. The rationals p,/q, are called the convergents
of a. They satisfy the following properties:

L ay = (=D"(gna — py)

2. a, =|lgnal|, forn > 1

3. 1/(gue1 +dn) < @ < 1/quer forn = 0,
4. @y < %an, Gn+2 = 2qy, forn > —1

We recall that DC(C,, 8) denotes the set of Diophantine numbers of constants 3 and
C,. One of the following relations characterizes DC(Cy, B):

L. |a’ - pn/‘]n| > Cd/qi+ﬁ for any n >0

2. Ape1 < Cidqfi foranyn > 0

3. @us1 < Cqu,lfﬁ foranyn >0

4. apy > Cqal™ forany n > 0

In all the paper, we denote C, = 1/C,.

e Let m,(x) = f(x)—x,n>1,x €T, let M, = sup, i |f%(x) — x| and

my, = inf e Ifq“ (x) = x.
e For any ¢, € C*(T"), we have:

lewly < ligllolly + I¢ly Il ®)

llpwrdly < llglloled, + il Il dlo )
e For any real numbers a and b, a V b denotes max(a, b).

In the rest of the paper, for any integer i, le denotes a constant depending only

on W(f) and |S flo (i-e. C{ is a numerical function of these variables). C‘l.f’k denotes
a constant depending only on k, W(f), |S flo and |S flr-3. C; denotes a constant that
might depend on k, W(f), |S flo, IS flx—3 and also 8 and Cy,.



3 C! estimations: constant type

3.1 A 2-parameters family of homographies

In this subsection, we show the existence of a lower bound on the norm of the conjugacy
in function of C; in the particular case of a 2-parameters family of homographies. We
also establish an upper bound on the C' norm of the conjugacy for this family. These
bounds are similar to what is given by the local KAM theory. However, these bounds
are very specific to this setting. Our general bounds given in theorems 1.2 and 1.3 are
much larger.

Proposition 3.1. Let f : {z € C/|zl = 1} = {z € C/|z] = 1} defined by f(z) = h™'Roh(2),
with Ry(z) = €z and h is a homography defined by:

h(z) =

z—a
az—1

Let2 > a > 1, let C4 such that C;,l > 6 is a positive integer; and 0 < § = 2nCy <
7/3, (therefore, 0/(2r) = [0,C;', 1] is of constant type C,). Letf: T' — T! the circle
diffeomorphism induced by f and h the conjugacy induced by h. We have the following
estimation:

2 ~ ~ ~ ~ ~
~Cis(IDFO), ID*£(0))/C4 < IDhly < 9C,5(IDF(O)], ID* F(O))/Cy

Proof. For any ¢ € R/Z, we can write h(¢?®) = ¢9. By differentiating this expres-
sion, we have:

o i Dh(e'?)
Di(g) = = s
and
_(a=Da+1)
Dh(z) = —(az ~ 1)
Therefore
2 _
Dig) = et — <1

(ae'® — 1)(e® — a)
|Dh(¢)| reaches its maximum for ¢ = 0, and |Dhly = 4.
Moreover, we have:
D@ _ ;0D iy DfE?)
Df(¢) Df(e™) f(e)

Since %2;(((;”)) € R and Df(¢) € R, we have:

1/2

D2f(1 D2F(0)\* 3 3 N
A —(( S )) +(Df(0)—1)2) = 8C15(DF(O)LID*FO))

D) | \\ DF©O)
Therefore, in order to get the proposition, it suffices to show:
2 2
L [pr| \Dhly < 9 D)
4rC, | DF(1) 8C, | DF(1)




Let us write

(e —aPz—ae’-1) bz-c

f@ = ae® — Dz — (a2 —1)  cz+d
We have )
db + ¢
Df(z) = v d)?
and
2o DfR)
D@ ==27"a0
Moreover, -
_(I+a)e
by = (aet? + 1)2
and @ —1)
5 _ a(e’ -
DI = 2P = 50 e
We have
D?f(1) 3 2' a le — 1]
D) |~ "1 +ae?| a-1

Since |e? — 1| > sin > 26 (because 0 < 6 < 7/2), then:

D?f(1) >4_1 a 0
Df()| nl+aa-1

Therefore,
DXf()| 4 a
> — D
Df(1) _7r(1+a)2| Flof
i.e.
9 | D2 £(1)
- >
40 | DF(1) = 1Dhlo

Hence the first part of the inequality.

On the other hand, since 6 < /3, then |1 +ae®®| > 1 +acos@ > 1 +a/2 > %(a +1).
Furthermore, |¢® — 1> =2 —2cos 0 = 2 — 2(cos? 6/2 — sin” 6/2) = 4sin” 6/2 < 6.

Therefore,
D?f(1) __0 4a _ 40 _ 40Dy
Df(H)| " a-la+1 " a-1 a+1
i.e.
1|D%f(1
LID7f(D) < IDhly
2 |6DF(1)

Hence the second part of the inequality.



3.2 Proof of theorem 1.2

The proof of theorem 1.2 is divided in three steps. The first step is based on the im-
proved Denjoy inequality, which estimates the C°-norm of log Df%. In the second step,
we extend this estimation to log DN for any integer N. To do this, following Denjoy
and Herman, we write N = Zf:o bsqs, with b integers satisfying 0 < by < ¢41/g5 and
we apply the chain rule. In the third step, we derive a C%-estimation of the derivative
Dh of the conjugacy h.

The first step is based on the Denjoy inequality:
Proposition 3.2. Let f € Diﬂi(Tl) and x € T'. We have:
[log Df*(x)] < W())

Proposition 3.2 is used to obtain an improved version of Denjoy inequality [14,
p-342]:

Lemma 3.3. Let f € Dijﬁ(Tl). We have:

I oag1/2
[log D'y < C M,

f oasl/2
|qul - 1|0 < C]7Ml
Moreover, we can take:
Cl, =2V22e"D + 1)eVD(S flo)' 2

and

cl, =625 f11

In the second step, we estimate Dlog D" independently of N. This step is based
on the following lemma:

Lemma 3.4. Let f € Di]ﬁ("ﬂ"l) and M; = sup, . |f9(x) — x|. We have:

ZMS;

(20 C{9 - C{9
with
1
f -
Clo= — (10)
1 +e
and:
), =6V22 D (15 1% v 1) (11)

Proof. To obtain this lemma, we need the claim:



Claim 3.5. Let f € Diff>(T") of rotation number «, and let p,/q, be the convergents
of . Then for all x € T', we have:

[x, f242 (x)] € [x, £ (x)]

Proof. By topological conjugation, it suffices to examine the case of a rotation of angle
a. It is also sufficient to take x = 0.
By absurd, if the lemma was false, then we would have the following cyclic order
on T —groa < (g2 — g)a < 0 < (g7 — quo)a < quoa. In particular, (g0 — q))a
would be closer to 0 than g;,,@, which would contradict the fact that
llgr2all = inf(llgell/0 < g < gria).
O

For any interval / of the circle, if |I| denotes the length of /, lemma 3.3 implies the
estimation:

ql+2
A | |<’>| > -ChM!%
=

Let x € T' such that M;,» = f%2(x) — x and let I = [x, f%>(x)]. The former
estimation implies

292(0) = fr2 ()] = &R My
By applying claim 3.5, and since M,, < 1, we obtain:
Mn+2 + e_C£2 Mn+2 < Mn+2 + e_C£2M'ii22Mn+2 < Mn
Therefore, for any [ > 0,
M < (€l (12)
with

1

V1 + e‘ng

fo_
Ciy =
Estimation (12) above gives:

1 1 1
E VM, < <
lcf lof f f
=0 Clo 1= /Gy Clo = Gy

Hence lemma 3.4.

]

Now, let N be an integer. Following Denjoy, since « is of constant type, we can
write N = .7 biq;, with by integers satisfying 0 < b; < qp1/q1 < C‘;]. By the chain
rule and by lemma 3.3, since for all y € T', DfN(y) > 0, then :

|10g D(fN)(y)l = |]0g D(fz;:n bllll)(y)l — | ZLO Zf;o log qu’ o fi‘fl(y)l
< SUPy<i<, b1 Zio 110 DUl < C5'Cyy Tizo My



By taking the upper bound on y € T' and N > 0, we obtain an estimation of

supyso | 1og D(fN)|.
We turn to the third step: we relate the norms of Dk and DfN. By [14], his C' and
conjugates f to a rotation. Therefore, we have:

log Dh —logDho f =logDf
hence, for all n integer:
log Dh — log Dh o f* = log D(f")

Since there is a point z in the circle such that Dh(z) = 1, we then have:
llog Dh o f"(2)| = |log D(f")(2)| < sup|log D(f")lo
i>0

Moreover, since (f"(z)),s0 is dense in the circle, and since Dh is continuous, then
we obtain: 4
[log Dhly < sup|log D(f)lo

i>0

‘We conclude:

IDhly < exp (c;‘c{2 \/eciz max(My” M) 4 (/M + \/Ml)) (13)

Finally, since max(Ml/Z, M;/Z) < 1, we obtain:

DRy < exp (C]/Ca)

where C{ = 2C§2 ¢C% + 1. We recall that:

), =6V22" D (15 1% v 1)
Hence the theorem.

Corollary 3.6. Since —— < exp (supl-ZO [log D(f i)lo), the proof above also provides

ming; Dh

an estimation on m

m < exp (C{/Cd)

4 C!' estimations: non-constant type

We have max,»o |Df"|o < max,so M,,/m,, by [14, p. 348]. Therefore, in order to prove
theorem 1.3, we can estimate M,,/m,. To that end, we proceed in two steps: first, we
establish some preliminary results. The most important result is corollary 4.6, which
gives an estimation of M, /M, in function of M,, a,+/@, and a constant Cg’gk. This
estimation is already given in [14, p. 345], but we still recall the steps to reach it,
because we need to estimate the constant Cgék in function of k, W(f), |S flo and |S f|r—3-

In the second step, we establish an estimation of the C'-conjugacy, based on a mod-

ification of the proof given in [14]. The main idea is to establish an alternative between

10



two possible situations for the sequences M), and @, : the "favorable" situation (R,) and
the "unfavorable" situation (R),) (proposition 4.10). The "unfavorable" situation only
occurs a finite number of times, due to the Diophantine condition on « (propositions
4.12 and 4.14).

In the "favorable" situation (R,), we can estimate M, /a,,1 in function of M, /a,
(see estimation (26)) and likewise, we can estimate a,,,/m, in function of «, /m,,.
Therefore, we can estimate M, /m, in function of M,,/m,,, where n4 is the integer
such that for any n > na, the favorable case occurs (see proposition 4.19). We relate

M,,/my, to Df IS”“ (proposition 4.17), and we compute a bound on «,, (proposition
4.15). Yoccoz’s proof needs to be modified because in its original version, it does not
allow to compute a bound on @, .

4.1 Preliminary results
First, we recall the following lemmas, which are in [14] (lemmas 3,4 and 5):
Lemma 4.1. Forl> 1 and x € T, we have:
Gne1—1 -1
i l f Mn
; (Dfiw) <l ey
with C(l) = &,
Remark 4.2. This lemma is obtained by applying Denjoy inequality.

Lemma 4.3. Let f € Diﬁﬁ(Tl), k>3 Foranyxe T, anyn € N, any 0 < p < gpy1,
we have:

M,
f n
IS 7l < 024—”%

M,
IS £P(x)] < c@m

1/2

M
1

IDlog Df?|y < Cys m

n

P M1/2
Dlog DfP(x)| < C) —=
|[Dlog DfP(x)| < % ()

with:

o € = 1SSl

o Cls = \2IS floe"?

o Clo = 92S floe™

11



Lemmadd. For 1 <r<k—-1,n>00<p<gn1, x €T, we have:

M2 }

1y, (x)

|D" log DfP(x)| < C;(V) [ (14)
with
Cl,(1) = Clg, CL(2) =82S floe™™
and, forr > 3:
r!
Cl(r) = [822r (1 V IS fl,-2) "™ ]
In particular,
~ ~(k=1)!
Cly = Cftk = 1) < [1002k = 2)%2(1 V [$ flis)?e™ VO]

Proof of lemma 4.4. The proof follows the line of [14], lemma 5: see appendix 6.1.
O

The important preliminary result, corollary 4.6, is obtained from the following
proposition. It is obtained by computing the constants in proposition 2 of [14]:

Proposition 4.5. Let

Cly = (k+ 3 V1DV max(1, IS fles))* (15)

For any x € T, we have:

(o] k _
M1 (X) — Cr: m,(x)| < ng [Mf,k D12, (x) + M,]l/zmnn(x)] (16)
n
Corollary 4.6.
a/(;_:] + Cé‘ékM,(’k—l)/Z
Mn+1 < Mn Fka,1/2 (17)
1-Cx M,
@ns Sk g gk=1)/2
ya_,,l - C28 M,
Myt = My,

1+ Clim,?
The proof of proposition 4.5 combines the following three lemmas [14, pp. 343-
344] (lemmas 6, 7 and 8):

Lemma 4.7. Forany x € T!, there exists y € [x, fi(x)],z € [f?*'(x), x] such that

Apt1

Myt 1 (Y) =

m,(2)

n

Lemma 4.8. Suppose that m,., is monotonous on an interval I, = (z, f(z)), z € T'.
Then, for any x € Tl,for anyy € I, (I, = (x, f4(x))), we have:

My (y) _
My ()C)

1

< climlr?

with

C;(,)k — 29(k + 2)e(ll+k/2)W(f)(C{7)2C£6

12



Lemma 4.9. If m,,, is not monotonous on any interval of the form I, = (z, f1(2)),
z € T, then for any x € T', y € I, we have:

k -
W1 () = M (V)] < CLEMED21m,(x)

with

VD — 1

ekI2+ W) _ 1\
cl = (L k- 1) (e(k/2+2>W(f)(1 + VD)2 )

Proof of proposition 4.5. Let us recall the proof of proposition 4.5 from these three
lemmas. (see [14, p.344]). Let x € T'and y € I, z € [f%*(x), x] the points given by
lemma 4.7. By combining lemmas 4.8 and 4.9, we obtain:

1 () = i ()] < (max (CLy', C1F)) (M2 () + MY, ()

Moreover, by lemma 3.3, we have:
Ima(2) = my()| < CLMY21z = 21 < €L, MY Py (x)

By applying lemma 4.7, and since @+ /a, < 1, we get:

Apyl
My (x)
ay

Apt1 Apt1

<

my(2)| + lmy,(2) = my ()]

n n

mn+1(-x) - Myt ()C) -

A+
m,(x)
a,

mn+1(x) - < |mn+1(y) - mn+l(x)| + |mn(Z) - mn(x)l

Therefore, we have:

Ayt

Mt () = ==, (0| < CH (M Pms (0) + MY, ()

n

: fik _ Sk ~fk S
with 57" = max(Csy , C5p)) + Cy.

Finally, let us estimate Cg’lk. Since k > 3, then:
[4(k/2 + 1)(200k)1? < (k + 3)®*+3)*+2k )2 and therefore,

22Dk /2 4 1)1 (200k) 2K DED! < (4 3)*! o
Therefore, we have:

Cly + €Y, < (k + 3) ' &2V max(1, IS flies))®
Since k£ > 3, we also have:

CLE+ €l < (k + 3)® 31 kDWW (max(1, 1S fli_s)F

Therefore, C§’1" < Cﬁgf = (k + 3)**3'®+ WD (max(1,|S fli-3))". Hence proposi-
tion 4.5.
o
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4.2 Estimation of the C'-conjugacy. Proof of estimation (1).

We choose an integer n; such that for any n > n;, we have:

n=1

ClaM,> < CR(Cl)T <1)2 (18)
We take:

{ ~log (205’8"/(0{9)'/2)}
n = 7
log ((C{)172)

We choose a parameter 8 such that (k + 1)/2 — 6 > (1 + 8+ 6)(1 + 6) (for the
interpretation of this parameter 6, see the remark after proposition 4.10). We take:

. 3+8 2k -28-1)\"?
0= m1n(1/2,(T)(—1 + (1 + W) ]] (19)

(in the proof of estimation (2), we take § = 1/2 instead).

We recall that for x > 0, 1 + x < ¢* and for 0 < x < 1/2, log(1/(1 —x)) <
x/(1 — x) < 2x. We apply estimation (18), we use the definition of n; and the fact that
0<1/2. We get:

+00 . (+oo 9] [ 1 ]
’g (1 + Mn) < exp nzZm M, | < exp —2C£ék(1 ~ (C{Q)g)

400 +00
1 k12 1
——— | < exp 20k M2 | < exp(—]
l—l [l _ CgékMill/z] [Z 28 7 1- (C{9)1/2

Therefore,
l*—""[[ 1+ M ]< [ 2 ] c 20)
— | <exp| —— | =Cx»
e W1 = CI M, 1= (Cly)
Let:
_ Tk et
C33 = max ((4C28 ) WB+T0-T | C32) 20
For any
~log (2(C3)?)
nZ—f+1=C34 22)
log C{4
we have:

[ yn-1
M, < (Cly ' <

(23)
2C3,
We use this estimation in the second step of the proof, to which we come now:

Let

14



ny = max(nl, 1712) (24)

where 71, is the integer defined by

C34 +

log(1/Cy) +1 <iip < C34 + log(1/Cy) + 2 (25)

4 4
log?2 log?2
Having defined the integer n,, we can present the alternative between the "favor-
able" case (R,) and the "unfavorable" case (R)).

Proposition 4.10. Let a,, = 1/((C33)?). Let 1 > n, > 0 be a sequence such that
a, = a/rl:f For any n > n,, we can define a sequence a,, 1/((C3)?) < a, < 1/Cs3 and

a sequence p, < 1 such that M,, = a,o/y". The sequence a,, is defined by:

if
a 1+ M?
(Rp) CHMEDP < M=% then ayy = ay———"=
@ 1 -Clim,

and if

(R CLEMED20 5 p, T ppen g, = a,
@y
Moreover, if (R,) holds, then p,+1 = pn + 1,(1 — py);
and if (R}, holds, then pn+1 2 (k+ 1)/2 — 0)(1 — n,)pn. In particular, the sequence
(On)nzn, 1S increasing.

The threshold between the alternatives (R,) and (R),) is controlled with a parameter
6, which could be freely chosen such that 8 > O and (k+ 1)/2 -0 > (1 + 8+ 0)(1 + ).
When 6 increases, the number 73 of occurrences of (R),) increases. When n3 increases,
all other quantities being equal, the bound on the norm of the conjugacy increases.
Moreover, if 8 gets too large, we can no longer show that nj is finite (see proposition
4.14), and therefore, we can no longer estimate the norm of the conjugacy.

On the other hand, when 8 is smaller, Cz, increases. It increases the number n,
above which we consider the alternatives (R,) and (R),). Css increases too (see propo-
sition 4.19). When C3; and Css increase, all other quantities being equal, the bound
on the norm of the conjugacy increases. Moreover, when 8 — 0, C3; — +o0, which
makes this bound on the conjugacy diverge.

Thus, the variation of 6 has contradictory influences on the bound of the norm of
the conjugacy, and there is a choice of 6 that optimizes this bound. However, in this
paper, we do not seek this optimal 8, since it would complicate further the expression of
the final estimate. Instead, in estimation (2), we fix 6 = 1/2, which allows simplifying
the expression of the estimate. In estimation (3), we take 6 — 0, which also allows
simplifying the estimate.

Proof of proposition 4.10: For any n > ny, since ny > nj,
1 e 1+ M Cyp 1
ay, = —SanSanzn(l—”l/z)s—z < —
- 3

and since

15



@) > a,d) =M, > a,

then p, < 1.
Second, if (R,) holds, then by applying corollary 4.6, we have:
1+ Me (o7
My < o Ma (26)

1- C28 Mn ay

Therefore,
Mn+1 = an+la';)n++ll < an-+—la'n+la}:tn_l = an+]an+la;]+_1ﬂ")(pn_])

and then:

Pt = 12 (1 =n)(op — 1)
hence the estimation:
Prn+1 > Pnt 7711(1 _pn)
If (R}, holds, since C%‘M},/ 2 <1/2, then by applying corollary 4.6, we obtain:
M, < 4C§ékM’(1k+l)/2—9

Moreover, since a, < 1/Cs3 < 1, then:

Us1)/2-0 _  (14+0)(1+0) _  (1+p+0)(1+6)-1 ay a
an < ay = dndy S T aear0T = Ak
Cy 4G5

Therefore, by combining these two estimations, we obtain:
et Kk a g(k+1)/2-6 Wk (k+1)/2—6  pa((k+1)/2-6 n((k+1)/2-6
a1 @) = My < ACLEMIFDIT0 < 4CTE QD20 fu B D20 o G)/2-0)

Moreover, since a,.; = a,, then

(on((k+1)/2=0))(A=110)—Pn+1
< an+1

hence the estimation:

Prs1 Z (Pa((k + 1)/2 = 0))(1 = 11,)

The reader can notice that until now, we have not used the Diophantine condition
on a yet. Now, we introduce this condition in order to estimate p,, from below (propo-
sition 4.11), and in order to determine a bound p above which (R,) always occurs
(proposition 4.12).

16



Proposition 4.11. If 3 > 0, we have the estimation:

log?2
(L+pye*t = Dlog(1/Ca)/B

If B = 0, we have the estimation:

leZZ(

S log?2
"7 (my + 1log(1/Cy)

P

Proof. Since « is Diophantine, we have: @, > Cda,ll+ﬁ . Therefore, for 8 > 0,

1 log(1/C log(1/C,
log( )+ og/Ca) _ +ﬁ)(log(1/an)+ logd/Ca) "))
A+ ﬂ ﬂ
and since a_; = 1, then by iteration, for any n > 0,
log(1/Cy)

log (1/ay) < ((1+8)"" - 1) 5

If B = 0, we have:
log(1/a,) < (m+ 1)log(1/Cy)

Moreover, since p,, = —log(M,,/a,,)/log(1/a,,) and M,,/a,, < 1/2, then we get
proposition 4.11.

O
Proposition 4.12. Let B = f+ S50 If
Bi

S T ———— = 27

P *—1)/2-0 p (27)

then (R,,) occurs.
Remark 4.13. Note that p < 1, because (k+1)/2-0 > (1+8+6)(1+6) and 5; < B+1/2.
Proof. Since a,, < (1/2)%, then

IOg Cy < - log Cy

0< <
loga, = %llog2

(28)

1
. = 1+
Furthermore, since a,,; = a, " > Cya, B , then

1 loga, >logCy + (1 +B)loga,
—

and since log @, < 1 for n > 0, then by (28),

1 1
<. logCa_, los(1/C
1_77n 10g0/n %IOgZ

Therefore, if estimation (27) holds, then

k-1 1
— —0O|p,+1- >0
( 2 )p l_nn

17



and therefore,

1 (]“T]—G)pn-*—l—l%lm
Elas

@y
Hence
@ @ &l _g)p, Bl g 1-(4l-g g kl_g-] kg -
e R N L I Ve Ml Ve c > M2 (o
@y @p
Therefore,
Qa, ktl_g
M, n+1 chéanz
n
[m}
Proposition 4.14. The alternative (R)) occurs less than nz times, with
log(p/pno)
n3 — ny < max [0, W 29)
IOg( 144 )

Proof. 1f p,, > p, then (R;) does not occur for any n > n,. We suppose p,, < p. For
any n > ny, since

k+1)/2-0
(k+1)/2-6)1A -1, = IR
then
((k +1)/2 - 6?)"_"2
n 2|l— Pn,
1 +ﬂ1
Moreover,
k+1D/2-6\"" S
1 +ﬂ1 pl’lz —p
when
log(P/,Dnz)
n>n, + ———2
(k+1)/2-6
IOg( +1+ﬁ| )

]

The next proposition gives a lower bound on «,,,, which allows computing a bound
on the C'-conjugacy.

Proposition 4.15. Let ny > 0 be the smallest integer such that for any n > ns, (R,)
occurs. We have:

exp((n3+1+p/(1=p))(1+51))

ay, 2 C,

Proof. First, we suppose ns > np + 1 We need the lemma:

18



Lemma 4.16. Let ns > ny be the smallest integer such that

s

M 2n3—ny+p/(1-p)

n=np

ns exists. Moreover, we have p,,.1 > p. In particular, for this integer ns, we have that
for any n > ns + 1, (R,) occurs.

Proof. First, let us show the existence of ns. By absurd, suppose that
+00
D n<m—m+p/(1 - p)
n=np

Forany 1 > x > 0,

o 1 X
Bl1=x) " 1==x

Therefore, for any integer p > np + 1,

() <ol 82

n=np n=np

Moreover, ﬁ < 1+, for any n > 1. Therefore,

p-1

> 1?’177 < (n3 = +p/(1=p))(1 +B1)

n=np

Since 1, < 1, then 222:5' 7, < ny. Therefore,

p-1

M
21y

n=

< (n3+p/(1=p))(1 +B1)

n
Moreover, since ay = @ > Cy then for any p > np + 1:

20( ) o expln+p/(1-p)(1+61)
a, = q, = C,
However, since @), > 2a,4», then &, — 0 when p — +oco. Hence the contradiction
and the existence of ns. Note that ns + 1 > ny.

Second, let us show that p,.,; > p. If there is ng < ns such that p,, > p, then
Pns+1 = p because the sequence p, is increasing. Otherwise, for any n < ns, we have:
Pn = p.

Let E; ={ns > n >ny /(R,) occurs} and E, = {ns > n > ny / (R}) occurs}.

We have:

n3—n2+lfpSinn=27]n+z77nﬁzfln+n3—nz

n=ny nek nek, nek,

Therefore,
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D= p/(1=p)

nek,

Since p, is increasing and p, < p, we get:

ns

Pns+1 = Pny T anﬂ = Pn

n=np

Prs+1 = Pny + anH —Pn = Pny T Z(l = Py Z Pn, +(1 —P)Zﬂn 2p

nek, nekE; nek;

Now, let us show proposition 4.15. Since n,, < 1 for any n, then we have:

ns
LN P
}’l3—n2+l+m> My Z2Nn3 —Np + ——

I=p
Since
ns ng—1
nz —ny + l€p+12 Zﬂnz Zﬂn
n=np n=np

then by proceeding in the same way as in the first part of the proof of lemma 4.16,
we obtain:

p, > CZXP((’l.?*1*,0/(1’/7))(1*[31)) (30)

Finally, if n4 < n,, then as in the proof of lemma 4.16,

m-lf g
tny = a1 () 5 o1+

Therefore, the estimation given in proposition 4.15 still holds.
O

Having bounded a,,, from below, we show how this bound is related to M,,/m, (and
therefore, how this is related to the conjugacy).

Proposition 4.17. Letn > 1, M,, = max 1 m,(x), m,, = min e m,(x). Forany j < n,
M; -

— < 3|Dfly"

m;

Proof. We need the following lemma, which is in [14, p. 339]:

Lemma 4.18. Forany x € T', let J, = [f~?(x), f¥(x)]. The intervals f'(J,),0 <i <
gn+1 recover T
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First, note that since f(x + 1) — f(x) = 1 (in the universal cover), then |Df]y > 1.
Let x,y € T' such that M, = m,(x) and m, = m,(y). Let 0 < i < g,41 such that
x € fi(Jy). Since we have the cyclic order f%(y) < x < f™4(y) then we also have:
fi(y) < fi(x) < f+?(y). Therefore, [x, f4(x)] C [ (y), f*+??(y)]. This implies:

My < f7200) = 0 0) + 10 = FO) + FO) = 77 0)

M, < (IDF*lo +IDf'ly + IDF"1o) (£ () = )
and therefore,

—= < (IDf "l +IDf'lo + 1D f o)
m,

n

Therefore,

M
< 3|Df|gn+qn+l
m,

n

Likewise, for any j < n, we have:

M
I < 3|Df|gn+%+l
m;j

Since g, + gni1 < 2qne1 < {%ﬂ we obtain proposition 4.17.

O
Proposition 4.19. For anyn > 1,
n Mn4
— <Css (€2
n mn4
with:
2(2C§3)0 -1 (C'lf9)(n27w f.k (C{9)(”271)/2
Css = exp RV G + 28 7 (32)
(2C33) - 1 1 - (C‘l9)8 1 - (Cl9)l/2
Proof. Since for any n > ny, (R,) occurs, then by corollary 4.6, we have:
Mn+l < 1+ Mz A+ ]
M, =1l
m 1-M°  «
n+1 n n+1
R
Therefore,
01+ pl?
Mn+l/mn+l < 1+ Mn 28 (33)

Mn/mn T 1- Mﬁ 1- CgékMi/z

Therefore, for any n > ny,
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1+ MO +kaM”2

Mn Mn
s l_[ 1-M° iy, 1/2
" e -y M

As in the proof of estimation (20), and since ny > n,, we have

ﬁ (1 + MH) <exp [Z M(’] xp( C{ ) 1)9]
Ty

J=n4 J=ny
ﬁ( fik 1/2 [ 1k 1/2] Sk leénz Ve
1+C, M, <expC E M <exp(C }
28 f
j=ns f= — (€)'
+00 +00 1/2 [ \(m—-1)/2
1 j (Co)™™
Sk J fk 19
—F— <exp|C ———— | <exp |20y ————— (34)
1_[ 1 _ka 1/2 [ 28 an:z 1 _ka 1/2} ( _ (C.(g)l/Z

J=na

and since, for j > ny, M; < 1/(2C§3), we get:

0 (C{g)(nz—l)ﬁ
+oo +00
! ( Mj ] 1-(Clyy?
l_[ = €xp Z —— | <exp| ————
_ 0 — ) 1
J=ns I-M Jj=ny 1 Mj 1 2C3,)
Therefore,
Mn Mn4 2(2C§3)9 -1 (C{g)(nz—l)é’ k(C{9)(n2_1)/2
— < eXp 2 \g g + 3 T (35)
my my, (2C33) -1 1 - (C.19) 1- (C'lg) /
[m]

Hence proposition 4.19.

Proof of estimation (1). By combining propositions 4.17 and 4.19, and since by [14, p

348],
|Dhlo < sup,,.o M,/m,, we get:

2
IDhly < C36IDf]," (36)
with:
C36 = 3C3s
=2+ 1/(x-1), since

We estimate C35: since 2x — 1)/(x — 1)
(C)™~Y8 < 1/(2(C33)%)° and since 6 < 1/2, then:

35 < exp [( T RCay =1 s 2(Cx)2)(1 = (Cly))

Since C19 > 1, we get:
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IDHlo < CxIDfI" 37)

with:

! 1
Cy7=3 I A Vo L .
. M[( TR 1T ey a - )

We estimate C3; using expressions of 6 (see (19)), of C{Q (see lemma 3.4) and of
C33 (see (21) and proposition 4.5).

We estimate «,, using propositions 4.15, 4.14, 4.12, 4.11, and the expressions of
n, (see (24)) and estimates of 6, C{Q and Csz3. We get:

[Dhly < Ca(k, B, Cas ID flo, W(f), IS fli-3)
where C; is the combination of the following functions:
-1/2
1 Cfy=(1+en(-6V220(s f12 v 1))
(since |S flo < IS fli_3, We can estimate C{9 in function of W(f),|S fli_3).

2. Cf = (ke + 3)E e WD max(1, IS fli-3) ¢+

3. 6= min(1/2,(¥)(—1 + Ji+ L(k(;(fg);l»))

2
1
4. C33 = max (e el (4C£gk)“+’3+“’“+€>")

log(2C2) | 2log(1/Cy)

+2,2+
logleg 0log?2 >

_ _ e
5. m = Lmax( AT |

_ 2log(1/Cy)
6. B1 =B+ (na—1)log2

7. n3 = r—log(<k+]l>/H) (n2(1 + Tog(1 + B)) + log (2241 ) )]
TA

9. ap, =Can(en((ns+1+ ]%p)(l +81))

- S e S B
Rk ((2 + ey +30%) (2<c_u>2>"(1—(0{9>0>)

2
11. |Dhly < Cy7IDfly"

Note that we have a bound a;,, < a@y,, but we do not know the value of a,,.
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4.3 Proof of estimation (2).

In order to obtain relatively simple estimates, we can take the parameter 6 (defined in
(19)) either vanishingly close to 0 (estimation (3)), or fixed independently of the other
parameters (estimation (2)).

In the latter case, we need to assume that k — 28 — 1 is sufficiently large, in order to
keep (k+ 1)/2 -0 > (1 + B+ 0)(1 + 6). To illustrate this case, we take 6 = 1/2, which
requires k > 38 + 9/2 (for any fixed #, we cannot obtain an assumption of the form
k > 2 + u for some number u: we necessarily have k > A8 + u with 1 > 2).

To simplify the function C,, we successively estimate Css, a;u and n,.

Lemma 4.20. Let C35 and Cs3 defined in proposition 4.19 and (21) respectively. We
have:

3p+1
Css < exp (C332 )
Proof. For any x > 2,
Cx-D/x-1D=2+1/(x-1)<3

Since C33 > C3p > e > 2, then

2 (Clor2” Fk ot 10f N1
1_(]C{'9)1/2 +3Cx (1/C)
(C{g)nz/Z

1-(C )12

202C3) -1 £ 5 (ClynP
exp (25 1/l s

1-(Cly)1”2

< exp (3(1 +cihaschyr

- and C{Q < 1, then:
log Ciy

On the other hand, since n, >

o3 loeCly < (2(C33)2/C{9) /

Therefore,
S \n2 /2 n S
apchy G e B
T (ALE R T (AIE
19 19
2, Y2
< (1/Cl)'” 2Cwrey) !
1 - (Cly V2C3(1 - (Cl)'2)

Moreover, since Cgék > 1/(V2—1)then (1 + C{ék)/ V2 < Cgék. Therefore,

Cf ny/2 3cfk
exp|3(1 +C§’8k)(1/C{9)”2L]Se [$]

Xp
1=l Cx(1=(Cl'?)
3 —
Since C323(3/2+ﬁ ! > 4C§’8k, then
[k
G Lo
Cyy — 4%



We also have: o
l ~
Chs e 5

1
1- (C{Q)I/Z

NP

We obtain:

SCf’k lc i3 1 3p+1
exp[ 28f ] < [84 33 1(6{9)1/2] < exp (Cg)
C33(1 - (C19)1/2)

2

Lemma 4.21. Let a;, defined page 23 and n, defined in (24). We have:
1

o < (C—d) AeA ((,B +3/2) (2 + 10;;/2) (2 +log(1 + B) + log log(l/Cd))))
Proof. Since B; <+ 1/2, and @ = 1/2, then

~

k+1)/2—0
log(%) > log(3/2)

Therefore,

ny log ((ny + 1)log(1/Cy))
< ———11+1log(l
= 102(3/2) ( *log(1+5) + 1 log 2
We have log(n; + 1)/ny < 1 and nylog2 > 1.
Moreover, p < 2/3, and so p/(1 — p) < 2. Hence the lemma.

Lemma 4.22. Let n, defined in (24). We have:

my < C3s(W(), S flo)(k + 4)!I(1 + log(max(1, |S fle-3)))(1 + log(1/Ca))
with:

Css(W(f), IS flo) = €? A BW(f) + 2 log(max(L, IS flo)) +4)

Proof. In order to estimate n,, we need to estimate Cs3 (see page 23). We distinguish
1
the cases Cs3 = (4C§ék)<l+ﬁ+0>“+ﬂ>fl and Cs3 = clk

32"
. k 1
First, we suppose C33 = (4C§é ) TprO+0-T |

We have: C33 < 4C£ék. Therefore,

log (24C5)?) 4

+ log(1/Cy)
f
—log(C?y) log2

n2<2+

Moreover (see page 23),

log(CL) < (k +3)! [log(k + 3) + W(f) + max(1, 1S fli-s)]
And for any x > —1, log(1 + x) > x/(1 + x). Therefore,
1

— < <2+ 2ec2/2
log(C” 1 e
—log(Cly) 5 log(l + e “2)
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Therefore,

n<2+2 (1 + eczfz) [5log2) + 2(k + 3)! (W(F) + log(k + 3) + log(max(1, |S fli_3)))]

4
——log(1/C,
+10g2 og(1/Cq)

Moreover, by relation (11),
46 < exp (exp (2W(f) +1og(6 V2(max(1, S flo)'/?) + 1)) = C}
Moreover, (k +4)!/3 > 2 + 5log?2 and 2(k + 4)/3 > 21log(k + 3). Therefore,
(k+4)! =2+ 5log2+2(k +3)! log(k + 3)

Moreover, 2 (1 + eC£2) < 4eC£2. We get:
7 4
ny < (k+H!IC5(W(f) + 1 + log(max(1, S flr-3)) + @ log(1/Cy)

By using that log(6 V2)+1<4and4/ log2 < (k+4)!, we obtain the estimation of
lemma 4.22.

If C33 = C3,, we need the following lemma:

Lemma 4.23. Let Cs3 given by (21) and Cs4 given by (22). If Cs3 = Cx, then
Csy < 4062C{2
Proof. We have:

—log (2C33)2/CYy) L log2 4
34 = : =
log C/, Log(1+¢7) (1= (1 +e )14  log(1 + eCn)

Since for any x > —1, log(1 + x) > x/(1 + x), then:

<1+ )
log(1 + e )
On the other hand,

/ R e~Ch
1—(1+e )14 = f - dt > -
0 4 (1 +1)54 4(1 + e—C22)5/4

Therefore,

1 log2

- —+— +4
8(1 + e 2)e* 2 4en

f f
C34 < 8(1 + e )" (

Since ng > 612 (see expression (11)), then:

e <207 %107 (38)
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Therefore,
1 log?2

- - —+ 4<41
8(1 + e 2)e?n 4l

Therefore,
Csy < 4-062C2f2

O
eckH
log((C}y)'?)
of the proof and we still obtain the estimate of lemma 4.22.

log(2C2
If ny = | —=22C0) | 21080C) | 5} then:

Assuming that C33 = Csp, ifny = [2 + | then we can follow the first part

log CJ, 0log2
~log (2(C33)*/C],
( - o) _ Cas < 2082 < 2(CL) <
log Cy
Therefore,
log(2C?2 21og(1/C - 4log(1/C
ny < — 8( 33)+ og(1/ d)+2§C§8+ og(1l/ d)+1

log C{9 flog?2 log?2
The estimation of lemma 4.22 still holds. This completes the proof of lemma 4.22.
O

Now, we show estimation (2). We denote log®(x) = loglog x. By applying esti-
mation (36) and lemma 4.21, we have:

2

|Dhly < e<3>A(1og<2>(C36) +10g®(IDflo) + log 2 + log®(1/Cy) + (B + 3/2) (2 + mgw (

2+ B+1og?(1 /Cd))))

By lemma 4.20, we have:

3p+1
log?(C36) < 10g®(3C3s) < log (log 3+Cy )

Moreover, since Cs3 > e, @ > 1/2 and e(e'/?> - 1) > log 3 , then

3p+1 3p+1

log3+C,7 <Cy?

+1

Therefore,

36+1
log®(C36) < ( p S+ 1) Cs
Moreover, by estimation (38), e‘czf2 <2.07 x 107*, and therefore, — log(C{9) <2/3
(see expression (10)). By applying the definition of n, (page 15), we get:

+1
2

1
log®Cp) < 383 D 1og 03y < B2 1L,

Moreover,
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B+3/2
log(3/2)

B“L1n2+(ﬁ+3/2 B+3)m +2)

> 10g(3/2)) B+2)ny +2(B+3/2) <

Therefore,

IDhly < e A ( (B +3/2)(B + 3)(n2 + 2)(1 + 1og®(IDflo))(1 + logm(l/cd)))

log(3/2)

We have: n; + 2 < 2n,. By lemma 4.22, and since 4/ log(3/2) < 10, we get:

IDhly < €@ A ((B+3/2)(B + 3)(k +4)!C5(1 +1og(1/Ca)(1 + log(max(L, IS fli-3))))
(39)
with Cs = 10(1 + log?(IDflo))e® A BW(f) + 2log(max(1, IS flo))) + 2).
This estimation of |Dh| is increasing with k. Therefore, to obtain a bound as low
as we can, we take k = [38 + 9/2]. We obtain:

[Dhlg < ¢ A (C3IBICAICACSID flo, W) IS FlolCollS flrsssayn))
with:
1. C3[B] = (38 + 21/2))!
2. CulCal = (1 +log(1/Cy))?
3. CsUDflo, W), IS flol = 10(1+1og®(IDf10))e® ABW(f) + 2 log(max(1, IS flo))) +4)

4. CsllS flr3praa1] = 1 + log(max(1, S flr3s+3/21))

4.4 Proof of estimation (3)

Let6 = k—2B—1 and 8 > 0. We make a Taylor expansion with 6 — 0 (since k > 3,
this implies automatically 8 > 0). To estimate |Dh|y, we successively estimate ny, ns,
p/(1 —p)and a,.

We have:

o
6= +0(d
1G+p OO
—2—
Since B > 0, then for ¢ sufficiently small, C33 = ¢'"€19” . This makes the depen-
dence on k and |S f|¢—3 disappear. Moreover,

Csz=¢eA [ 2, ]
0log(1/Cly) + o(6)

" :( 4, 210g(1/Cd)]l +0(1)
(log C{g)z log?2 0 4

__ 4 _ 2log(1/Ca)
We denote Cy49 = oz Clp and Cy; log2
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Since c
Bi=B+—2+0(0)
np

then

k+1 k+1
= -0 = -0 6/2—9—C41/n2
1 2 — 2 -1 —
og[ 1+ 5, ) 1+ 5, + 0(0) T+ 5, + 0(0)

Therefore,

1 1
ny = m(1 + log(1 +ﬁ)>(m+_ﬂé4m) . 0(9_2)

<(1+p)? n + !
ny < o\ —
3 on>/2 — 6ny — Cay 2

Moreover, Ony = C41 + C40 + o(1) and 6n, = 4(3 + B)(Cy; + Cyp) + o(1). Therefore,

(1 +B)*(Cay + Cuo) 1
n3 < 2@+ 25) +0(§) 40)
Moreover,
c
ﬁl B + C41:IC‘409 + 0(9) 0 ( C41 )

- - —1-226+p-1- —" )10
PREl T o0 S e R
Therefore, p/(1 — p) = 0(1/6%) (we recall that 1/5 = o(1/6%)).

Let
k+52k+ 1?3 2log2

Clk. Co D flo WIS flo) = EE LD [ LI log(l/cd>)

2klog?2 (log CYy)>

Since k = 28 + 1 + ¢, and by applying estimation (40), we have:

, Cy 1
@, 2Cy A (e/\ (? +o(§)))

|Dhly < C37|Dflo A ((1/Cd) A (e A (6%6 + 0(1/52))))

Therefore,

|Dhlg < C371Dflo A (e A (e A (log log(1/Cy) + 6%& + 0(1/62))))
Since log®(1/Cy) = o(1/6%), then
\Dhly < C37|Dflo A (e A (e A (61—2@ +o(l /52))))

Likewise, since |loglog|Dflo| < 1" and [logC37] < e A e A (0(1/5%)). We

conclude:
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IDhly < ¢ A é&[k, Ca W) IS flol + 0(1/52))

with:
k+57%k+1)7°( 2log2
Crlk, o W(PIS flo) = S22 EX D ( g2 . 1og<1/cd>]
2klog2 (log C1y)?
We recall that:
1/2

Cly=(1+en(-6V2e2" V(s 1% v 1))

In estimations (2) and (3), three iterations of the exponential appear. This calls for

explanation. A first exponential comes from the estimation |D f"|y < C|Df |2/ ", where

ny is the rank above which the "favorable" case always occurs. A second exponential
ng=1( |

comes from writing @,, = a(l)_[ =0 (ﬁ) We bound each 1+m using the Diophantine

condition, and a third exponential comes from the estimation [],.cg, (1 nx) cmTney

where E is the set and n3 — n, is the number of "unfavorable" cases.

This number is bounded logarithmically, by Clog C33. However, Cs3 is bounded
by an exponential of the parameters Indeed when ¢ is small, C33 ~ e+, which gives
estimation (3). Otherwise, C33 ~ C28 In this case, Cf ~ C*. Indeed, in lemma 14,
we need k — 1 iterations to estlmate |DA! log DfP (x)|0 (p < ¢u+1), an estimation that,
in turn, gives an estimate of C28 This gives estimation (2). Thus, we have explained
the occurence of three exponentials in the estimates.

Since the number of "unfavorable" cases drives the dominant term of these esti-
mates, they can be substantially improved when the "favorable" case always occurs. In
remark 1.5, we make this assumption, together with the assumption k > 35+9/2. Thus,
we can take 6 = 1/2, and a sufficient condition for the occurrence of the "favorable"
case is:

Aptl

> CIACL) "D = Cy(n ko B, W)L IS flis)

n

which decreases geometrically with 7.
We recall that:

C{9 = (1 +eA (—6 ‘/Eezw(f)(lSf|(l)/2 v 1)))71/2

CLE =k + 3 IV max(1,18 flros))

We obtain the following estimation:

|Dhly < exp (Colk, W(f), IS fle-31“"?) IDfI5

with:

4
Colk, W(f).IS fli_s] = max (e‘ 4C§;f)
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36+1
2

Ciolpl =

Finally, note that numbers of constant type do not always satisfy (4) for any n (they
only satisfy it above some rank). Moreover, there are numbers satisfying (4) that are
not of constant type.

5 (C* estimations

In this section, we compute estimates of higher order derivatives of the conjugacy h
in function of bounds on the first derivative of 4. We compute the values of some of
the constants appearing in Yoccoz’s proof [14] (we do not compute the dependency in
k). However, in order to obtain our result, we need to slightly modify the proof of one
proposition (proposition 5.10). If we strictly followed Yoccoz’s proof, we would find an
estimate that depends on the C'-norm of &, and on k, 8, C4, W(f), IS fli—3, |DA! log Dflo,
but this estimate would diverge as f gets closer to a rotation. Moreover, we need to
elaborate on the end of his proof.

The proof has four steps. We let real numbers 0 < yg < y; < g(yp), with

gtyo) =1 +B)yo+k—2+pP)) /(2 +p), and we let an integer N. In the first three
steps, we compute || log DfNILYl in function of sup . [Ilog Df?|ly, (estimation (41)).
In the first step, using convexity estimations (proposition 5.7) and a consequence of
the Faa-di-Bruno formula (lemma 5.6), we establish an estimation of ||log Df% ||, for
0<y<k-1(lemmaS5.8).

In the second step, we obtain an estimation of ||log Df"%||,, 0 < n < gy1/q, for
0 <y <y, (estimation (54)).

In the third step, we write N = Zf:o bsq,, with by integers satisfying 0 < by <
gs+1/4s, in order to get an estimation of || log D f N Il,, in function of SUp,50 [lTog DfPly,.
Thus, in these three steps, the aim is to establish the following proposition:

(+B)yo+k—(2+p) We have:

Proposition 5.1. Let 0 < yp <y < g(yo) = 5

4
Illog DFV|l,, < e A (Cn(k, B) [C{f + 4k log(C;") + 24k(k + 1) sup || log D f”||yo]
: p>0
41)

The expressions of C7, and C;gk are given page 45.

In the fourth step, we iterate this reasoning: the inductive step is given by proposi-
tion 5.1: if we have an estimate of sup, || log D N Il,,, then we can get an estimate of
supys lllog DNy, for y; < yir1 < g(y:). We can initiate the induction with y = 0,
because we have C! estimates. We take YVirl = %(g(yi) + ;) and we have:

lim;_, o y; = k— 2 — . Thus, we can obtain an estimation of ||Dhl|—2—g—,-

In all the rest of the paper, we denote:

M’ =exp (sug) [log D(fi)|0)
[24
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M = exp (sup | log D(f">||y0)
>0
Note that M > M’ > 1.

5.1 Estimation of ||log Df*||,,0 <y < k- 1.

The following lemma is a converse of the implication used in [14, p. 348], according
to which if M, /m,, is bounded, then the conjugacy of f to a rotation is C 1,

Lemma 5.2. Let M,, = sup . |f9(x) — x|, m, = inf e |f9"(x) — x| and
M’ = exp (supizo |log D(fi)lo). Then we have the following estimation:
% <M

ny

Proof. Let e > 0, x,y such that M,, = |f9"(x) — x| and m,, = |f9"(y) — y|.
Since f7(y),s0 is dense in T', then there is a positive integer / such

that |£'(y) - x| < min (57, €)-
Then we obtain: ‘

|f )= < 1F )= OGN = F O+ ) =1 < IDF ol f % (v)—yl+2€ < M'm,+2e€

for all € > 0. Hence the lemma.
O

The C”-norms, when 7y varies in R, are related with each other by convexity in-
equalities (also called interpolation inequalities):

Proposition 5.3. Let y5,y3 € R* with 0 <y, < y3 and y3 > 0. For any ¢ € C**(T"),
we have:

73772 72

lglly, < Caa(ya) lidlly ™ 1igilly:

with Cy(y3) = (LysJ+1P+1
Proof. See appendix. -

Using these convexity inequalities, we establish various relations, among which is
the important corollary 5.5, which relate the norms of log Df" and those of Df" — 1.
ForO<vy; <y, <k-1,y, # 0, and n € Z, proposition 5.3 gives:

lllog Df"|ly, < Caslllog Df"|[1> 42)

V2

IDS" = 1l,, < CaallDf" = 1|12/ (43)
with Cy3(y1,72) = Caa(y2)(log M')' =117 and Cas(y1,72) = Caa(y2)(M’ + 1)\ 71/72,

Forn > 0, j € Z, we have:
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D" lly < MV (44)
and, for 0 <y’ < 1, since |[Df" - 1],, = [Df"],:

DYy < 1MV D" =11, (45)
Therefore, for 0 <y’ < 1, ¢ € C”'(T"), we get, by the relations (8) and (9):

DY Blly < Cas(llglly + DS = 1y llllo) (46)
with Cas(j) = (Ij1 + DM

Let A = X{‘...le’ be a monomial of / variables, such that [ = ;:1 pjp = 1. Let
0 <y <1,n€Z. Weestimate ||All,, when X; = D'log Df" or when X; = D'*! f",
supposing that [ +y" <k — 1.

The relations (8) and (9) allow estimating ||All,» by a sum of less than 2! terms of
the form [|X, |,/ 1A/ Xpllo, 1 < p <1, j, # 0. By relation (42), we have:

.
ID”log Df"ll,y < c46||1ong"||§f;7>/<+7>

D7l < CalDf = 1L
A(D log Dfn, vees Dl log Dfn) U-p)/U+y)
< Cuslllog Df"ll "™
H Drlog Df" 0 +y
AD*f", ... D" f™) =Pty
” D fn ) < CylDf" =1,

with Cae(p, 1, y") = Caz(p+ Y, 1+ ¥"); Car(p, L, y') = Caa(p + ¥, [ +¥');
Cus(p,L,Y') = (Cas(L,1+y)™Y
Cao(p,1,Y') = (Cas(1, 1+ )"

Scheme of the proof. The first two estimates are straightforward. For the third estimate,
we write

A(Dlog Df", ..., D'log Df™)

— n)J1 P nyjp—1 ; a\Ji
DrlogDf" = (Dlog Df")" ...(D”log Df") (D long)

we apply estimation (42) to each D' log Df" and we use that Y ji < L.
The proof of the fourth estimate is analogous, by noting that fori > 1,
Di(Dfn _ 1) — DHlfn.

]
Therefore, when X; = D' log Df", we get:
lAll, < Csolllog Df" |l 47
and when X; = D! f1,
lAlly < CsillDf" = Uiy (48)
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with Cso(1) = 2 max; <</ supy,, 1 Cas(p, L,y )Cag(p,1,y’) and
Csi(D) = 2" max ¢ g SUPg<y <1 Ca7(p + ¥, 1+ ¥ )Ca0(p + 7, 1+ 7).

Using appendix 6.4, this allows obtaining the following lemma:

Lemma 5.4. Let P be one of the polynomials of appendix 6.4. P is a polynomial of
variables X1, ..., X;, homogeneous of weight l if X; has a weight of i. For alln € Z, all
0 <9y <1, we have:

|IP(Dlog Df",...,D'log Df")lly < Csylllog Df"llisy
D2fn Dl+1fn

P < Css|IDf" = 1|14

(Df” Df )y’ s3llDf" = iy

with Csy(l) = (401 + 1)*™*DCso (D) and
Cs3(D) = (4L + D) DCys(=DCs1 (1) (1 + Caa(l, 1+ ¥Y)Cas(Y', I + 7))

Scheme of the proof. The first estimate comes from the preceding discussion. For the
second estimate, we write a monomial of P as:

D2fn Ji len
(5) (57

Ji
) = DD D)
We apply estimate (46), (48), and estimate (43) twice.

Corollary 5.5. ForneZ, 0<y<k-1,y=|yl+7v, 0<9y < 1. we have:
C,IDf" =1l < Illog Df"lly < CsalDf" = 1ly
with Csa(y) = M if0 <y < 1 and
Csa(y) = [Cs2(lyDCas(D)(1 + MCaz(Lyly)Cas(y' sy V Cs3(LyD if ¥ = 1.

Scheme of the proof. For 0 <y < 1, we prove the estimates directly, using that log x <
x—1.

When y > 1, for the right-hand side of the estimation, we use formula (77) in
appendix 6.4 and the second estimate of lemma 5.4.

For the left-hand side, we apply formula (76) in appendix 6.4, the first estimate of
lemma 5.4, relation (46) with ¢ = DY /D" and j = 1, the left-hand side of this
estimate of corollary 5.5 with y < 1, and relation (42) twice.

O

Using mainly the Faa-d-Bruno formula, we have the lemma [14, p. 350]:

Lemma 5.6. Let yo > y > 0, y € D™ UN(TY), ¢ € CY(T?). We have:

¢ o vlly < Cssliglly

with Css(y,) = Wl for 0 <y < 1, and Css(y, ) = (LyDIDYIL! fory > 1.
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When ¢ = f" for some integer 1, or when y = h~!, where 4 is the conjugacy of f
to a rotation, we note:

Css(y,¥) = Css(y) = M7 if 0 <y < 1, and

Css(y,¥) = Css(y) = (QLyH)> MY if y > 1.

Proof. See appendix 6.3.
O

We have: f" = hR,,h~'. We apply lemma 5.6 with y = h~' and ¢ = hR,, — h — na.
To estimate ||iR,, — h — nall,, we use the C?”-norm of Dh. We get:

Proposition 5.7. Forn € Z, 0 <y <y, we have:
If" = id = nally < Csellnall

with Cse(y) = 2MCss(y).

Let a, = (=1)"(gna — p,) and let A; = |[D*"'log Df%|lo + a; (the role of this
additional a; is explained at the end of the proof of lemma 5.12). We could also have
taken A, = ||D*! log Df%||y V ay). By applying lemma 4.4, and since My < M’ a4,
1/mg_y < M'/ay, and a,_; < 1/g;, then we have:

A, < (CRFM3ED 4 1)glD (49)

Using corollary 5.5, convexity inequalities (proposition 5.3), proposition 5.7, and
corollary 5.5 again, we obtain the following lemma:

Lemma 5.8. Lety € [0,k — 1] and s > 0. We have:

r+-y
max (0, k_mo )

log Df“lly < Cs7(7,¥0)d}1 (qs1s)
y+1-y Y-y

with Cs7(7,70) = Caa(k)Csa(0) ™ O T Csy0) O 550,

We make a remark on the method and notation: in this lemma 5.8, we estimate the
C7-norm for 0 < y < k — 1, instead of only estimating the C”'-norm, because of two
reasons: first, this lemma is used to obtain lemma 5.9, in which we need an estimation
of all the norms of order ¥ < k — 1. Second, in the proof of proposition 5.10, we need
an estimate of || log D f9||x—1.

5.2 Estimation of || log Df"||,,0 <n < gs1/q;, 0 <y <k-—1.

We use lemma 5.8 to estimate ||log Df"*||,, 0 < y < k — 1 (lemma 5.9) and second,
we bootstrap this estimate (lemma 5.12). This bootstrapping allows getting a higher
degree of differentiability vy, at the end (see estimation (55)).

The Diophantine condition on @ implies g, < C;lqiw . Therefore, by applying
estimation (49), we get:

Auge)q5" < Cs(0)g (50)
k
With € = § - 52 > 0 and Cs5(0) = [(CJy M%) + 1)C;1]1/

The preceding estimates give the lemma:
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Lemma5.9. Lety € [0,k—1]. For s > 0,0 <n < gs1/q5, we have:

Ilog Df"“[l, < Cso(y, 0)q; " (qss145) "
where, if 0 < y < 1, Cs9(y,0) = Cs7(y,0), and if y > 1, Cso(y,0) is defined
inductively by:

Cs9(y,0) = Cso(y = 1,0)ly PCs3(0)Csa(ly] = D)Cs7(y, 0M” [2 + Cas(y', ¥)Cas(Ly 1, 7)]

Scheme of the proof. This lemma is shown by induction on r = |y]. If r = 0, we write
log Df"s = Z?;Ol log Df% o f' and we apply lemma 5.8.

Suppose the lemma holds for » — 1 + 9/, with 0 < 9’ < 1. We have, using the
expression (79) in appendix 6.4, and using estimations (8) and (9):

r=1 n-1

D" log Df"*|l, < (Aig + Big + Cip) (51

1
=0 i=0
with:

Aip = ID" " log Df% o f4L, I(DF )Y IolIE] llo
By = ID" " log D o f|lol(Df )Y "I, IIE]llo
Ciy = D" log Df? o f|loll(DF4) Il E] Il

E] = E[(Dlog Df*:,...,D'log Df*")

We estimate £} with lemma 5.4 (with the polynomial P = EJ), with (42) (for B;;)
and with the induction assumption. We estimate ||D"~' log Df% o f|l;, % = 0 or y’, by
applying lemma 5.6 with ¢ = D""'log Df% and ¢ = f%, and by applying lemma 5.8.
We estimate |(D f4+) |y with (44). For |(D )" 7, we apply (45), corollary 5.5, (42)
and the induction assumption. We get:

r=lvy 41 el

Aij < Cso(L,0)Cso(DCs7(y + r = LOYMY g7} g7 (Aygssn) —F TF

il By 4]

Bi; < Cs7(r=1,0)Csa(D(r=DM ™' C3(L, I+y )Cas(y', 1+ )Cso(I+Y , 0q L 45 (Asqyt) & * F

r=l+l | 1+ +1

Cis < M 'Cso(DCs7(r — 1,0)Cso(L + 7', 00}, g5 (Asqsir) F * F
Thus, we have:
Aig+ By + Cia < CooL.Y . 05} 147 (Bygen) T+
with:
Ceo(1,7,0) = Cso(I+y',0)Cs2(DCs7(r—I+y , 0)M"™! [W +(r=DCaua(y', 1 +Y)Ca3(L,1+y") + 1]

We conclude using estimation (50), and using the fact that the sum (51) has
rn < |ylgs+1/qs terms.
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By applying this lemma 5.9, together with estimate (50), lemma 5.8 and lemma
5.4, we get the proposition [14, p.355]:

Proposition 5.10. The sequence (Ag/qs)s>0 is bounded by Cg;.

Cé is defined by the following:

Ce (k = 2)M* ' Csy(k — 2)Cso(k — 2,0)Cs5(0)Cs7(k — 1,0);

= 5C
Co = 2c§;kMk—1]_[(1+ 62)

€
s=0

qs

Proof. We slightly modify Yoccoz’s proof. Let A” | = 0 and, for s > 0:

A, = sup{ID*""log Df* o f"(Df™) 10,0 < 1 < 5,m > 0}

For s > 0, we have: A; < A} + a, (This implies A; < CA’ when f is not a rotation,
but contrary to Yoccoz’s proof, we do not use this estimate, because the constant C is

Mk—l . . .
of the form C = 1 + Doz DIl * which diverges as f gets closer to a rotation). We

compute a bound on (A + @,)/gs;.

Let s > O (this is another difference with Yoccoz’s proof, which only considers
s > 1). We have: g,y = as+195 + gs—1 (we recall that g_; = 0). Using formula (78) in
appendix 6.4 with g = f9-1 and h = f%+19, we can write:

(Dk—l 10g quﬁ»l ofm)(Dfm)k—l — X/ + Yr +Z’
with:

X = (Dk—l log qu.\-,l ° fa5+1q.y+VH)(thlj+1q.y o fm)k—l(Dfm)k—l

Y/ — Dk—l IOg Dfam% o f’Wl(Dle)k—l

k-2
7 = Z(Dk—l—l log fols—l of“”"’fJ’m)(Df“”"’fofm)k_l_](Dfm)k_lG;‘_l (D ]og Dfa“'q“ ofm, - Dl log Dfamqs ofm)
=1

We have:
IX'lo <A,

Using formula (79) in appendix 6.4 with g = f%, we have:

k=2 az—1 k=2
Y = Z Z (Dkflfl log quyo nq3+m)(Dfnq;+m)k7lflE;cfl(D log Dfnqy, . Dl log Dfnq;)ofm(Dfm)l - Z Yl/
=0 n=0 =0

(with the convention E’g‘l = 1). We have: |Y{|y < as1A].

For [ > 1, we estimate E}f~'(Dlog D", ..., D'log Df"¥*) o f™(Df™)" using lemma
5.6 (with ¢ = f™ and y = 0), lemma 5.4 (with P = Ef~'), lemma 5.9 (with y = [) and
estimation (50). We get:

|EF"'(Dlog D", ..., D'log Df")o f™(Df™)lo < M'Cs2(1)Cso(l,0)Cs5(0)(Asqs+1)" g€

37



By applying lemma 5.8 (withy = k—1—17and yy = 0), and using that A; < A’ +ay,
we get:

Y/lo < a1 (A + )M Cs7(k — 1 = 1,0)Cs2(1)Cso(1, 0)Cs5(0)q; €
Therefore,
|Y/|0 < as+lA/s + as+l(A; + a’s)C62q;€
Likewise, we can show that, for s > 1:

U —€ = L=
1Z'l0 < Ceaqyq;" (qsDs-1) T (qsr1As)'F

(Yoccoz concludes the estimation of |Z’|y here, using the fact that qi_l/ k< q:i/ k

and using the fact that A, < CAj,t = s — 1, s. We don’t use these facts.)
Since A; < Aj + @, t = s — 1,5, we get:

Ik
’ e[ 9s+1 ! ’ 1=1/k ’ Ik
12/l < Coag | (A +as) (A + )

s

1-1/k
—_eqs+1 ’ A1 — Ay qs
7' < Coaq-< T (A + ((1+—)( ))
0 02s qs ( ’ A) A’y + @ qs+1

Since A} > 0, and since a,.| < gg41/qs < 2a441 and o, < 2a44 104, We get:
! —€ ’
1Z'lo < 4Cerq “asi1 (A} + ay)

If s =0, Z’ = 0. This estimate still holds.
Therefore, for s > 0,

@51 (D log DFE1 o f™YDF™ o < @yt + AL +ag1 A + a1 (A + @,)5Ce2q; €
(52)

@51 +(DF  og Do f™Y(DF™Y o < @gei—asmias+AL_ +as1 (A +ay) (1 + 5Ceq;°)

Moreover, we have: a,_| = az.1@s+a,41. Therefore, for s > 1, since a . < %as_l,
then
Agi] — g1 = 2'Q'H—] — @5 < 0< @51

Therefore,

a+ A

t

et (D Hog Dt o fUYDS™ M < max = (o1 + 1) (1 +5Ceq )

Since g1 + ag+195 = ¢g+1, WE get:

@i + (D log D%+ o fMY(DF™Y g < max & +A]

qs+1 t=s—1,8 q:

(1 + 5C62q;E)

If s = 0, we have:
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ar+ A g+ A
LT 22770 (1 4 5¢)
q1 q0

+A] . . .
Let 6, = maxo<<; %. The preceding estimates give:
- t

Os41 < 65 (1 +5C6247°)
Moreover,

(A6 + @

) <1+ M D*og Df|y
q0

Therefore, for any s > 0,

A -
oS (1+ M 1D 10g Dfl) [ [ (1 +5Caq;9)
s s=0

To conclude, we apply the claim:

Claim 5.11. Let C;;k defined in lemma 4.4. For any k > 3, we have:

D" log Dfly < Car(k, IS fli-s) < CLF

Proof. First, we recall the observation (see e.g. [14]) that if xy is a point where
(Dlog Df)? is maximal, then we have:

1
IS flo > IS f(xo)| = |D* log Df (x0) — 5(Dlog Df(x0))*

1 1
= |10 Drex0)?| = |5 P108 D

To prove the claim, we proceed by induction on k, using the fact that

[Dlog Dflo < +/2|S flo and by applying formula (70) in appendix 6.1.
Ifk =3,

1
ID*log Dflo < 1S flo + SI(D1og Df)lo < 2IS flo
Suppose the estimate holds for all r < k. By formula (70), we have:
D¥log Df = D25 f — Gu(Dlog Df, ..., D" 'log Df)

As in the proof of lemma 4.4 (see appendix 6.1), we have:

2k - 1)!

|Gk(Dlog Df, .., D" log Df)| < o

(Cart,18 flis))

We conclude as in the proof of lemma 4.4.

Let us make a remark: by using lemma 5.4, we can improve this estimate. How-
ever, lemma 5.4 cannot be used to improve the estimate of lemma 4.4, because it is a
pointwise estimate: an estimate of |Dk-1 log D f%(x)| in function of M,i/ 2 /m,(x). If we
only needed an estimate of |D*! log D f4|, in function of M,,l/ 2 /m,, this improvement
would be possible.

O
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]

With proposition 5.10, and by using the Diophantine condition gy < C(jlqiw ,

we can generalize estimation (50) and lemma 5.9, for y9 > 0. The generalization of
estimation (50) is:

B2 -1

(Asgse) g7 < Css(v0)gy (53)
1

1 =L
with Csg(yo) = C¢, " C, ™.

The generalization of lemma 5.9 is:
Lemma 5.12. Lety € [0,k —1]. For s >0, 0 < n < g,+1/4s we have:

y+l-v
llog D"l < Cso(y, ¥0)q; " (gss1As) F70 °

where, if 0 <y < 1, Cso(y, y0) = max (Cs4(y)Cs6(y + 1), Cs7(y,v0)), and if y = 1,
Cso(y, 0) is defined inductively by:

Cso(y,v0) = Cso(y = 1,y0)l¥1Cs8(y0)Cs2(lyl = 1)

y+1-vo ,
Cso(y,v0) = 2" 50 Cso(y=1,70) Ly Css(v0)Csa(Ly 1= D)Cs7(y, yo)M” [2 + Cas (v, Y)Cas(Ly ). V)]
Remark 5.13. When y > 1, the definitions of Cso(y, o) are analogous to those of

y+l-vo

Cso(y,0) given in lemma 5.9, by replacing 0 with yy, by a factor 2V

Scheme of the proof. We give the scheme of the proof in order to explain the addi-
tional a in the definition of A; (this additional oy makes necessary our modification of
Yoccoz’s proof of proposition 5.10).

Ifyo—1 <y < 1, we proceed as in lemma 59. If y < yp—1landy < 1, we
apply corollary 5.5 and proposition 5.7. The induction step is analogous to the proof
of lemma 5.9, except the end: indeed, by proceeding as in lemma 5.9, we have:

/ (T S R ov It gy Bl
Aip £ Cso(1,y0)Cs2(DCs7(Y +r = Lyo)M” ™" 7q 145 (AsGsar) ™ 770 =
r—1 ’ ’ , , 1 -1 ov =10 +OVM
Biy < Cs7(r—1,0)Cso(D(r=DM" ™' Ca3(L, I+y)Ca3 (¥, I+ ) Cso(I1+Y', 0)q 11 45 (Asqse1) 0 fas
r=l+1-yy M
Cis < M 'Csy(1)Cs7(r — 1,0)Cso(1 + 7, 0)g ) 47 (Mg 0 0%

We have:
—I+1- [+y +1- —Il+y +1-
(0vr AR (SR 70)v(0vr i Al
k-7 k=0

Moreover, since 2¢g,.1A; > 2g+1a5 = 1, then

l+1—70) v+1-7v 1
+0V <0v +
k=0 k=0 k—=yo k=70

y+l-vo 1

y+1-y
Ajj+Bijj+Ciy < IR =T Ceo(l, 7/,)’0)9;11(];1(As%+1)0v B TE
with:
Ceo(L.y'70) = Cso(I+y', ¥0)Cso(DCs7(r=1+Y , y))M'™ [ MY + (r = DCi3 (', 1+ ¥ )Cas(L 1+ y') + 1]

(this is why we define A; = |D*! log Df%|y+a,. If we defined A = |D*1 log D%y
and if |D¥"! log D f4s| was too small, we could not do this estimate). m]
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By using estimation (53) and lemma 5.12, we obtain, for 0 < n < (gs+1)/qy, and
0<vy<y [14,p.357]:

llog Df™|l, < Ce3(y, yo)g2" (54)
with
_2+BOV(y+1-7)
o, v0) = -1
k—yo
and

y+l-y9

Ce3(7.70) = Cso(y, )’0)(C;1C61) 0

Notice that for any

A+By+k-2+p)

2+ (53)

Y1 < g(yo) =

we have p(y1,v0) < 0 (we will take y; = %(g(yo) +v0))-
This implies Yo 72" < +o0, which will allow estimating ||log Df"]},,, as we
will see in the next subsection.

A remark on the method and notation: we establish estimate (54) forany 0 <y < y;
(and not just for y;) because we need it for the estimate of the quantity Z defined below.

5.3 Estimation of || log Df"||,,

Proposition 5.14. Let N be an integer and let us write y1 = r + |, with0 < y| <1
and r integer. We have:

log DfYIly, < Ceayivo) [ | (56)

s=1

C ,70) +C )
|+ 64(y1,70) + Cos(y1,70) | _ Cor
q;f’()’l,yu)

with:

Coa(¥1,70) = Cas(nCss(¥))Ce3(v1,v0)Cs4(¥})

Cos(y1,70) = (r — DCes(y1,70)Cs2(r — 1) (2 + Ca3(y1, y1)Ca3(r, 1))

Scheme of the proof. We write N = Zf:o bsqs with 0 < by < q;—*‘ and b, integer. Let
N = 3o big, for 0 < s < §. Moreover, let us write y; = r+7v}, with0 <y} < 1and r
integer. By formula (78) in appendix 6.4, we can write D" log Df™s = X + Y + Z with:

X = (D'logDf"® o fNy(DfM 1y
Y = D'logDfN;

r—1
Z = >.(Dlog DM o Ny DNy G
=1

G = Gj(DlogDf™,...D'logDf"")
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We successively estimate X and Z. For X, we use estimate (46), corollary 5.5 and
lemma 5.6 with ¢ = D" log D% and y = fV=1. We also use estimate (54), and the
fact that 27 < 277 We get:

IXlly, < Coags " (1 + || log DF™[l;)
with
Cos(y1,70) = Cas(nCss(¥))Ce3(y1,¥0)Cs4(¥})

We estimate Z. By applying estimation (9), we have:

r—1

1ZIly; < DI log D0 fN)(D ¥y oIGTly +I(D" Tog D0 N1 )(D ¥y 1 1GY o
=1

As with X, we have:

(D™ Tog Df*4 o [Ny DNyl < Cosgs™ ™ (1 + 1log DY)
with:

Cos(v1,70,1) = Cas(r = DCss(¥))Co3(y] + 1 — 1,70)Cs4(¥]) < Coa(¥1,70)
Moreover, by estimate (54), we also have:
I( D! log D fb.;qs o fNH)( D fN_H)r—llo < MHC63 (r—1,y0) qf;(r_]’y(’) < Ce qx;(tho)

For Gj, we use lemma 5.4 with the polynomial P = Gj (see appendix 6.4). We
estimate [|Z]|,; by applying estimation (42) twice. We get:

1ZIly, < Cooqs " lllog D™ Iy,
with:
Cos(¥1,70) = (r = D)Cos(y1,70)Cs2(r = 1) (2 + Ca3(y1, y1)Ca3(r, 1))
Therefore, since ||Y||,/l =||D" log DN ”*/'1’ we get, for s > 1:

Cea(y1,70) + Ces(¥1,70)
q—P(%J’o)
N

ID"log Df™lly; < Illog Df™Ily, < (1 + )IID’ log DYl

Moreover, by estimate (54), since Ny = by, we also have:

D" log Df™|l, < Ce3(y1.70)

We conclude that:

Cea(y1,70) + C66('}’17')’O)) _c
= Ce7

N
Ilog Df™Il, < Ce(y1,70) | 1| (1 + R
§= s
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5.3.1 Computation of the estimations: proof of proposition 5.1.

The quantity Cq7 depends on sup . [|log Df?|l,,. We estimate Ce;. First, we estimate
Ce1. Since 5Cey < (Cso(k — 1,0))?, we estimate Cso(y,0) for 0 < y < k — 1. By
combining the constants appearing in lemma 5.9, we get:

k-1
Cs9(y,0) < Cso(y',0) [(k = 1)2Cs(0)Cs3(k — 1,0)Csa(k — 1)M*(log MCar ()Y’
Moreover,

Csa(k — 1) < (4k)* 21 (Cpa(k) log M)
Csy(k — 1) < @¥ M2 (Co)(M + D)1 (1 + (M + 1)Ca(K))P)

Cs3(k — 1) < (4 k27 MP* (Cp (k)
Note that for any [ > 2, Cs4(I) = Cs3(I). Since
Cs7(k = 1,0) < [Csa(k — DI*2MCys (k)
We get:
Cs7(k — 1,0) < (4k)* k2% (Cap () P M*! = Cs7(k - 1,0) (57)
We have:

/ ~ 27 k%!
Cs9(y,0) < Cso(y',0) [Css(0)(Cs7(k = 1,0))* M|

Since Cs3(0) < 2M3*DCLFC;)K, we get, for 0 <y < k- I:

~ 3 ~ % A
Cso(y,0) < C;'CLr o+ [Cs1k - 1,0)| = Cs (58)
We get:
oo ~ 0o 1 fkagk=1074 N2
_ _ _ (C59)2 2Cd1C27 M (C59)
C;'Ce < C;' CLIM*! (1+— <[]+ (59)
d d 27 15:(! qg ls:(! qi
We estimate Cea(y1,¥0) and Ces(¥1, ¥0)-
We have: Cea(y1,70) < 2(r + DM Ce3(y1,70)Cs5(7}).
Therefore,
AL ’ r
Ces(¥1,Y0) < (0<nyl<al§—l Cso(y, ‘}/0))(C;1C61)"'70 C55(’yl)2(l’ + 1M +1
We estimate Cgs(y1,v0). We have:
Ces(71,70) < (r = 1)(2 + ((log M)Ca2(k)))*Cea(y1,¥0)Csa(r — 1) (60)

To complete the estimations of Cesa(y1,7v0) and Cee(y1,70), We need to estimate
Cso(y,7v0)- By writing y = | y]+v/, and by proceeding as for the estimation of Csq(y, 0),
we have:
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deL _
Cs59(7,70) < Cs0(y, ¥0)(C; ' C1) 0 Csy(k — 1,70)* M 224D
Moreover,
Cs7(k = 1,70) < Cs7(k—1,0)Css(k - 1)
We can also check that:
Cso(y's70) = 2C()M> 1 v 2MY 1 Cs5(y’ + 1) < Cs7(k — 1,0)Css(k — 1)

Therefore,

2k oo 2k+1
Cos(71.70) < (C7'Co) ™ (Cs(k = 1,0)" (Cssthk = D2 2kME* (61)
Now, let

_ 5k-1)
T = m (62)

let Ceg = (k + 2)*00K p24kEsD(CLEY(C )W Let also

. n
= ,———— 63
é mm(E 2(,8+2+n)) (63)
We have: € < min(e, —p(y1, o)) and for any yo < k—2—-8—-n, we have 11 > 2l£1:/(1)) .
Note that C4;(k) only depends on k, and that Cs7(k—1, 0) and Css(k—1) only depend
onkand M.
By combining estimations (57), (58), (59), (61) and (60), we can check that we
have:

0 C68 Hi() (1 + CGX) ]

C67S1_[ 1+ @

€l
s=0 4s

Since ¢, > (V2)*!, we get:

V2Ces T1,20 (1 + fgﬁg

i

C67SH1+ q

S5
>0 22

In order to obtain the final estimation, we need the claim:

Claim 5.15. Let C > 10. For any 2 > u > 1, we have:

[e]
2/3
u]
n=0
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Proof.

Dllog(l+Cluy = log(l+C/u"y+ Y log(l+C/u")

n>0 logC logC _
NS fogw —1 n>qogn —1

< logC
logu

log(1 + C) + Z C/u"

logC

n> log u -

2/3

2 (log C)?
logu &

<

logC
log(1 1)<
logu(og( +C)+1) <

for C > 10.

By applying this proposition twice, we get the claim:

Claim 5.16. LetC > 10,2 >u> 1, 7 > 1. We have:

. CTIo(1+ MQ)T

1872 4
[ [1 u—] <en ((logu)3 (log C) )

n=0

Let Cgo = \/ECGS. We apply claim 5.16 with C = Ceg, u = 2%, 7 = 11. We obtain:

Cor < 1871 1og Cep)? (64)
SeN|———
7= Frog2p T
Moreover, let
c 187% 65)
"7 (§log2y
andlet C7, = % a numerical constant. We have:
0g2)
_ (k= 1)?
Cyp < C71
€
By using the definitions of € (see (63)) and 7 (see (62)), since € = % and since

n < k-2-p(, we have:
k> i

S k=Epr) g ) =86 (min(k — 2B + 1),k — (B +2)))*
(m‘“< % 2(/3+2+n))) ’

Cro < C5, = Cn(k.B)

Therefore, we get:

4
lllog DML, < e A (Cn(k, B) [C;‘;k + 4k 10g(C;") + 24k(k + 1) sup || log D fP||y0) )

p=0
(66)
with:

C ;ék - log ( V2(k + 2)4001<4 ( Cg%k)4k)

Hence proposition 5.1.
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5.3.2 Proof of theorem 1.6: estimations (6) and (7).
By corollary 5.5, we have:
DA sy < Coalk = 1)(1+ [[log DFYI_x )
Moreover, we recall that:
Csalk = 1) < (4)¥k2% M (Can (k)™

We have: Css(k — 1) < C74(k)M?* with C74(k) = (41()‘”‘1{2“‘*1)3+3k+2

N .
Moreover, ”Dh”zwﬁz)‘% < Supyso DS IIMﬁz)_%. We get:

DAl ) < e/\(Cn(k, B) (c;'»; +4k%log C;' + 24k(k + 1) log M’)4 + log(Cr(k)) + 2k log M’)

Since 2klog M’ < k(k + 1)log M’, we get:

DAl ) <en (C72(k, B)(Cls + 4k log C;' + 25k(k + 1) log M” + log(C74(k)))4)
(67)
We show estimation (6). We suppose k > 38 + 9/2. Let:

C5(B. Ca IDflo, W(S).IS flo. 1S flizs) = €D ANC3(B)C(Ca)Cs(ID flo, W), IS f10)Co(1S fli-3))
i.e. we consider the bound given by estimation (2), except that we replace |S f1r3+3/2]

with |S fli-3.
CJ¥ depends on k, IS fli_3 and W(f). We have:

4klog Cyr(k, IS fli-3, W(f)) < 4k(k+4)!1og C27(36+9/2,1S flk-3, W([)) < 4(k+5)!log C75
Moreover, since M’ < Cys and k > 5,
4k*log C;' + 25k(k + 1)log M’ + log(Cr4(k)) + 400k* log( V2(k + 2)) < Cy(k) log C7s

with C76 = 4k*> + 25k(k + 1) + log(C74(k)) + 400k* log( \/z(k +2)) < (k+5).
Therefore,

DRIy < e A (Cralh, ) (5(k + 5)!log Cs)?)

We also have:

kS
k ; nk
Rl <3G k=B Dk— B2y -

Since C;,k°(5(k + 5)1)* < C5,5*((k + 7)!)*, and since 2 > 21log 2, we conclude:

IDHI_s__1 < e A (Cra(e® A 2 + C3BICHCHCID o, WIS Flo)Ce(lS flk-))

with:
18x5%x%8

Cpa(k) =
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If 8 = 0, we can use the C! estimate. We have: log M’ < C,/C, and therefore,
4k 1og(C;") + 25k(k + 1) log M’ < (k +5)!C1/Cy
Moreover,
CJy +10g(Cra(k)) < 4(k +5)! (log(1 V IS fles) + W(f) + 1)
then by using estimation (67), we obtain:

CI WIS flol 1
1A w”

1 SeA (Cw(k) [CM[W(f), IS fli-3] +

Bl

with:
Ciz(k) = C1a2(k)

CralW(f), IS fles] = log(1 VIS fle3) + W(f) + 1

5.4 [Iteration of the reasoning: proof of estimation (5) of theorem
1.6.

To obtain an estimation of the C*~!#~-norm of the conjugacy, we iterate estimation
(41). We take o = y; and y1 = ;1 = 3(8(y) + ¥:). Thus, ;1 < g(y;) and
lim; ;o ¥; = k—2—B. We need to estimate the rank above whichy; > k-2-8-n:

Claim 5.17. Let Cyy = 222, Cos = 528 If

o) eel )
n>log|—2 |/log|—|=cC
g(n(l—cm 8\eyn) 57

we have y, 2 k—-2—--n.

Proof. We have: y,11 = C77v, + C73. Therefore,

1 o
Yn=Cr Z

1-C77

_C"
¢ Therefore, |y, — (k-2 - B)| = |C78

< nifn > C79.
[m]

Claim 5.18. Let F(x) = ¢““™' Forany x,c > 1, a,b > 4, and integer n > 1, we
have:

F'(x) < ™ A ((3 +n)c(a + bx)4)

Proof. We show this estimate by induction. If n = 1, this estimate holds. Suppose this
estimate holds at rank n. We have:

Fn+1(x) - " (ec(a+bx)4) < e(n) A ((3 +n)e(a + bec(a+bx)4)4)
For any x > 4, ¢* > x. Since c(a + bx)* > 4 and 4n > 3 + n, then:

S s (ne(a + b)) = 3+ mea + by

e(4+n)c(a+bx)4 > (3 + n)C(a + b)4e40(a+bx)4 > (3 + n)c(a + bec(u+bx)4)4

Hence the estimate at rank n + 1.
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We apply proposition 5.1. In claim 5.18, we take x = log M’
a=Cl + 4k 1og(C;"), b = 24k(k + 1), ¢ = Cra(k, B). Let

I log (k=2 ~-p)/m)
77 log (1 + 1/(28 +3))

We have: C79 + 1 > n7 > C79. We get:

110g Df™l-2-p-y < "V A((3 + n7)Cralk. BYCY3 + 4K log(C;") + 24k(k + 1) log M')*)
Moreover, by corollary 5.5, we have:
IDfMll-2-p-y < Csa(1 +1110g DfMllk-2-5-1)
Since || Dhlli-2-g—n < IDfM|le-2-p-p» We get:
(7) fk 2 -1 N
IDli—2-p-y < € A ((4 + m)Cra(k, B) [ Cly + 4k% 10g(C;") + 25k(k + 1) log M’ | )
Since M’ < C,, we let:

4
Ciil. k. B. Ca. IDflo. WP, IS flis] = (44+n7)Cra(k, B) [CL5 + 4K 1og(C; ") + 25k(k + 1) log Cs |

We recall that:
L _[log(k=2-pym)
"7 llog(1 + 1/(28 +3))
18 x 52 x 82 i
Cor(k,B) =
) (log2)*  (min(k — 28 + 1),k — (8 +2)))°
CHE < (k+ )11+ W(F) +1og(1 VIS fli_3)
We have:

”Dh”k—z—ﬂ_” < e(“og((k_z_ﬁ)/rl)/ 10g(l+l/(zﬂ+3))]) A (Cll [T], k»ﬁ? Cd’ |Df|0’ W(f)7 |Sf|k—3])
(68)

6 Appendix: Omitted Proofs

6.1 Proof of lemma 4.4

We follow [14] but we give more details. Let p < g,+;. The case r = 1 stems from
lemma 4.3. For the case r = 2, we also use lemma 4.3:

M,
1, (x)?

ID?log DfP(x)| < IS fP(x)| + %lDlog DfP () < (C§4 + %(Cg‘é)z)

In particular, we can take
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CJ(2) = 8218 floe*"”

For r > 2, we prove lemma 4.4 by induction. Suppose the lemma is proved up to
r > 2. Since for any C3-diffeomorphisms g and A,

S(goh)=(Sgoh) Dh)?*+Sh
then for p > 1,

p—-1
Sf7= > (Sf o fYDFY

i=0

and by differentiating this last equality, we get, for r > 0,n > 1,

r p-1
D'SfP = Z Z(D"’S fo fYDFY 2 F(Dlog Df', ... D'log Df')  (69)

=0 i=0

where Fy is a polynomial in / variables X|, ..., X;, homogenous of weight [ if X; is
given the weight i. Moreover, since S f = D*log Df — 1(Dlog Df)*, then for r > 2,

D 2S f = D' log Df + G,(Dlog Df, ...,D" ' log Df) (70)

where G, is a polynomial in r — 1 variables Xi, ..., X,_;, homogeneous of weight
r if X; is given the weight i. Therefore, in order to estimate |D"log Dfo, it suffices
to estimate Fj(Dlog Df’, ..., D'log Df") and G.(Dlog Df, ..., D' log Df). These es-
timations are given by lemmas 6.1 and 6.2. They are used in [14] but we recall them
here in order to compute the constants Cgo(r) in lemma 6.1 and Cé ,(r) in lemma 6.2.

Lemma 6.1. Under the induction assumption, for 0 < [ < rand 0 < p < gu1, We
have:

1
M}/
nmy

|F](Dlog Df(x), ..., D'log DfP(x))| < Cgo(r) [ ®

with:

@2r)!

Ch(n) = (=== (Cho)

Proof. We follow [14]. By derivating equation (69), we get:

n—=1 r

Dr+ISfP - Z Z(Dﬂ-l_lsf o fi)(Dfi)r+l—l+2Flr(D log Dfi, . Dl lOg Dfl) +
i=0 =0

(D''S fo fYDFY ™ (r—1+2)Dlog Df'

OF

1
Fj(Dlog Df',...,D'log Df") + Z e (Dlog DfY, ..., D' log DfYD'* ' log Df/(D 1)~
=1
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p-1 r
Dr+1SfP — Z Z(Dl’lefle' o fl)(Dfl)r+lfl+2F;'(D log Dfl, ...,Dl log Dfl) +
i=0 =0
r+1

Z(D’”’IS fo fNDfY 3 —1+3)Dlog Df'F}_(Dlog Df',...,D'" log Df") +
=1

r+l1

aF]_,

ax_, (Dlog Df',...,D""" log DfY YD/ log Df (D fy*'1*2
j-1

1
=1 j=2

Therefore, for1 <1 <r,

1
OFT
F'' = F+(r=1+3)X\F]_ + » Xj7o— (71)
JZ_; 10X
forl =0,
Fr+1 _ Fr
1 -1
andfor/=r+1,
1
AF"
F' = —-1+3)XF + ) X;—H!
==L XFL 4 ) X
Jj=2
Now, let us write
F| = Z ar iy, ey DX X

i1+2i2+...+1i1=l

We have a;,(iy, ..., i) = 0. Let

a- = max  ap(ig, .., i)
11+212+...+111=l

and

ar = maxa;,
0<j<r

Consider iy, ..., i; such that a; (i1, ..., i;) = a;,. By applying equation (71), we have,
forl <l<r:

a1 < ap+(r+3=Daiy, + (- D(maxia,, < (r+3 -1+ -Da, < (r+1)%a,

For [ = 0 or r + 1, this estimate still holds. Therefore, @,.; < (r + 1)*a, and by
iteration, we obtain:

a, < (r?
Moreover, since

F/(Dlog Df, ..., D'log Df') = Z ai iy, ....i))(Dlog DfY)"...(D' log D'

i1+2i2+...+li1=l
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and since #{(i1, ..., i) /i1 + 20, + ... + li; = [} < #{(i1,....,i)]/i1+ b+ ...+ =1} =

% (this classical equality can be shown by induction) then by applying the induction

assumption,
|Fr Dlog D i Dll D i ))| < ( ')2 (Zl - 1)' Cf (1))11 (Cf (l))li’ ,11/2
(Dlog Df (). ... D'log DI ()l < (2 na-1n! i1+2ir21}3.)i1i,:1( 27 a7 (%)

and since the C;(i) are increasing with i, we obtain:

A . M2 l
F;(Dlong'(x),...,D’long’(x))|scgfo(r)[ n ]

my(x)

O
Likewise, the estimation of G,(Dlog Df?, ..., D"~ log Df?) is given by the lemma:

Lemma 6.2. Foranyx € T, 0< p < gu1, ¥ =2,

1/2 1"
IG(Dlog Df?(x), .., D' log DfP(x))| < CL,(r) [ M. }
My (X)

with:
g r)! I
CL(r+1) = 225(CL, ()™

20+ 1)

Proof. The polynomial G, satisfies the following identity:

,
0G,
Gii=) Xj75—
T = Jan—l
We denote
G, = > by(its s ir )X X
i1 420 +...+(r—=1)i,_ =1
(we have, for example, G, = —%X%)
Let

b= max bty i)
i1+2ih+..4+(r=1)i,_ =r

. —1)12
For r > 2, we have b, < r(max<j<,—1ij)b, < r*b, and therefore, b, < %
Therefore,

L) . -
|G,+1(DlongP(x),...,D’longP(x))|g%& max 1(C§7(1))“...(C§7(r))"

rl(r + D) i12ip+.tri=r+

Since the constants C;(r) are increasing with r, we can take:

@2r)!
200+ 1)

clr+1)= (€L ry*!
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We can now show estimation (14). By applying equation (70), we have, for r > 2:
D 'logDfP = D''S fP — G, (Dlog Df?, ..., D" log DfP)

Therefore, by equation (69) and lemma 4.1,

172 r+1
o+ f r+1 f L
D" log DfP(x)| < (rCSO(r)|Sf|,_le( +DOW() Cq(r+ D>[m,,()€))

1/2 r+1
Toaa 1ong"<x)|s(CQ(r))’%(|Sf|r-1e<’*”W<f>+C§7<r>)( 1 )

1y (X)

We can show by induction on r that we can take, for r > 3,

C§7(”) = [C§7(2)(2r)2r(max(l, |Sf|r_2))erW(f)]’!

6.2 Proof of proposition 5.3

This estimation is well-known (see e.g. the appendix in [6]). We recall the proof in
order to determine the constant. We write y» = r2+v5, y3 = r3+y; with0 <y, %} < 1,
and we estimate |[D"¢|,, in function of |[D"¢l,, and |¢lo. We use [5, p. 110]:

Proposition 6.3. Ler0 <S8 < 1 and ¢ € C'(T"). We have:

I¢ls < 219l,”1Dgl;
Proposition 6.4. Let 0 <8 < 1 and ¢ € CA(T"). If 8 < B, we have:

’

1-£ 4
9ls < 2l "1l
Proposition 6.5. Let 0 < 8 < 1 and ¢ € C'(T") such that D¢ € CP(T"). We have:
IDglo < 5277 (1¢1D41s)
Moreover, for ¢ € CZ(TI), we have:

Dl < (2l D?6l0)

First, we suppose y; = v, = 0. We already know that for any j < [, there exists
Cso(J, 1) such that:

. . 1-4 J
IDIgly < Cs2(ji, DIgl, 'ID'9l;

We want to estimate a possible Cg(j,I) in function of /. First, we show that
Ce(1,D) = Cg(l - 1,) = (\/E)H. We proceed inductively on /. For I = 2, by
proposition 6.5, Cgx(1,1) = Cg(I - 1,1) = V2. For [ > 3, we have:

=2 1
IDgly < Csa(1,1— D¢l D" )] (72)
e =2
ID"?¢ly < Cso(1 = 2,1 - DIg|T D¢l (73)
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By applying (73) to D¢, we also have:

1 =2
ID"'gly < Csa(l = 2,1~ D)ID|IT ID'g|1

By combining this estimate with (72), we get:

-2

-1 5 =2
ID"'gl, “7 < Caall = 2,1 = 1)(Ca(1, 1= 1) 71| D' g| ™

Therefore,

1
1

Caal = 1,1) = (Caa(l = 2,1 = 1)(Cip(1,1 = 1)77 ) 77

Likewise, we can show that

1

Caa(1.1) = (Csa(1,1 = 1)(Cral = 2,1 = 1)) "7

Let u; = log Cga(1,1), vy = log Csa (I = 1,1), a1 = + L We have:

-2

1
up = ay(u—1 + l_—IVH)

1
vi=a(vi-) + mul—l)

Let w; = u; +v;. We have: w; = %w,,l and therefore, w; = (I— 1)w,. Moreover, let

x; = u; — v;. We have: x; = ﬁxl_l. Since x; = 0, then x; = 0 for any / > 3. Therefore,

u; =v; = (I— 1)log V2. Therefore, Cg>(1,1) = Cgo(I - 1,1) = (V2)"".
To show that Cgy(j,1) < (\/z)l2 for | -2 > j > 2, we proceed inductively on

I. We know that Cs»(1,2) = V2 and we suppose that Cg(j, 1 — 1) < (\/5)(1_1)2 for
Jj=2,..,1—2. We observe that:

1D gly < Coa(j L~ DIDly T IDT
Therefore,
Cor(j+ 1,1) < Cp (ol = D(Cip(1,0) 7T = Cyp(j, 1 — HY(V2)! !
By applying the induction assumption, we get:
Coa(j+ 1,0 < (VD)0 < (VD)
Hence the proposition for y,, y3 integers.

Now, we suppose that y, and y3 are not integers.
If r, < r3, we have:

1—'}"/1 2+1 7/
ID"”¢l,, < 2ID"¢l, D" ¢l

Moreover, by the interpolation inequality in the integer case, we have:
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_ o+l rp+l

ID"*'gly < Caa(ra)lgl, ° ID"¢l,"

n

1-32 =
D"l < Csa(r3)lgly ° D"l

Therefore, by proposition 6.3

+1 p+l
(1=)(1=2)+75(1-2) =72+ %

ID" @y, < 2Cs2(r3)I¢, “UDR |,
2

On the other hand, by proposition 6.5,

73
7
H—y3

1
D" ¢lo < 3ID""'¢|, " ID"g],"
3

and we also have:

r3-1

1 -
D™ ¢ly < Csa ()8l 1D ¢,

Therefore,
(1= ¥, % \1 i
I 1=( 73)l+y% H.S/ l+~y% r3 3 ]+y’3
ID" ¢l P <3(Caa(r3))™s0gly T ID ’¢|y§‘
Therefore,
147} % ( 703 )L L
7 — 1+y4/ r +y% /1
ID"lo < 3757 (Cap(rs) ™53 1ply " |Dr3¢|y;y3 ’ (74)
Therefore,

-2 r
ID"¢ly, < Caaly3)lgly " 1D,
with Cgy(y3) < 32Csa(r3) < 203D if r3 > 2 and Cgy(y3) < 203D+ if g = 1.

Finally, if r, = r3 = r and y} < ¥;, then
- r Y3 1Y
ID¢ly, <2ID"¢l, “ID"¢l,;

By applying estimation (74), we still have:

-2 r2
ID"¢ly, < Cs2(y3)l8l, ™D L7
2 Y5

with Cg>(y3) < 203D if r3 > 2 and Cgo(ys) < 203D+ if py = 1.
This completes the proof of proposition 5.3.
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6.3 Proof of lemma 5.6.

If y < 1, we prove the lemma directly. We prove lemma 5.6 for y > 1. This is necessary
to compute the constant. We write y = r + 7’ with r integer and 0 <y’ < 1. We need
the Faa-di-Bruno formula. We first recall this formula and a related property (lemma
6.6). After that, we prove the lemma.

The Faa-di-Bruno formula states that for any integer # > 1 and functions f and g
of class C%,

D" [f((x)] = ) DI f(g(x)Bu; (Dg(x), D*g(x), ..., D" I*Vg(x))

=0

where B, ; are the Bell polynomials, given by:

luf’+l
X\l (xp\2 Xu—j+1 /
By j(x1, X2, ..., Xy—ju1) = Z AT (1,) (E) (m)

The sum extends over all sequences [y, [, [3, ..., [, j+1 of non-negative integers such
that:ly + I, +... = jand [} + 21, + 3153 + ... = u. The cardinal of this set of sequences is
less than #{(i1, ..., i))/i1 + L + ...+ =1} = 1(,2(11:1))', (see page 51).

We obtain the estimation, for any x, and u > 1:

. 2u-—1
Bu (Dg, D) ... D Vg0 < %wgnu 1 (75)

We also need the lemma:

Lemma 6.6. Let u > 1 and u > j > 0 be integers. Let ay, ..., Qy—js1, X1, ..., Xy js1 be
real numbers, leta > max{lar|; 1 <k <wu—j+1}, x >max{|x|Vv1l; 1 <k<u—j+1}.
Suppose x + a > 1. Let B, j be a Bell polynomial. We have :

5 Qu)!
[By, j(xX1 + a1y ooy Xy—ji1 + Qu—jy1) — By j(X1, e, Xy ju ) S 1t > a(x + a)"
Proof. Letu+12>p>1andl,..,I, be integers. We have:
. p
I I, 1 _ I IR i I L
(x1+ap)"...(xptap)?—x|..x; = le‘ (x,+a,) (Xptap) T =x X (X tai) (X ta,)”
i=1
P
I I, _ I ; L, L
(x1+ar)"...(xp+ap)” —xl xp = Z .xi’_'l(xi+1+a,~+1)’*‘...(xp+ap)1 [(x,- +a;)" —xi]
i=1

(with the conventions xll g’ =1 and xp”;'l =1).

Since |(x; + a;) — xfil < Llai|(xi] + la)i ' < l,a(x +a) ' i <uandx+a>1,we
obtain:

|Bu,j(X1 + a1, ooy Xy jt + Ay ji1) — By j(x1, oy Xueju)l < a(u— j+ DuB, j(x+a, ..., x+a)
The formula giving the Bell polynomials implies:

Qu

!
B,j(x+a,..,x+a) < T)'(x + a)*
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Forany 1 <u <r,

ID" (¢ (I < (u + DIID|l,- 1( u): DY,

We estimate [D"(¢ o )|,,. The Faa-di-Bruno formula applied to ¢ o i gives:

ID" [$@ )] - D oGN] < ) ID/gW(x)

j=0
1B, (DY(x), ..., D" Vy(x)) = By (DY), ..., DT Vy(y)) 1+

DI $(p(x)) = DIGWODIIB; (DY), ..., D" Vy(y)) |
Moreover, for 1 < j < r, |D/¢p(y(x))| < ||D¢||,—1, and
ID/(u(x)) — DI W) < 1D/l (x) =y < IDGlly—1 DY 1x — yI”

Estimation (75) gives:

- 271
By (Dw), D2, .., D) < oyl

We apply lemma 6.6: let x; = D'ys(x) and a; = Dy(y) — D'y(x). Let x = ||Dy]l,—1
and @ = max;<i<r—j+1 DY (x) — D'y(y)|. We have:

r)

1B; (Dy(x), ... D" V() =B, ; (Dy()..... DT Dy(y) | < r 22r) 5 QIDYl,-1)" | max  IDY(x)-DY()

@r!)

1B (DY), ... DTG0} =By (DY), ... DI y() | < P2 Dyl eyl

Therefore, we get:

ID"(¢ 0 W),y < 1Dl 1||Dw||m“( ! (r+ (P2 + 1) < IDglly 1 IDYIL (21

6.4 Estimates on some polynomials

Lemma 5.4 is used for some specific polynomials. There exist A;, B, G, E], polyno-
mials of / variables X, ..., X; homogeneous of weight / if X; has weight i, such that, for
[ > 1, and for any diffeomorphisms g and % sufficiently differentiable, we have [14, p.
337-338]:

D'*'g = A;(Dlog Dg. ..., D'log Dg) Dg (76)

(77)

D2 Dl+1
D’long:B,(—g g)

D" Dg

For r > 0,
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r—1

D" log D(goh) = (D" log Dgoh)(Dh)"+D" log Dh+z D" 'log DgOh(Dh)r_lGl’(D log Dh, ...,

=1
(78)
Forr>0andn > 1,

—_
,_.

D" log Dg" = (D" log Dg o g')(Dg'y"~ IE’(D logDg',...,D'log Dg")  (79)
]

n—

I]
[=)
I
(=]

i

Lemma 5.4 uses the following estimate:

Claim 6.7. Let P = A;, B;, G} or E]. Write P = ZZ’H kjeet Qi ,',X{1 ...le’. We have:

------

Do gl < @@+ 1D

Sher kje=l

Proof. For example, if P = B;, we have

D2 DZ+2 D2 Dl+l
B =8, . ——8|-pp (=8, . =&
Dg Dg Dg Dg
Since
b Dug B Du+lg DugDZg
Dg) Dg  Dg Dg
then

I
B = Z(Xm XXI)

i=1 X

,,,,,

the sum ZZ’ kji= ,|ajl ,,,,, j,| has less than lill i)), terms. Hence the claim for P =B, The
computatlons are analogous for the other polynomials (and analogous to the proof of
lemma 4.4 in appendix 6.1).

]

To obtain lemma 5.4, we apply estimations (47) and (48) to each monomial of P,
and we apply this claim.
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