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We consider a class of time series speci…cation tests based on quadratic forms of weighted sums of residuals autocorrelations. Asymptotically distributionfree tests in the presence of estimated parameters are obtained by suitably

INTRODUCTION

Let fX t g 1 t= 1 be a covariance stationary time series with zero mean such that the …ltered series " t = ' (B) X t ; t = 0; 1; 2; : : : ; is a White Noise process, i.e. an uncorrelated process with zero mean and variance 2 , where the linear …lter ' is a prescribed function of the backshift operator B.

We adopt the normalization ' (0) = 1: The series X t might not be observable, as it happens when X t are errors of a general regression model. The discussion of this case is postponed to Section 4.

Given a data set fX t g n t=1 ; statistical inferences usually rely on a parametric spec-i…cation of '; which is described by means of a class of functions indexed by parameters taking values in a suitable parameter space R q ; say J = f' : 2 g ; so that ' (0) = 1 for all 2 . The resulting statistical inferences are invalid when the putative speci…cation is incorrect and, hence, testing the null hypothesis

H 0 : ' 2 J
is sorely needed before performing any statistical inference.

The null hypothesis of correct speci…cation can be written as H 0 : 0 (j) = 0 for all j 1 and some 0 2 ;

where (j) = (2 ) 1 R f ( ) f 1 ( ) cos ( j) d is the autocorrelation function of the residuals " t = ' (B) X t ; t = 0; 1; : : : ; f ( ) = ' e i 2 and f ( ) = ' e i 2 are the underlying normalized spectral density of fX t g 1 t= 1 and its parametric speci…cation counterpart, respectively:

A vast majority of test statistics for time series model speci…cation are functions of some estimated residual autocorrelation (ERA) function, i.e. suitable estimates of 0 . Portmanteau test statistics are quadratic forms of an ERA vector, e.g. Quenouille (1947), [START_REF] Box | Distribution of residual autocorrelations in autoregressive-integrated moving average time series models[END_REF], [START_REF] Ljung | On a measure of lack of …t in time series models[END_REF] or [START_REF] Hosking | An uni…ed derivation of the asymptotic distributions of goodness-of-…t statistics for autoregressive time-series models[END_REF].

Lagrange Multiplier (LM) test statistics, obtained after imposing parametric restrictions to a time series model, are quadratic forms of weighted sums of ERA vectors, e.g. [START_REF] Durbin | Testing for serial correlation in least-squares regression when some of the regressors are lagged dependent variables[END_REF], [START_REF] Hosking | An uni…ed derivation of the asymptotic distributions of goodness-of-…t statistics for autoregressive time-series models[END_REF], or [START_REF] Robinson | E¢ cient tests of non-stationary hypothesis[END_REF] more recently.

Sometimes it is possible to compute the residuals f" t g n t=1 , and (j) can be estimated by the ERA, ^ n (j) = ^ n (j) =^ n (0), where the sample autocovariance function of f" t g n t=1 is ^ n (j) = n 1 P n t=j+1 (" t " ) (" t j " ) ; j = 0; 1; : : : ; and " = n 1 P n t=1 " t is the residual sample mean. The residuals are often hard to compute, if not impossible, and it may be advisable to apply the computationally friendly autocorrelation estimates ~ n (j) = ~ n (j) =~ n (0) ; where

~ n (j) = 2 ñ ñ X k=1 I X ( k ) f ( k )
cos (j k ) ; j = 0; 1; : : : ;

ñ = [n=2] ; [a] being the integer part of a; and for generic sequences fV t g n t=1 and fU t g n t=1 ; I V;U ( j ) = (2 n) 1 P n t=1 P n `=1 V t U 0 `exp fi j (t `)g ; j = 1; : : : ; ñ; so I X ( j ) = I X;X ( j ) denotes the periodogram of fX t g n t=1 evaluated at the Fourier frequency j = 2 j=n for positive integers j: We omit zero frequency for mean correction.

Henceforth, for the sake of motivation and notational economy, we shall not distinguish between the alternative autocorrelation estimates, and we shall denote by n either ^ n or ~ n : However, the di¤erent results presented in the paper will be formally justi…ed in the Appendix for both estimators.

Let us assume …rst that the hypothesis to be tested is simple, i.e. the values of the components of 0 are known under H 0 : The most popular test for testing H 0 is the popular Box-Pierce's portmanteau test, which uses as test statistic BP 0 (m)

with

BP (m) = n m X j=1 n (j) 2 ;
where m must be chosen by the practitioner. This test is a compromise between the classical omnibus test based on Bartlett's T p and U p processes and the parametric LM tests based on some restrictions on the parameters of a more or less ‡exible speci…cation. Among them, the ARF IM A (p; d; q) speci…cation is the most popular, with

' (z) = (1 z) d (z) (z) ; = ( 0 ; d; 0 ) 0 ; such that (z) = 1 1 z p z p and (z) = 1 1 z q z q
are the autoregressive and moving average polynomials, respectively. In fact, BP 0 (m) is the LM test statistic when testing that m parameters of the autoregressive part ( 01 ; : : : ; 0m ) or the moving average part ( 01 ; : : : ; 0m ) equal zero. This is also the LM statistic for testing that all the components of the vector 10 are 0 in the [START_REF] Bloom…eld | An exponential model for the spectrum of an scalar time series[END_REF] exponential spectral density speci…cation

f ( ) = g 2 ( ) exp m X k=1 1k cos k ! ; = 0 1; 0 2 0 ; (2) 
for some 0 = 0 10; 0 20

0 and R log g 2 ( ) d = 0 for all 2 such that = 0 1; 0 2 0 2 :
The Box-Pierce's test belongs to the class of test statistics de…ned by quadratic forms of weighted sums of residual autocorrelations of the form,

n (!) = n (!) 0 n (!) with n (!) = n 1=2 n 1 X j=1 ! (j) ! (j) 0 ! 1=2 n 1 X j=1 ! (j) n (j) ;
where ! is a m 1 weight function such that P j=1 ! (j) ! (j) 0 is positive de…nite for each ` m; and for some generic K > 0 k! (j)k Kj 1 ; j = 1; 2; : : : :

Thus, BP n (m) = n (!) with ! (j) = 1 fj=1g ; : : : ; 1 fj=mg 0 :

When ! is scalar, Theorem 1 below provides a large sample justi…cation for the class of tests described by means of the Bernoulli random variable n 0 (!) = 1 f n 0 (!)>z g , when testing at the signi…cance level, where 1 f g is the indicator function and z is the (1 )-th quantile of the standard normal distribution.

When ! is multivariate, tests are described by 

n 0 (!) = 1 f n 0 (!)> 2 m g , where
H 1n : 0 (j) = r (j) p n + a n (j) n for some 0 2 ; (4) 
where n ! p 0 and r and a n can depend on 0 , and are subject to conditions speci…ed in Class L de…ned in the Appendix. We assume implicitly that r and a n are such that 0 is a positive semi-de…nite sequence for all n. These local alternatives appear in a natural way by representing the autocorrelation structure of f" t g t2Z according to the linear process

" t = n (B) t ;
where f t g t2Z are uncorrelated and

n (z) = 1 + 1 X j=1 n (j) p n z j ;
with P 1 j=1 n (j) 2 < 1 and lim n!1 n 0 (j) = r (j) :

Let N m and I m be the m-dimensional normal distribution and identity matrix respectively.

Theorem 1 Assume that fX t g 1 t= 1 2 A. Under H 1n 2 L,

n 0 (!) ! d N m 0 @ 1 X j=1 ! (j) ! (j) 0 ! 1=2 1 X j=1 r (j) ! (j) ; I m 1 A :
Thus, the corollary below justi…es inferences based on n 0 (!) :

Corollary 1 Under conditions in Theorem 1 and H 1n ;

n n (!) ! d 2 m (W (!)) ;
where

W (!) = P 1 j=1 r (j) ! (j) 0 P 1 j=1 ! (j) ! (j) 0 1 P 1 j=1 ! (j) r (j) :
Thus the Pitman-Noether asymptotic relative e¢ ciency of n 0 (!) [START_REF] Noether | On a Theorem of Pitman[END_REF]) is given by W (!) =W (r) ; which is in [0; 1] since W (r) = P 1 j=1 r (j) 2 and W (!) is the sum of squares of the projection of r on !: Thus, n 0 (r) is the most e¢ cient test in its class. When ! is scalar, the asymptotic relative e¢ ciency of n 0 (!) reduces to the squared correlation coe¢ cient between ! and r when P 1 j=1 ! (j) r (j) > 0; showing that n 0 (r) is the most e¢ cient test in its class.

When P 1 j=1 ! (j) r (j) < 0; lim n!1 Pr n 0 (!) = 1 < :
Parametric tests consist of assuming that ' = ' 0 and testing the hypothesis,

_ H 0 : 10 = 0;
where 10 is a q 1 -valued subvector of 0 , q 1 q; in the direction of the parametric local alternative,

_ H 1n : 10 = / p n:
Testing such hypothesis is equivalent, applying a standard mean value theorem (MVT) argument to (j), to test H 0 versus H 1n with r (j) = 0 d 1 0 (j) ; where

d 1 (j) = 1 2 Z cos ( j) @ @ 1 log f ( ) d ;
assuming suitable smoothness restrictions on f to be speci…ed later. Henceforth, we always assume that it is possible to interchange the integration and di¤erentiation operators. Then, if 10 and are scalars, the one-sided test is n 0 (r) =
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1 f n 0 (sign( ) d 1 0 )>z g : However, in parametric testing, two sided tests are required when testing that a vector of parameters is equal to zero.

Parameters are unknown in practical situations and they must be estimated.

The corresponding ERA's with estimated parameters are neither asymptotically independent or distribution-free. This is why the asymptotic distribution of classical Portmanteau test statistics is not well approximated by the distribution of a chi-squared random variable, except when a suitably large number of sample autocorrelations is considered. In next sections we develop asymptotically pivotal tests under these circumstances.

In 

ASYMPTOTICALLY DISTRIBUTION FREE TESTS WITH ESTIMATED PARAMETERS

In order to implement the test when 0 is unknown under the null, we need a p n-consistent estimator, n say. Theorem 2 provides an asymptotic expansion of
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the test statistics, which depends on the "score"function

d (j) = 1 2 Z cos ( j) @ @ log f ( ) d :
Notice that d 0 ( ) = @ ( )/ @ c = 0 under H 0 . The statement of Theorem 2 refers to Class B; which imposes some further mild restrictions on the class of functions J in order to avoid some pathological behaviour of d ; but allowing fairly ‡exible speci…cations, including those exhibiting long-memory such as fractionally integrated ARMA and exponential models. Similar assumptions were also used by [START_REF] Delgado | Distribution Free Goodnessof-…t Tests for Linear Processes[END_REF]. Henceforth, it is assumed that the parameter estimator n is p n-consistent under the sequence of local alternatives H 1n .

Theorem 2 Assume that fX t g 1 t= 1 2 A and J 2 B: Under

H 1n 2 L, n 1 X j=1 ! (j) n n (j) = n 1 X j=1 ! (j) n 0 (j) n 1 X j=1 ! (j) d n (j) 0 ( n 0 ) + o p n 1=2 :
Thus, asymptotically distribution-free tests can be obtained for any vector of weight functions ! using a sample dependent transformation !n; n such that

n 1 X j=1 !n; n (j) d n (j) 0 = 0: (5) 
Assuming that ! and d n are not perfectly collinear, the least squares residuals !n; n satisfy (5) non trivially, where for any generic function g :

Z ! R m , ĝn; (j) = g (j) n 1 X k=1 g (k) d (k) 0 n 1 X k=1 d (k) d (k) 0 ! 1 d ( 
j) ; j = 1; 2; : : : : (6)

Theorem 3 Under the conditions in Theorem 2 and

H 1n 2 L, n (! n; n ) ! d N m 0 @ 1 X j=1 !1; 0 (j) !1; 0 (j) 0 ! 1=2 1 X j=1 !1; 0 (j) r (j) ; I m 1 A :
We can justify inferences based on n n (! n; n ) with the next corollary.

Corollary 2 Under conditions in Theorem 2 and H 1n 2 L,

n n (! n; n ) ! d 2 m (W (! 1; 0 )) :
Let rn; be the residual function where g in ( 6) is replaced by r: Now, the rela-

tive e¢ ciency of n 0 (! n; n ) is given by W (! 1; 0 ) =W (r 1; 0 ) ; where W (r 1; 0 ) = P 1 j=1 r1; 0 (j) 2 = P 1 j=1 r (j) r1; 0 (j). Taking into account that P 1 j=1 r (j) !1; 0 (j) = P 1 j=1 r1; 0 (j) !1; 0 (j) ; it is immediate that n n (r n; n ) is also e¢ cient relatively to its class.
Testing the hypothesis _ H 0 in the direction _ H 1n is equivalent to test H 0 versus

H 1n with r (j) = 0 d 1 0 (j) ; where d (j) = d 1 (j) 0 ; d 2 (j) 0 0 is conformable with respect to = ( 0 1 ; 0 2 ) 0 : Then, using a restricted p n-consistent estimate ^ n of 0 , so that ^ n 0 0 d ( ) = ^ 2;n 2;0 0 d 2 ( ) n 1=2 0 d 1 ( ) under _ H 1n ; the optimal
weights are estimated by rn; ^ n (j) = 0 dn;1 ^ n (j) ; where

dn;1 (j) = d 1 (j) n 1 X k=1 d 1 (k) d 2 (k) 0 n 1 X k=1 d 2 (k) d 2 (k) 0 ! 1 d 2 (j) ; (7) 
i.e. dn;1 are the least squares residuals when projecting fd 1 (j)g n 1 j=1 on fd 2 (j)g n 1 j=1 :

Interestingly, n ^ n dn;1 ^ n is asymptotically equivalent to generalized LM tests based on di¤erent objective functions considered in the literature, cf. [START_REF] Robinson | E¢ cient tests of non-stationary hypothesis[END_REF], such as

LM n = n S 1;n ~ n 0 H 11 n ~ n S 1;n ~ n ; where ~ n = 0 0 ; ~ 0 2;n 0 is the associated restricted (pseudo) maximum likelihood estimate (MLE) under _ H 0 , S 1;n ~ n = P n 1 j=1 n ~ n (j) d 1 ~ n (j) and H 11 n ( ) =
P n 1 j=1 dn;1 (j) dn;1 (j) 0 1 :

For example, when n (j) = ~ n (j) ; LM n corresponds approximately to the LM test based on the Whittle's log-likelihood objective function, which is ~ n (0) in
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(1), whereas with n (j) = ^ n (j) ; it corresponds to its time domain Gaussian likelihood counterpart. Applying arguments in [START_REF] Robinson | E¢ cient tests of non-stationary hypothesis[END_REF], we conclude that

LM n ! d 2 q 1 0 H 11 1 ( 0 ) 1 :
The statistics n ^ n are asymptotically equivalent to

LM n under H 1n when using optimal weights, as stated in the following Corollary, which is a straightforward consequence of Theorem 2.

Corollary 3 Under conditions in Theorem 2 and _ H 1n ;

n ^ n !n; ^ n ! d 2 q 1 ( 0 0 (! 1; 0 ) ) ; where (!) = P 1 j=1 d 1 (j) ! (j) 0 P 1 j=1 ! (j) ! (j) 0 1 P 1 j=1 ! (j) d 1 (j) 0 ; and n ^ n dn;1 ^ n = LM n + o p (1) :
The tests n ^ n !n; ^ n are computed using any preliminary restricted p n-consistent estimator ^ n under the sequence of alternatives fH 1n g n 1 . Thus, n ^ n dn;1 ^ n is asymptotically locally e¢ cient in its class for testing _ H 0 in the direction of _ H 1n ; as well as asymptotically equivalent to the LM test, noticing that 0 d1;1 0 = H 11 1 ( 0 ) 1 because P 1 j=1 d 1 0 (j) d1;1 0 (j) 0 = P 1 j=1 d1;1 0 (j) d1;1 0 (j) 0 :

When testing in the direction of innovations autocorrelated according to a M A (m) ; AR (m) or the autocorrelation structure described in (2), 

d 1 (j) =
: ; d 2 (m)) 0 n 1 X j=1 d 2 (j) d 2 (j) 0 ! 1 (d 2 (1) ; : : : ; d 2 (m)) :
The corresponding LM statistic has the form However, in the presence of estimated parameters, tests based on the sum of the squares of the …rst m ERAs are not equivalent to LM tests, even asymptotically.

LM n = n n; ~ n (

TESTS BASED ON REGRESSION RESIDUALS

When fX t g 1 t= 1 are the unobserved errors of a multiple regression model, new di¢ culties arise because nonparametric nuisance functions appear when computing the optimal weights. Suppose that Y t = Z 0 t 0 + X t ; t = 1; 2; : : : ;

where we assume …rst that fY t ; Z t g 1 t= 1 is a 1+p-valued vector covariance stationary time series, and 0 2 R p is a vector of unknown parameters. We shall discuss the case when Z t admits non-stochastic regressors later.

Let n be a p n-consistent estimator of 0 ; e.g. the Gaussian MLE. In order to test the speci…cation of X t in these circumstances, consider residuals X t ( ) = Y t 0 Z t ; t = 0; 1; : : : ; i.e., X t = X t ( 0 ) and

" t ( ; ) = ' (B) X t ( ) = ' (B) ' (B) f" t + ' (B) Z 0 t ( 0
)g ; t = 0; 1; : : : ;

i.e., " t = " t ( 0 ; 0 ) : As before, the autocorrelation function of f" t ( ; )g 1 t= 1 can be estimated either by the sample autocorrelation function Also in this Section, n refers to either ~ n or ^ n :

^ n (j) = ^ n (j) ^ n (0), with ^ n (j) = n 1 P n t=j+1 " t ( n ; n ) " t j ( n ; n ) ; j =
In order to identify the parameters, assume that ' (B) Z t , are predetermined, i.e. E (" 0 ( ; ) Z j ) = 0; j 0; but not necessarily strictly exogenous. Then, de…ning the cross-spectral density function between X t ( ) and Z t , f X( );Z say, by

E (X 0 ( ) Z j ) = (2 ) 1 R exp (i j) f X( );Z ( ) d ; we note that (j) = E (" 0 ( ; ) ' (B) Z j ) 2 = 1 2 2 Z exp (i j) f X( );Z ( ) f ( ) d ,
is then zero for j 0; but allowed to be nonzero for j > 0. We also extend Class B

to Class C to incorporate equivalent conditions on as on d : Assuming that J 2 C; the next theorem is a straightforward extension of Theorem 3. Hence, its proof is omitted.

Theorem 4 Assume that fX t g 1 t= 1 2 A, J 2 C and H 1n 2 L, n 1 X j=1 ! (j) n n n (j) = n 1 X j=1 ! (j) n 0 0 (j) 0 n n 0 0 n 1 X j=1 ! (j) 0 0 (j) d 0 (j) +o p (1) : 
Thus, asymptotically distribution free test statistics are based on weights orthogonal to both 0 0 and d 0 : To this end, we can consider the semiparametric estimator

n (j) = 1 n (0) Re ( 2 ñ ñ X k=1 exp (i k j) I X( );Z ( k ) 0 f ( k ) ) ;
or time domain versions. This avoids to parameterize f X( );Z .

For any weight function ! and a smoothing number m; de…ne

!mn; (j) = ! (j) m X k=1 ! (k) n (k) d (k) 0 2 6 4 m X k=1 0 B @ n (k) n (k) 0 n (k) d (k) 0 d (k) n (k) 0 d (k) d (k) 0 1 C A 3 7 5 1 n (j) d (j) :
Thus, reasoning as before, mn; n n !mn; n n ; with mn; (!) = mn; (!) 0 mn; (!)

and mn; (!) = n 1=2 m X j=1 ! (j) ! (j) 0 ! 1=2 m X j=1 ! (j) n (j) ;
is expected to be asymptotically pivotal under the null and suitable regularity conditions.

The convergence in distribution of mn; !mn; n n is proved assuming that (X t ; Z 0 t ) 0 belong to Class D; a multivariate extension of Class A; but allowing f X;Z to be nonparametric. It is also assumed that

1 m + m n 1=2 ! 0 as n ! 1 (9) 
to control the estimation e¤ect of 0 0 (j) by n 0 0 (j) ; j = 1; : : : ; m: The trimming is needed because, unlike d 0 ; n 0 0 depends on a sample average, but has no e¤ect on the asymptotic properties of the tests. Notice that the trimming can be avoided by assuming a parametric function for f X;Z = f X( 0 );Z ; which is weaker than assuming that Z t is strictly exogenous, i.e. n 0 0 (j) = 0 all j 1: Finally note that our distribution free tests can be computed without resorting to smooth estimation of the cross-spectrum as considered in Delgado, Hidalgo and Velasco (2009), avoiding that …nite sample properties are a¤ected by the choice of a bandwidth number.

Next theorem provides the limiting distribution of mn; !mn; n n under local alternatives

H 1n : 0 0 (j) = r (j) p n + a n (j) n ; j > 0 for some ( 0 0 ; 0 0 ) 0 2 ;
and shows that the test mn n n rmn; n n is locally e¢ cient in its class. We also omit the proof given the similarities with that of Theorem 4.

Theorem 5 Assume that (X t ; Z 0 t ) 0 1 t= 1 2 D, J 2 C; and (9), under H 1n 2 L;

m;n !mn; n n ! d N m 0 @ 1 X j=1 !1; 0 0 (j) !1; 0 0 (j) 0 ! 1=2 1 X j=1 !1; 0 0 (j) r (j) ; I m 1 A :
If the elements of Z t , t = 1; 2; : : : ; are nonstochastic, such as a polynomial trends in t; and under the identi…ability conditions stated in the Appendix as Class E, estimation of does not a¤ect the asymptotic properties of ERA's and weights need not be orthogonalized. The reason is that the Z t are strictly exogenous in this case, and the corresponding function 0 0 (j) is zero for all leads and lags.

This fact, together with the assumption that n is (at least) p n-consistent, renders Theorems 3 and 4 valid in this set up.

We could consider general pseudo-residuals U 0 (Y t ; Z t ) = X t ; t = 0; 1; 2; ::::

These pseudo-residuals could be the parametrically scaled residuals U (Y t ; Z t ) = Y t / (Z t ) ; where is a known function indexed by the parameter ; e.g. a GARCH speci…cation. The results in this Section can be straightforwardly applied to testing the lack of autocorrelation of these pseudo-residuals.

A MONTE CARLO EXPERIMENT

This simulation study is based on 50,000 replications of ARF IM A (p; d; q) models under alternative designs. The innovations are independent standard normals.

Parameters are estimated using the restricted Whittle estimator under the null hypothesis and we use time domain ERA's.

We have computed the percentage of rejections using …ve distribution free tests: We also provide results for m = 5 in order to check size accuracy and power for small m: We report results for our TPT using small values of m = 1; 2; 3; 5: better detected. However, the TPT works much better than the others in this case.

FURTHER COMMENTS

This article discusses the construction of distribution free tests for general time series model speci…cation, which include models exhibiting long memory. The resulting tests are asymptotically equivalent to Gaussian LM tests, despite using any preliminary p n consistent estimator. This requires that p n n 0 (j) j>0 are asymptotically independent standard normals under the null, which is provided assuming in Class A that f" t g 1 t= 1 does not exhibit some form of higher order serial dependence under the null, e.g. conditional volatility.

The asymptotic distribution of p n n 0 (j) j>0 has been derived under fairly general conditions on the higher order serial dependence of f" t g with a (j; `) := E (" t " t+j " t+` " t+j+` ) : This expression is simpli…ed under particular circumstances. For instance, when f" t g 1 t= 1 is a martingale di¤erence sequence, a 0 (j; `) = E " 2 t 0 " t+j 0 " t+` 0 (Hannan and Heyde, 1972) and when de serial dependence of f" t g 1 t= 1 can be modeled according to a Gaussian GARCH model, a 0 (j; `) = 0 for j 6 = `(Lobato, 2001; and Lobato, Nankervis and Savin, 2001).

Under general serial dependence, it is expected that under H 0 ;

n (!) ! d N m (0; 0 ) ; with 0 = 1 X j=1 ! (j) ! (j) 0 ! 1=2 1 X j=1 1 X `=1 ! (j) ! (`) 0 a 0 (j; `)! 1 X j=1 ! (j) ! (j) 0 ! 1=2 ;
which can be estimated truncating the summations in the middle term and exploiting the decay of the function !; as in a Newey and West (1987) type estimator. We could obtain asymptotically distribution-free tests, robust to unknown higher order serial dependence of the innovations using the test statistic,

n n (! n n ) = n (!) 0 1 n n n (!) ;
where n n is a suitable consistent estimator of 0 : Though the resulting estimator is expected to be e¢ cient within its class, it is not possible to make comparisons with the corresponding optimal LM test.

Assuming that the serial dependence of f" t g 1 t= 1 can be modeled according to a GARCH speci…cation, we could test that the parametric scaled innovations are
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not autocorrelated using the test proposed in this article by a fairly straightforward extension of the results in Section 3 to parametric models nonlinear in variables.

However, justifying such procedures in the presence of long range dependence is out of the scope of this paper.

APPENDIX A: TESTS USING FREQUENCY DOMAIN AUTOCORRELATION ESTIMATES

Class A: The process fX t g 1 t= 1 de…ned by ' (B) X t = " t belongs to Class A if:

(i) The process f" t g 1 t= 1 satis…es that E (" r t j F t 1 ) = r with r constant ( 1 = 0 and 2 = 2 ) for r = 1; : : : ; 4 and all t = 0; 1; : : : ; where F t is the sigma algebra generated by f" s ; s tg.

(ii) f ( ) = j' e i j 2 is positive and continuously di¤erentiable on (0; ], and j (d=d ) log f ( ) j = O (j j 1 ) as j j ! 0:

Class B. The parametric model J belongs to Class B if:

(i) f ( ) is continuously di¤erentiable in 2 , 2 (0; 
]; with derivative ( ) := (@=@ ) log f ( ) ; so that 0 ( ) is continuously di¤erentiable on (0; ]:

(ii) @ 0 ( ) =@ = O (j j 1 ) as j j ! 0:

(iii) sup 2 k ( )k = O (log j j) as j j ! 0:

(iv) For all 2 (0; ] and 0 < < 1 there exists some K < 1 such that

sup f :k 0 k =2g 1 k 0 k 2 f 0 ( ) f ( ) 1 + ( 0 ) 0 0 ( ) K j j log 2 j j: (v) For d (j) = (2 ) 1 R
( ) cos (j ) d and _ d (j) = @d (j) =@ ; j = 1; 2; : : : ; 

Class C: The parametric model J described in Section 5 belongs to Class C if:

(i) All conditions of Class B hold.

(ii) Conditions (ii) (iii) of Class B hold replacing ( ) by f X( )Z ( ) =f ( ) ; 

( 0 ; 0 ) 0 2 : (iii) Condition (v) of
(i) The function l de…ned as l ( ) = (2 ) 1 P 1 j=1 r (j) cos ( j) ; satis…es that jl ( )j K jlog j and is di¤erentiable in (0; ] so that j(@=@ ) l ( )j K j j 1 ; all > 0:

(ii) The absolute value of g n ( ) = (2 ) 1 P 1 j=1 a n (j) cos ( j) is dominated by an integrable function not depending on n for all n > n 0 :

We consider now the frequency domain case, where n (j) = ~ n (j), and ! scalar throughout the appendix, to simplify exposition, since asymptotic expansions have to be worked out element by element and multivariate convergence in distribution results would follow by a routine application of Cramer-Wold device.

Proof of Theorem 1. De…ne n;k (!) = n 1=2 P k j=1 ! (j) 2 1=2 P k j=1 n 0 (j) ! (j) :

By Lemma 1, n;k (!) ! d N P k j=1 ! (j) 2 1=2 P k j=1 r (j) ! (j) ; 1 as n ! 1 for k …xed. Then, using Theorem 3.2 in [START_REF] Billingsley | Convergence of Probability Measures, Second Edition[END_REF] we only need to show that

lim k!1 lim sup n!1 Pr n (!) n;k (!) > = 0 (13) 
for any > 0: We …rst note that the innovation variance estimate is the same in both n;k (!) and n (!) so we concentrate on the autocovariance estimates ~ n 0 (j) ; j = 0; 1; : : :. Then we show that, under H 1n ; En 1=2 j n (j)j = O n for some > 0 and for each j = 1; : : : ; k; where n (j) = ~ n 0 (j) n 1=2 2 r (j) ~ n" (j) and ~ n" (j)

is de…ned as ~ n 0 (j) but replacing I X ( ) f 1 0 ( ) by I " ( ) : Proceeding as in the proof of Lemma 1,

~ n 0 (j) = 2 ñ ñ X k=1 I X ( k ) f ( k ) cos (j k ) 1 + n 1=2 l ( k ) + n 1 V n (j) ;
where E jV n (j)j = O (1) because g n is uniformly integrable: Then, using Lemma 4 in in Delgado, Hidalgo and Velasco (2005), DHV henceforth, for both s = 1 and

s = l; E n 1=2 2 ñ ñ X k=1 I X ( k ) f ( k ) I " ( k ) s ( k ) cos (j k ) = O n
for some > 0, uniformly in j; while E (2 =ñ)

P ñ k=1 I " ( k ) l ( k ) cos (j k ) 2 r (j) =
O (n 1 log n) using Lemma 2 and Lemma 1 in DHV with r and l satisfying conditions of H 1n 2 L. Next, this shows that

sup k n 1=2 n 1 X j=k+1 n (j) ! (j) n 1=2 n 1 X j=1 j n (j)j j! (j)j
is o p (1) as n ! 1; uniformly in k; using (3). Finally, using again (3) and Lemma 2,

E n 1=2 n 1 X j=k+1 ~ n" (j) ! (j) 2 = O n 1 X j=k+1 ! 2 (j) + n 1 n 1 X j=k+1 n 1 X j 0 =k+1
j! (j)j j! (j 0 )j ! and P n 1 j=k+1 r (j) ! (j) are both o (1) as k ! 1; so (13) holds by Markov's inequality.

Proof of Theorem 2. Write

n 1 X j=1 ! (j) n; n (j) = n 1 X j=1 ! (j) n 0 (j) ( n 0 ) 0 n 1 X j=1 ! (j) d n (j) + 5 X j=1 R nj ;
where R n1 = ( n 0 ) 0 P n 1 j=1 ! (j) fd n (j) d 0 (j)g ; R n2 = ( n 0 ) 0 P n 1 j=1 ! (j) fd 0 (j) d n 0 (j)g ; R n3 = P n 1 j=1 ! (j) _ d n n (j) ; and

R n4 = 1 2 1 ~ n 0 (0) n 1 X j=1 ! (j) ~ n 0 (j) ; R n5 = 1 ~ n n (0) 1 2 n 1 X j=1 ! (j) ~ n n (j) ; with d n (j) = (2 =ñ) 2 P ñ i=1 I X ( i ) f 1 ( i ) ( i ) cos ( i j) ; and _ d n (j) = 2 ñ 2 ñ X i=1 I X ( i ) f 0 ( i ) f 0 ( i ) f ( i ) 1 + ( n 0 ) 0 0 ( i ) cos ( i j) :
Thus, it su¢ ces to prove that R nj = o p n 1=2 ; j = 1; : : : ; 5: Applying ( 12), (3), and taking into account that n is

p n-consistent, R n1 = o p n 1=2 : Write R n2 = ( n 0 ) 0 n 1 X j=1 ! (j) ( d 0 (j) 2 ñ ñ X i=1 0 ( i ) cos (j i ) ) + ( n 0 ) 0 n 1 X j=1 ! (j) ( 2 ñ 2 ñ X i=1 2 2 I X ( i ) f 0 ( i ) 0 ( i ) cos (j i ) ) :
The …rst term on the left hand side is O (n 1 log n 2 ) applying Lemma 1 in DHV and (2), and the second term can be written as

( n 0 ) 0 2 ñ 2 ñ X i=1 2 2 I " ( i ) 0 ( i ) n 1 X j=1 ! (j) cos (j i ) (14) 
+ ( n 0 ) 0 2 ñ 2 ñ X i=1 I " ( i ) I X ( i ) f 0 ( i ) 0 ( i ) cos (j i ) (15) 
Applying (3), 

P n 1 j=1 ! (j) cos (j i ) = O (log n) uniformly in i.
_ d n n (j) k 0 k 2 C ñ ñ X i=1 jlog i j 2 I X ( i ) f 0 ( i )
because n is p n-consistent, and we can take = Kn 1=2 in , so that j i j K when i 1; reasoning as in the proof of Lemma 8 of DHV. Therefore,

kR n3 k k n 0 k 2 n 1 X j=1 j! (j)j C ñ ñ X i=1 jlog i j 2 I X ( i ) f 0 ( i ) = o p n 1=2
on taking expectations and using k n 0 k = O p n 1=2 : Finally note that replacing ~ n n (0) by ~ n 0 (0) ; and this by 2 ; makes no di¤erence by (50) in DHV, which

proves that R n4 = o p n 1=2 and R n5 = o p n 1=2 .
Proof of Theorem 3. We note that by Theorem 2 and because of the exact orthogonality of !n; n and d On the other hand, using Lemma 3, the term in braces in [START_REF] Robinson | E¢ cient tests of non-stationary hypothesis[END_REF] is o (1) as n ! 1; so (17) is also o p (1) and the theorem follows.

n ; n (! n; n ) = n (! n; n ) + o p (1) ; with n (! n; n ) = Next, n (! n; 0 ) n (! 1; 0 ) is n 1=2 P n 1 j=1 n 0 (j) f! n; 0 (j) ! 1; 0 (j)g P n 1 j=1 !n; 0 (j) 2 1=2 (16) 
Proof of Corollary 3. The …rst part follows as Theorem 3 whereas the second one, follows noticing that n 1=2 P n 1 j=1 n ^ n (j) dn;1 ^ n (j) = n 1=2 P n 1 j=1 n 0 (j) dn;1 ^ n (j) + o p (1) using Theorem 2 and that dn;1 ^ n (j) and d n;2 ^ n (j) are orthogonal.

APPENDIX B: TESTS USING TIME DOMAIN AUTOCORRELATION ESTIMATES

For time domain analysis we only describe the main di¤erences. We use the simplifying assumption that X t = " t = 0 for t 0; cf. (2) in [START_REF] Robinson | E¢ cient tests of non-stationary hypothesis[END_REF], so

that Lemmas 1 and 2 follow at once for ^ n under H 0 using the martingale property of " t . Then assuming that the sequence of alternatives fH 1n g n 1 belongs to Class L ; we can show Lemma 1 and then Theorem 1 under H 1n : 

2 m" t g 1 t= 1 :

 21 is the (1 )-th quantile of the chi-squared with m degrees of freedom. The theorem refers to Class A of processes, de…ned in the Appendix. Class A allows for a wide range of autocorrelation patterns in fX t g 1 t= 1 ; including long memory, and A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT imposes a martingale di¤erence assumption on the powers of the white noise process fThis assumption is weaker than Gaussianity, or independence, which are usually assumed in the time series goodness-of-…t testing literature. See Robinson (1994) and Delgado, Hidalgo and Velasco (2005) for discussion. Theorem 1 also allows to compute the e¢ ciency of the tests in this class under the sequence of local alternatives of the form

  Section 2 we propose a transformation of the weights which result in test statistics converging to a standard normal under the null. We show that a new Box-Pierce-type test based on a linear transformation of the ERA's, belongs to this class and is asymptotically distributed as a chi-squared using a …xed number of transformed ERA's. Section 3 discusses the implementation of the test with regression residuals. In Section 4, we illustrate the …nite sample properties of our test by means of a Monte Carlo experiment. Conclusions and further comments on the extension of the proposed tests to di¤erent models and alternative regularity conditions are placed in a …nal section. Mathematical proofs are contained in an Appendix at the end of the article.

0; 1 ;

 1 : : : ; or by, ~ n (j) = ~ n (j) ~ n (0) ; where ~ n (j) is de…ned as ~ n (j) with I X replaced by I X( ) :

TABLES 1 & 2

 12 ABOUT HEREAs it happens with the standard LM n test statistic considering AR (m) (or M A (m) ; or Bloom…eld(m)) departures from the innovations white noise hypothesis, the weighting matrix of the test statistic n n dn;1 n becomes near idempotent as m increases. This fact prevents from using our TPT or the LM test with large values of m in this situation. The size accuracy of the TPT is excellent for the small values reported in the three designs considered. The CvM and BP tests also perform very well for a sample size of 500, but LM n and ^ n su¤er very serious size distortions for some designs.The proportion of rejections under alternative hypotheses are reported in Table2for n = 200 and di¤erent designs. All the tests detect departures from the A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT AR(1) speci…cation in the direction of MA(1) innovations, as well as departures from the MA(1) speci…cation in the direction of AR(1) innovations. However, I(d) departures from the white noise hypothesis are better detected by the TPT than any other test. The classical BP test rejects less than the other methods in this situation. It is worth mentioning that departures form the AR(1) speci…cation with parameter 0.5 in the direction of I(d) correlated innovations are not detected by any test for the sample sizes considered. Departures from the I(d) hypothesis are

1 Xd 0

 10 j=1 (j) d 0 (j) 0 is …nite and positive de…nite; Cj 1 ; j = 1; 2; : : : :

~ 2 + C n n 1 X j=1 n 1 X j 0 2 = o ( 1 )

 211021 j) ! 1; 0 (j)[START_REF] Robinson | E¢ cient tests of non-stationary hypothesis[END_REF] and we …nd that, cf. Lemma 3, n 0 (j) f! n; 0 (j) ! 1; 0 (j)g! 2 n 1 X j=1 f! n; 0 (j) ! 1; 0 (j)g =1 j! n; 0 (j) ! 1; 0 (j)j j! n; 0 (j 0 ) ! 1; 0 (j 0 )j which is o P n 1 j=1 kd 0 (j)k 2 + n 1 o P n 1 j=1 kd 0 (j)k as n ! 1; so that(16) is o p (1) :

H 0 : 10 [d 1 :

 0101 I(d): H 1 : ARF IM A(1; d 0 ; 0): n = 200 AR(1)] d 0 = 0:0

  1. Delgado, Hidalgo and Velasco (2005) omnibus test based on the transformed T p process using the Cramer-von Mises criteria, CvM. 2. The e¢ cient LM test against di¤erent residual autocorrelation alternatives. 3. Our e¢ cient test ^ n = n n dn;1 n with dn;1 n corresponding to di¤erent residual autocorrelation alternatives. 4. Our transformed portmanteau test (TPT) ^ n , with dn;1 n corresponding to the alternative of residuals autocorrelated according to an AR (m), cf. (8).5. Box Pierce test, computed as proposed by[START_REF] Ljung | On a measure of lack of …t in time series models[END_REF], BP n (m).

Table 1 reports the percentage of rejections under the null of AR(1), MA(1) and integrated of order d process (I (d)); with sample sizes of 200 and 500. We have computed BP test for m = 10; 20 and 30: Choices of m around p n are expected to yield test statistics with good size accuracy.

  Class B holds with d replaced by 0 ; d 0 0 ; ( 0 ; 0 ) 0 2 :Class D: The (1 + p)-process fV t g 1 t= 1 ; (B) V t = U t , belongs to Class D if: (i) The process fU t g 1 t= 1 satis…es that E (U t j F t 1 ) = 0; E (U t U 0 t j F t 1 ) = ; E (U t;a U t;b U t;c j F t 1 ) = abc ; E (U t;a U t;b U t;c U t;d j F t1 ) = abcd with abc and abcd The elements of f V ( ) =f ( ) are bounded on [ ; ] ; where f = ff V g [1;1] 2 The nonstochastic regressors fZ t g 1 t= 1 belongs to Class E if D n = P n t=1 W t W 0 t is positive de…nite for large enough n, W t = ' (B) Z t ; Z t = 0; t 0: Class L. The sequence of local alternatives fH 1n g n 1 in (4) satis…es that

	bounded, all a; b; c; d = 1; : : : ; 1 + p and all t = 0; 1; : : : ; where F t is the sigma
	algebra generated by fU s ; s tg.		
	(ii) f V ( ) = j e i j 2 is continuously di¤erentiable on [ ; 0) [ (0; ], and
	k(d=d ) log f V ( )k = O (j j 1 ) as j j ! 0:
	(iii) A:			
	Class E: 1 X j=1	r (j) 2 < 1 and	n X j=1	a n (j) 2 = O (1) as n ! 1:

Table 1 .

 1 Empirical size of LM and Portmanteau tests at 5% of signi…cance. CvM LM ^ n ^ n [d 1 : AR (m)] BP n n (m)

	m				1 2 3	5	5 10 20 30
					n = 200	
					H 0 : AR(1)	
	10		[d 1 :I(d)]		
	-0.8	4.7	3.4	3.4	4.9 4.8 4.6 4.3	5.5 5.5 6.0 6.6
	-0.5	4.4	3.2	3.3	4.8 4.7 4.5 4.2	5.1 5.2 5.7 6.3
	0.0	4.1	2.5	2.5	5.0 4.6 4.4 4.2	4.9 5.0 5.7 6.3
	0.5	3.6	1.1	0.7	4.9 4.7 4.5 4.2	4.8 5.1 5.6 6.3
	0.8	3.1	4.9	3.0	4.8 4.6 4.6 4.4	5.0 5.2 5.8 6.3
					H 0 : MA(1)	
	10 -0.8	4.2	[d 1 :I(d)] 3.5 3.3	4.5 4.4 4.2 4.1	6.7 6.3 6.4 7.0
	-0.5	4.2	3.0	3.1	4.5 4.5 4.4 4.1	5.1 5.1 5.7 6.3
	0.0	4.1	2.3	2.3	4.7 4.4 4.4 4.1	4.8 5.0 5.6 6.2
	0.5	3.6	3.3	0.6	4.6 4.4 4.2 4.1	4.8 5.0 5.5 6.2
	0.8	3.1	24.5	3.6	4.6 4.4 4.3 4.3	6.3 5.9 6.1 6.6
					H 0 : I(d)	
	d 0		[d 1 :AR(1)]		

Table 2 .

 2 Empirical power of LM and Portmanteau tests at 5% of signi…cance. H 0 : M A(1): H 1 : AR(1). n = 200

		CvM LM	^ n	^ n [d 1 :AR(m)]	BP n n (m)
	m			1	2	3	5	5	10 20 30
			H 0 : AR(1): H 1 : MA(1). n = 200
	10	[d 1 :MA(1)]				
	-0.8 100. 99.8 99.8	99.8 100. 100. 100.	100. 99.6 94.9 89.1
	-0.5 80.8 83.6 80.6	80.6 78.9 71.4 59.9	66.7 49.9 38.3 33.8
	0.2	7.1 12.9	9.7	9.7 8.0 7.1 6.1	7.3 6.7 6.9 7.5
	0.5 70.8 75.9 80.8	80.8 79.2 73.0 61.8	68.7 51.7 39.2 34.7
	0.8 99.6 99.5 99.8	99.8 100. 100. 100.	100. 99.6 95.2 89.3
	-0.8 100. 100. 100.	100. 100. 100. 100.	100. 100. 100. 100.
	-0.5 84.4 78.1 81.2	81.2 82.3 77.3 69.7	74.2 61.9 50.4 44.9
	0.2	7.2 25.0	6.9	6.9 6.1 5.6 4.9	5.9 5.6 6.1 6.7
	0.5 77.1 86.9 81.5	81.5 80.4 75.1 66.9	72.1 59.3 48.2 43.0
	0.8 100. 100. 100.	100. 100. 100. 100.	100. 100. 100. 100.
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A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT

n 1=2 P n 1 j=1 !n; n (j) 2 1=2 P n 1 j=1 n 0 (j) !n; n (j) : So, we can apply Theorem 2, with ! substituted by !n; n ; after noticing that P 1 j=1 !n; n (j) 2 < 1; because of (3), (v) in the de…nition of Class B, and using !n; n (j) = ! (j) d n (j) 0 n n ; with 

: 

, proceeding as in the proof of Theorem 1.

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT

Class L . H 1n 2 L and (z) = P 1 j=0 j z j := ' 0 (z) ' 1 (z) satis…es (0) = 1 and j = n 1=2 r (j) + n 1 a n (j) ; j = 1; 2; : : : ; where jr (j)j Kj 1 ; j = 1; 2; : : : ; and for all n su¢ ciently large ja n (j)j Kj 1 ; j = 1; 2; : : : ; for all > 0:

Regularity conditions on J for the analysis of tests based on time domain autocorrelations ^ n n are similar to those for frequency domain, since, assuming that ' e i is di¤erentiable so that (z) = (@=@ ) log ' (z), (0) = 0 all ; and expanding (z) = P 1 j=1 ;j z j ; we …nd that

Theorems 2 and 3 for ^ n n follow replacing condition (iv) in Class B by (iv ):

(iv ) For all 0 < < 1 there exists some K < 1 such that

Kj 1 log 2 j; j = 1; 2; : : : : 

n 1=2 g n ( ) satis…es that R 0 h n ( ) cos ( j) d = r (j) + n 1=2 a n (j) : Then, under H 1n ,

Now, reasoning as in the proof of Theorem 5 of DHV and using that g n is integrable,