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We characterize symmetric spaces of non-positive curvature by the equality case of general inequalities between geometric quantities.

Introduction

Let (M, g) be a closed connected Riemannian manifold, and π : ( M , g) → (M, g) its universal cover endowed with the lifted Riemannian metric. We denote p(t, x, y), t ∈ R + , x, y ∈ M the heat kernel on M , the fundamental solution of the heat equation ∂u ∂t = Div ∇u on M . Since we have a compact quotient, all the following limits exist as t → ∞ and are independent of x ∈ M : where B M (x, t) is the ball of radius t centered at x in M and Vol is the Riemannian volume on M . All these numbers are nonnegative. Recall λ 0 is the Rayleigh quotient of M , ℓ the linear drift, h the stochastic entropy and v the volume entropy. There is the following relation:

λ 0 = inf f ∈C 2 c ( M ) |∇f | 2 |f | 2 =
(1) 4λ 0 (a) ≤ h (b) ≤ ℓv (c) ≤ v 2 .
See [L1] for (a), [Gu] for (b). Inequality (c) is shown in [L3] as a corollary of (b) and ( 2):

(2)

ℓ 2 ≤ h
If ( M , g) is a locally symmetric space of nonpositive curvature, all five numbers 4λ 0 , ℓ 2 , h, ℓv and v 2 coincide and are positive unless ( M , g) is (R n , Eucl.). Our result is a partial converse:

Theorem 1.1. Assume (M, g) has nonpositive curvature. With the above notation, any of the equalities ℓ = v, h = v 2 and 4λ 0 = v 2 hold if, and only if, ( M , g) is a symmetric space.

As recalled in [L3], Theorem 1.1 is known in negative curvature and follows from [K], [BFL], [FL], [BCG] and [L1]. The other possible converses are delicate: even for negatively curved manifolds, in dimension greater than two, it is not known that h = ℓv holds only for locally symmetric spaces. This is equivalent to a conjecture of Sullivan (see [L2] for a discussion). Sullivan conjecture holds for surfaces of negative curvature ([L1], [Ka]). It is not known either whether 4λ 0 = h holds only for locally symmetric spaces. This would follow from the hypothetical 4λ 0 (d) ≤ ℓ 2 by the arguments of this note.

We assume henceforth that (M, g) has nonpositive sectional curvature. Given a geodesic γ in M , Jacobi fields along γ are vector fields t → J(t) ∈ T γ(t) M which describe infinitesimal variation of geodesics around γ. By nonpositive curvature, the function t → J(t) is convex. Jacobi fields along γ form a vector space of dimension 2 Dim M . The rank of the geodesic γ is the dimension of the space of Jacobi fields such that t → J(t) is a constant function on R. The rank of a geodesic γ is at least one because of the trivial t → γ(t) which describes the variation by sliding the geodesic along itself. The rank of the manifold M is the smallest rank of geodesics in M . Using rank rigidity theorem ( [B1], [BS]), we reduce in section 2 the proof of Theorem 1.1 to proving that if (M, g) is rank one, equality in (2) implies that ( M , g) is a symmetric space. For this, we show in section 3 that equality in (2) implies that ( M , g) is asymptotically harmonic (see the definition below). This uses the Dirichlet property at infinity (Ballmann [B2]). Finally, it was recently observed by A. Zimmer ([Z]) that asymptotically harmonic universal covers of rank one manifolds are indeed symmetric spaces.

Generalities and reduction of Theorem 1.1

We recall the notations and results from Ballmann's monograph [B3] about the Hadamard manifold ( M , g) that we use. The space M is homeomorphic to a ball. The covering group G := π 1 (M ) satisfies the duality condition ([B3] page 45).

2.1. Boundary at infinity. Two geodesic rays γ, γ ′ in M are said to be asymptotic if sup t≥0 d(γ(t), γ ′ (t)) < ∞. The set of classes of asymptotic unit speed geodesic rays is called the boundary at infinity M (∞). M ∪ M (∞) is endowed with the topology of a compact space where M (∞) is a sphere and where, for each unit speed geodesic ray γ, γ(t) → [γ] as t → ∞. The action of the group G on M (∞) is the continuous extension of its action on M . For any x, ξ ∈ M × M (∞), there is a unique unit speed geodesic γ x,ξ such that γ x,ξ (0) = x and [γ x,ξ ] = ξ. The mapping ξ → γx,ξ (0) is a homeomorphism π -1

x between M (∞) and the unit sphere S x M in the tangent space at x to M . We will identify S M with M × M (∞) by (x, v) → (x, π x v). Then the quotient SM is identified with the quotient of M × M (∞) under the diagonal action of G.

Fix x 0 ∈ M and ξ ∈ M (∞). The Busemann function b ξ is the function on M given by:

b ξ (x) = lim y→ξ d(y, x) -d(y, x 0 ). Clearly, b gξ (gx) = b ξ (x) + b gξ (gx 0 ). Moreover, the function x → b ξ (x) is of class C 2 ([HI]). It follows that the fonction ∆ x b ξ satisfies ∆ gx b gξ = ∆ x b ξ and therefore defines a function B on G \ ( M × M (∞)) = SM .
It follows from the argument of [HI] that the function B is continuous on SM (see [B3], Proposition 2.8, page 69).

2.2. Jacobi fields. Let (x, v) be a point in T M . Tangent vectors in T x,v T M correspond to variations of geodesics and can be represented by Jacobi fields along the unique geodesic γ x,v with initial value γ(0) = x, γ(0) = v. A Jacobi field J(t), t ∈ R along γ x,v is uniquely determined by the values of J(0) and J ′ (0). We describe tangent vectors in T x,v T M by the associated pair (J(0),

J ′ (0)) of vectors in T x M . The metric on T x,v T M is given by (J 0 , J ′ 0 ) 2 = J 0 2 + J ′ 0 2 . Assume (x, v) ∈ SM . A vertical vector in T x,v S M is a vector tangent to S x M .
It corresponds to a pair (0, J ′ (0)), with J ′ (0) orthogonal to v. Horizontal vectors correspond to pairs (J(0), 0). In particular, let X be the vector field on S M such that the integral flow of X is the geodesic flow. The geodesic spray X x,v is the horizontal vector associated to (v, 0). The orthogonal space to X is preserved by the differential Dg t of the geodesic flow. More generally, the Jacobi fields representation of T T M satisfies D x,v g t (J(0), J ′ (0)) = (J(t), J ′ (t)).

For any vector Y ∈ T x M , there is a unique vector Z = S x,v Y such that the Jacobi field J with J(0) = Y, J ′ (0) = Z satisfies J(t) ≤ C for t ≥ 0 ([B3] Proposition 2.8 (i)). The mapping S x,v : T x M → T x M is linear and selfadjoint. The vectors (Y, SY ) describe variations of asymptotic geodesics and the subspace E s

x,v ⊂ T x,v T M they generate corresponds to T W s x,v , where W s x,v , the set of initial vectors of geodesics asymptotic to

γ x,v , is identified with M × π x (v) in M × M (∞). Observe that S x,v γx,v (0) = 0 and that the operator S x,v preserves ( γx,v (0)) ⊥ . Recall from [B3], Proposition 3.2 page 71, that, for Y ∈ ( γx,v (0)) ⊥ , with π x v = ξ, D Y (∇b ξ ) = -S x,v Y,
and therefore ∆ x b ξ = -Tr S x,v with π x (v) = ξ.
Similarly, there is a selfadjoint linear operator U x,v :

T x M → T x M such that the Jacobi field J with J(0) = Y, J ′ (0) = U Y satisfies J(t) ≤ C for t ≤ 0. The subspace E u x,v ⊂ T x,v T M they generate corresponds to T W u x,v
, where W u x,v is the set of opposite vectors to vectors in W s

x,-v . By definition, S γx,(0) = -U γx,-v (0) , so that we also have:

B(x, v) := -Tr S x,v = Tr U x,-v .
We have Ker S = Ker U and Y ∈ Ker S if, and only if, the Jacobi field J(t) with J(0) = Y, J ′ (0) = 0 is bounded for all t ∈ R. The rank of the geodesic γ x,v therefore is κ = Dim Ker S and the geodesic γ x,v is of rank one only if Det((U -S)| ( γx,v (0)) ⊥ ) = 0. Recall that SM is identified with the quotient of M × M (∞) under the diagonal action of G. Clearly, for g ∈ G, g(W s

x,v ) = W s Dg(x,v) so that the W s define a foliation W s on SM . The leaves of the foliation W s are quotient of M , they are naturally endowed with the Riemannian metric induced from g.

2.

3. Proof of Theorem 1.1. We continue assuming that ( M , g) has nonpositive curvature. By the Rank Rigidity Theorem (see [B3]), ( M , g) is of the form

( M 0 × M 1 × • • • × M j × M j+1 × • • • × M k , g) 1 ,
where g is the product metric

g 2 = ( g 0 ) 2 + ( g 1 ) 2 + • • • + ( g j ) 2 + ( g j+1 ) 2 + • • • + ( g k ) 2 , ( M 0 , g 0 ) is Euclidean, ( M i , g i ) is an irreducible symmetric space of rank at least two for i = 1, • • • , j and a rank-one manifold for i = j + 1, • • • , k. If the ( M i , g i ), i = j + 1, • • • k,
are all symmetric spaces of rank one, then ( M , g) is a symmetric space. Moreover in that case, all inequalities in (1) are equalities: this is the case for irreducible symmetric spaces (all numbers are 0 for Euclidean space; for the other spaces, 4λ 0 and v 2 are classically known to coincide ( [O]) and we have:

4λ 0 ( M ) = i 4λ 0 ( M i ), v 2 ( M ) = i v 2 ( M i ).
To prove Theorem 1.1, it suffices to prove that if ℓ 2 = h, all M i in the decomposition are symmetric spaces. This is already true for i = 0, 1, • • • j. It remains to show that ( M i , g i ) are symmetric spaces for i = j + 1, • • • k. Eberlein showed that each one of the spaces ( M i , g i ) admits a cocompact discrete group of isometries (see [Kn], Theorem 3.3). This shows that the linear drifts ℓ i and the stochastic entropies h i exist for each one of the spaces ( M i , g i ).

Moreover, we clearly have

ℓ 2 = i ℓ 2 i , h = h i .
Therefore Theorem 1.1 follows from Theorem 2.1. Assume (M, g) is a closed connected rank one manifold of nonpositive curvature and that ℓ 2 = h. Then ( M , g) is a symmetric space.

A Hadamard manifold M is called asymptotically harmonic if the function B(= ∆ x b) is constant on S M . Theorem 2.1 directly follows from two propositions: Proposition 2.2. Assume (M, g) is a closed connected rank one manifold of nonpositive curvature and that ℓ 2 = h. Then ( M , g) is asymptotically harmonic.

Proposition 2.3. [[Z], Theorem 1.1] Assume (M, g) is a closed connected rank one manifold of nonpositive curvature such that ( M , g) is asymptotically harmonic. Then, ( M , g) is a symmetric space.

Proof of Proposition 2.2

We consider the foliation W of subsection 2.2. Recall that the leaves are endowed with a natural Riemannian metric. We write ∆ W for the associated Laplace operator on functions which are of class C 2 along the leaves of W. A probability measure m on SM is called harmonic if it satisfies, for any C 2 function f , we have:

SM ∆ W f dm = 0.
Let M be a closed connected manifold such that ℓ 2 = h. In [L3] it is shown that then, there exists a harmonic probability measure m on SM such that, at m-a.e. (x, v), B(x, v) = ℓ. Since B is a continuous function, Proposition 2.2 follows from Theorem 3.1. Let (M, g) be a closed connected rank one manifold of nonpositive curvature, W the stable foliation on SM endowed with the natural metric as above. Then, there is only one harmonic probability measure m and the support of m is the whole space SM .

Proof. Let m be a W harmonic probability measure on SM . Then, there is a unique G-invariant measure m on S M which coincide with m locally. Seen as a measure on M × M (∞), we claim that m is given, for any f continuous with compact support, by:

(3) f (x, ξ)d m(x, ξ) = 1 VolM M M (∞) f (x, ξ)dν x (ξ) dx,
where the family x → ν x is a family of probability measures on M (∞) such that, for all ϕ continuous on M (∞), x → ϕ(ξ)dν x (ξ) is a harmonic function on M and the measure dx is the Riemannian volume on M . The claim follows from [Ga]. For convenience, let us reprove it: on the one hand, the measure m projects on M as a G-invariant measure satisfying ∆f dm = 0. The projection of m on M is proportional to Volume, gives measure 1 to fundamental domains and formula (3) is the desintegration formula. On the other hand, if one projects m first on M (∞), there is a probability measure ν on M (∞) such that

f (x, ξ)d m(x, ξ) = M(∞) M f (x, ξ)dm ξ (dx) dν(ξ).
For ν-a.e. ξ, the measure m ξ is a harmonic measure on M ; therefore, for ν-a.e. ξ, there is a positive harmonic function k ξ (x) such that m ξ = k ξ (x)Vol. Comparing the two expressions for f d m, we see that the measure ν x is given by

ν x = k ξ (x)ν and x → M (∞) ϕ(ξ)dν x (ξ) is indeed a harmonic function.
The G-invariance of m implies that, for all g ∈ G, g * ν x = ν gx . In particular, the support of ν is G-invariant. By [E] (see [B3], page 48), the support of ν is the whole M (∞) and therefore the support of m is the whole SM . This result would be sufficient for proving Proposition 2.2, but using discretization, we are going to identify the measure ν x on M (∞) as the hitting measure of the Brownian motion on M starting from x. This shows Theorem 3.1. Fix x 0 ∈ M . The discretization procedure of Lyons and Sullivan ([LS]) associates to the Brownian motion on M a probability measure µ on G such that µ(g) > 0 for all g and that any bounded harmonic function F on M satisfies F (x 0 ) = g∈G F (gx 0 )µ(g).

Recall that for all ϕ continuous on M (∞), x → ν x (ϕ) is a harmonic function and that ν gx = g * ν x . It follows that the measure ν x 0 is stationary for µ, i.e. it satisfies:

ν x 0 = g∈G g * ν x 0 µ(g).
Since the support of µ generates G as a semigroup (actually, it is already the whole G), there is only one stationary probability measure on M (∞) (see [B3], Theorem 4.11 page 58). We know one already: the hitting measure m x 0 of the Brownian motion on M starting from x 0 . This shows that ν x 0 = m x 0 . Since x 0 was arbitrary in the above reasoning, we have ν x = m x for all x ∈ M and the measure m is given by:

f (x, ξ)d m(x, ξ) = 1 VolM M M (∞)
f (x, ξ)dm x (ξ) dx.

  lim

			t	-	1 t	ln p(t, x, x)
	ℓ = lim t	1 t	d(x, y)p(t, x, y)dVol(y)
	h = lim			

t -1 t p(t, x, y) ln p(t, x, y)dVol(y) v = lim t 1 t ln VolB M (x, t),

With a clear convention for the cases when Dim M0 = 0, j = 0 or k = j.
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