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Abstract

A new method for clustering functional data is proposed under the name
Funclust. This method relies on the approximation of the notion of proba-
bility density for functional random variables, which generally does not exists.
Using the Karhunen-Loeve expansion of a stochastic process, this approxima-
tion leads to define an approximation for the density of functional variables.
Based on this density approximation, a parametric mixture model is pro-
posed. The parameter estimation is carried out by an EM-like algorithm,
and the maximum a posteriori rule provides the clusters. The efficiency of
Funclust is illustrated on several real datasets, as well as for the characteri-
zation of the Mars surface.

Keywords: Functional data, model-based clustering, random variable
density, functional principal component analysis.

1. Introduction

Cluster analysis aims to identify homogeneous groups of data without
using any prior knowledge on the group labels of data. Several methods,
from hierarchical clustering [1| or k-means |2]| to more recent probabilistic
model-based clustering algorithms [3, 4] have been proposed. A particular
type of data for which clustering is a difficult task is the functional data
(curves or trajectories [5]). The main difficulty in clustering such data arises
because of the infinite dimensional space that data belong to.

Consequently, most of clustering algorithms for functional data consists
in a first step of transforming the infinite dimensional problem into a finite
dimensional one and in a second step, using a model-based clustering method

Preprint submitted to Elsevier October 18, 2012



designed for finite dimensional data. The representation of functions in a
finite dimensional space can be carried out in several ways: discretizing the
time interval, approximating data into a finite basis of functions or using
some dimension reduction techniques such as functional principal component
analysis (FPCA, [5]). Note that using time interval discretization, we need
to observe all curves at the same time stamps. The size of discretization
being generally large, regularized clustering algorithm should be used |3,
4, 6, 7, 8]. The approximation of data (curves) into a finite dimensional
space of functions — using a basis of functions such as spline or Fourier — has
the advantage to take into account possible measurement errors. Indeed, in
presence of such errors, a least square approximation approach can be used to
estimate the coefficients of the basis approximation, whereas an interpolation
method can be used if the data are observed without noise. More about
smoothing functional data is presented in [5].

In the framework of clustering, the main contributions use the k-means al-
gorithm, applied on a B-spline fitting [9], on defined principal points of curves
[10], on the truncated Karhunen-Loeve expansion [11] or more recently on
wavelets [12]. As in the finite dimensional setting, where Gaussian model-
based clustering generalizes the k-means algorithm, some other works intro-
duce more sophisticated model-based techniques: |[13| define an approach
particularly effective for sparsely sampled functional data, [14] propose a
nonparametric Bayes wavelet model for clustering of functional data based
on a mixture of Dirichlet processes, [15] build a specific clustering algorithm
based on parametric time series models, [16] extend the high-dimensional
data clustering algorithm (HDDC, |7]) to the functional case.

In the finite dimensional setting, model-based clustering algorithms as-
sume that the data is sampled from a mixture of probability densities. This is
not directly applicable to functional data since the notion of probability den-
sity generally does not exist for functional random variable. Consequently,
model-based clustering algorithms previously cited assume a parametric dis-
tribution on a finite series of coefficients characterizing the curves.

In the present paper, we use the density approximation defined in [17] to
build our model-based clustering. This density approximation, based on the
truncation of the Karhunen-Loeve expansion, relies on the probability density
of the first principal components [5] of the curves. Our model assumes a
cluster-specific Gaussian distribution for the principal component scores. The
number of principal components as well as the computation of the principal
component scores are cluster specific.



The most related methods are the k-centres algorithm (kCFC, [11]|) and
the FunHDDC' algorithm [16]. In [11], the k-means algorithm is based on the
distance between the truncated Karhunen-Loeve expansion of the curves. As
for our model, different truncation orders are allowed for each cluster. But,
contrary to our model, the k-means algorithm assumed equal within-cluster
variations. Moreover, the estimation algorithm used in k-means performed
classification at each iteration, whereas only a fuzzy partition is used in our
algorithm. These differences are similar to the differences between k-means
and more general Gaussian mixture models: k-means assumes equal diagonal
covariance matrices for each cluster, whereas Gaussian mixture models allow
more general covariance structures; k-means uses a CEM algorithm (Classifi-
cation Expectation Maximisation, [18|) whereas Gaussian mixture models are
generally estimated more efficiently by the EM algorithm (Expectation Max-
imisation, [19]). In [16], the authors assume a parsimonious Gaussian model
on the principal component scores issued from cluster-specific functional prin-
cipal components analysis (FPCA). Real-data applications (Section 4) will
illustrate numerically these differences between our method, kCFC and Fun-
HDDC.

The paper is organized as follows. Section 2 presents the approximation
for the probability density of a functional random variable introduced in
[17]. Model-based clustering using this approximation as well as the model
estimation procedure, based on the EM algorithm, are presented in Section
3. Finally, Section 4 compares our method with other clustering algorithms
on real datasets. An application to the characterization of the surface of
Mars using clustering of spectrum concludes the paper.

2. Density approximation for functional data

Let X be a functional random variable with values in Lo([0,77]), T > 0,
and assume that X is a Ly-continuous stochastic process, X = {X(t), t €
0,7]}. Let X = (Xy,...,X,) be an i.i.d sample of size n from the same
probability distribution as X. X is generally called a sample of functional
data for which the underlying model is X.

It is well known that the notion of probability density for this type of
random variables is not well defined. In [20] a non parametric approach
for the estimation of probability density is presented as an extension of the
multivariate finite case. This non parametric approximation is not helpful in
the context of model-based approaches.



Our work is based on the idea developed in [17] where an "approximation
density" for X is proposed using the Karhunen-Loeve expansion (or principal
component analysis (PCA)):

X(0) = (1) + 3 Co ) (1

T
where 4 is the mean function of X, C; = / (X (t) — p(t)y;(t)dt, j > 1, are

0
zero-mean random variables (called principal components) and ;’s form an
orthonormal system of eigen-functions of the covariance operator of X:

/o Cov(X (t), X(s))(s)ds = A\ (t),Vt € [0,T].

Notice that the principal components C;’s are uncorrelated random vari-
ables of variance );. Considering the principal components indexed upon
the descending order of the eigenvalues (A; > Ay > ...), let X(@ denotes the
approximation of X by truncating (1) at the ¢ first terms, ¢ > 1,

XO(0) = (t) + 3 (o). 2)

Then, X@ is the best approximation of X, under the mean square criterion,
among all the approximations of the same type (linear combination of ¢
deterministic functions of ¢ with random coefficients, [21]|). Denoting by ||.||
the usual norm on Ly([0,77]), we have

E(H‘-i _K(q)HZ) = § )‘j and H‘-i _‘-i(q)H = 0. (3)
q—00
Jj>q+1

Without loss of generality, we will suppose in the following that X is a zero-
mean stochastic process, i.e. u(t) =0, Vt € [0,7].

Based on the approximation of X by X@, in [17] it is shown that the
probability of X to belong to a ball of radius h centred in x € Ly[0,7] can



be written as
log P(|| X —z| < h) = Zlog fe,(cj(x)) +&(h, q(h)) + o(q(h)), (4)

where fc. is the probability density of C; and c;(z) is the jth principal
component score of x, ¢;(x) =< x,1; >,. The functions ¢ and { are such
that ¢ grows to infinity when h decreases to zero and ¢ is depending only
on h. Thus, the dependency of log P(||X — z|| < h) with x is contained in
the term 23:1 log fc,(cj(w)). Since the notion of probability density can be
seen in the finite dimensional case as the limit of P(||X — z|| < h)/h when h
tends to 0, [17] suggests the use of [[]_, fc;(c;(x)) as an approximation for
the density of X. In the sequel we give some additional justifications to this

approximation.
Moreover, observe that we have, Vh > 0, x € L[0,T],

P(IXD —all <h—|1X = XD) < P(IX -l <h) < P (IXD —al| <h+ | X - XD). (5)

The relation (3) and (5) also suggest that the probability P(|| X — x| < h)
could be approximated by P(||X@ — z|| < h).

Let f)((q) denotes the joint probability density of C@ = (Cy,...,C,). If v =
> i1 ¢(2)¢; and @ = ;1.:1 ¢j(x); then

PIXD —al <h) = | 1)y, (6)

where DY = {y € R : ||ly — 2@, < \/h2 — > 41 € ()}, The equation

(5) and (6) suggest that the density f)((q) can then be used as an approximation
of the density of X. Moreover, when X is a Gaussian process, the principal
components C; are Gaussian and independent. The density f)(f) is then:

@) = [T fe, (e ), (7)

with fo, the Gaussian centred density of variance ;.
These results justify at least theoretically, the use of the principal compo-
nent densities fo, to approximate the notion of probability density of X. In



particular, it gives a theoretical justification to the method £CFC' [11] which
applies k-means on the principal components.

3. Model-based clustering for functional data

Several clustering algorithms for functional data used a truncation of the
Karhunen-Loeve expansion [11, 22|. In these works, the truncation is used
in order to define a distance between function, which relies on the difference
between the first Karhunen-Loeve expansion coefficients. The approxima-
tion provided in (7) allows to define more general model-based clustering
by considering that the observed curves re sampled from a mixture of such
densities.

Let us consider that there exists a latent group variable Z, of K modalities
(K groups), such that Z = Z;,..., Zx with Z, = 1 if X belongs to the cluster

g, 1 < g < K, and 0 otherwise. Conditionally on Z, = 1, let assume that X

is a Gaussian random variable of density f)(g‘gz) 71(37). Here, g, is the number
-

of principal components used to approximate the density of X conditionally
on the group ¢g (Z, = 1). For each i = 1,...,n, let associate to X; the
corresponding categorical variable Z; indicating the group X; belongs.

3.1. The mixture model

Let assume that each couple (X;, Z;) is an independent realization of the
random vector (X, Z). Given a group Z, = 1, we consider the approximation
(7) of the density of Xz _; being:

dg

f)(g‘gz)gzl(x; ¥g) = H 1655, (cig(z); Njg)

j=1

where g, is the number of the first principal components retained in the
approximation (7) for the group g, ¢; ,(x) is the jth principal component score
of X|z,—1 for X =z, fc,  its probability density and ¥, is the diagonal matrix
diag(A1g, ..., Ag,q). Conditionally on the group, the probability density fc,
of the jth principal component of X is assumed to be the univariate Gaussian
density with zero mean (the principal component are centred) and variance
Ajg- This assumption is satisfied when Xz _; is a Gaussian process.

The vector Z = (Zy,..., Zk) is assumed to have one order multinomial
distribution M (7, ..., 7g), where 7y, ..., 7 are the mixing probabilities



(25:1 7y = 1). Under this model it follows that the unconditional approxi-

mated density of X is given by

0) =27 [ fer (cia@)i Nsa) (8)

where 6 = (7g, A1 g, ..., Ag,.g)1<g<k have to be estimated and ¢ = (¢1, . .., qx)-
By extrapolation of the finite dimensional setting, we define a pseudo likeli-
hood by:

n K

10?2,
19(6; X) HZWQH\/TGXP (—éﬁ) 9)

i=1 g=1

where C; ;, = C;,(X;) is the jth principal score of the curve X; belonging
to the group g.

3.2. Parameter estimation

In the unsupervised context the estimation of the mixture model param-
eters is not as straightforward as in the supervised context since the groups
labels Z; are unknown. A classical way to maximise a mixture model like-
lihood when data are missing (here the clusters indicators Z;) is to use the
iterative EM algorithm [23]. In this work we use an EM-like algorithm in-
cluding in the M step the computation of the principal components scores of
each group and the selection of the group specific dimension ¢,. Our EM-like
algorithm consists in maximizing the pseudo completed log-likelihood

K

LY90:;X,2) = ZZZZg<log7rg+Zlogfc” ,]g)>’

i=1 g=1

which is easier to maximise than its incomplete version (9), and leads to the
same estimate. Let 60" be the current value of the estimated parameter at
step h, h > 1.

E step. As the group indicators Z; ;’s are unknown, the E step consists in
computing the conditional expectation of the pseudo completed log-likelihood:



Q(0;0™) = By [L9(6; X, Z)| X = z =Z Tig IOgﬂngZlngo” Cirjrg)
=1 g=1

where 7;, is the probability for the curve X; to belong to the group g
conditionally to C; j , = ¢; j 4
Ty Hqg 1 e, (Cigg)
Zl 17 Hg y fe; (e, l)

The approximation (10) is due to the use of the approximation of the density
of X given by (7).

(10)

Tig = By | Zg’X = | ~

M step. The M step is composed of three stages:

1. Principal score update.
The principal components Cj, of group g are computed by weighting
the curves according to the conditional probabilities 7, , (1 < i < n)
computed in the E step. The estimation of the principal components
is described in Section 3.3.

2. Group specific dimension q, selection.
The estimation of the group specific dimension g, is an open problem.
In this work we propose to use, once the group specific FPCA have
been computed, the scree-test of Cattell [24| in order to select each
group specific dimension ¢g,. The advantage of using this test is that
one hyperparameter (the threshold of the Cattell scree-test) allows to
estimate K approximation orders.

3. Parameters update.
The M step consists in computing the mixture model parameters 0
which maximizes Q(#; ™). The variance ), of the jth principal com-
ponent for cluster g has already been computed in the principal score
update step. For the mixing proportions, the usual estimator is ob-
tained:

(h+1)

htl)
( = E:Tz,g

Let recall that the mean of the principal component C} , is not consid-
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ered since it is 0. The average shape of the curves of a cluster is taken
into account in the computing of the principal components C; 4 of the
cluster.

Stopping criterion. When using an EM algorithm, usual stopping criterion
is based on the growth of the likelihood. In our work, since the group spe-
cific approximation orders can change between two steps of the algorithm,
the likelihood can artificially change (increase or decrease). In practice, we
notice quite often that the estimation algorithm is hesitating between ap-
proximation orders, which prevents convergence of the pseudo likelihood.
For this reason, the algorithm often stops on the maximum number of itera-
tions allowed. In this case, the retained solution is the solution maximizing
the pseudo-likelihood.

The proposed mixture model and the corresponding estimation algorithm
will be called Funclust in what follows.

3.3. Estimation and approximation for functional principal component anal-
ysis (FPCA)

Except some theoretical models (e.g. Brownian motion, Poisson pro-
cess), the mean and the covariance function of the stochastic process X are
unknown. They are estimated from an i.i.d. sample of X, {Xy,..., X},
n > 1, by

i) = = > X0, € 0.7,

and
n

D (X(t) = A(0))(Xi(s) — ils)).

i=1

1
n—1

Cou(t,s) =

In the context of functional principal components, the asymptotic properties
of these estimators are studied in [25] and [3]. Under the existence condition
of fourth moment of X, in [26] are provided convergences rates for the esti-
mators of the eigenvalues and of the eigenfunction of the integral operator
with kernel Cov(t, s). See also [27] for more details.

3.3.1. Smoothing and interpolating curves

In practice, a new problem appears because of the continuous-time feature
of the X/s. In practice, a curve X; = {X;(¢),t € [0,7T]} is usually observed



only is a discrete set of time-points, {X(¢;5),0 < s < m;,t;s € [0,T]},
that is, we have only discrete observations of each sample path X; at a
discrete set of knots {t;s:s=1,...,m;}. Because of this, the first step in
functional data analysis is often the reconstruction of the functional form of
data from discrete observations. In [28| it is shown that this is equivalent
to the choice of a metric in the space of discrete observations. The most
common solution to this problem is to consider that sample paths belong
to a finite dimensional space of functions spanned by a basis of functions

{¢;}i=1..p (see, for example, [5]).
p
Xi(t) = Z%‘,jd)(t)a p=>1
=1

An alternative way of solving this problem is based on nonparametric smooth-
ing of functions (see [20]).

Sample paths basis coefficients «; ;’s are estimated from discrete-time ob-
servations by using an appropriate numerical method. If the functional pre-
dictor is observed with error,

bes(ti,s) - Xi(ti,s) +E&is 5= 07 ey M,

least square smoothing is used after choosing a suitable basis, for example,
trigonometric functions, B-splines or wavelets (see [5] for a detailed study).
In this case, the basis coefficients of each sample path X; are approximated
by

7= (070:) " 0,

with ©; = (¢;(tis))1<i<n,1<sxm: and X7 = (X (tio), ..., X" (tim,))"

The choice of the basis functions as well as the dimension of this basis are
quite subjective. If the sample paths of X are smooth and periodic then
Fourier basis could be a good choice. However, the optimal properties of cu-
bic B-spline functions make them the first choice for smoothing noisy data.
See for example the monograph [29] and, in the context of functional data,
see [5].

If the sample curves are observed without error, an interpolation procedure
can be used. For example, in [30]| cuasi-cubic spline interpolation for recon-
structing annual temperatures curves from monthly values is proposed. More
about interpolation of functional data is provided in [21].

10



3.8.2. FPCA computation

Let I' be the n x p expansion coefficients 7;; matrix and W be the ma-
trix of the inner products between the basis functions wj, = fOT ¢, (t)pe(t)dt
(1 < 4,0 < p). We explain here the computation of the principal com-
ponent C, of group ¢g appearing in the M step previously describe. This
computation is carried out by weighting the importance of each curve in the
construction of the principal components with the conditional probabilities
T, = diag(71,4, ..., Tng). Consequently, the first step consists in centring the
curve X' within the group ¢ by subtraction of the mean curve computed

using the 7; ,’s. The expansion coefficients of the centred curves are given
by:

Ly=U,—L(114,-..,Tng))T,

where [,, and 1I,, are respectively the identity n x n-matrix and the unit n-
vector. The jth principal component scores C; 4 is then the jth eigenvector
of the matrix I'yWT', T, associated to the jth eigenvalue \;,:

FQWFIngCJ}g = Aj,goj,g'

Note that usual FPCA computation occurs if T, = %In.

4. Applications

4.1. Clustering evaluation

Before validating the proposed clustering method on numerical applica-
tions, we have to choose an evaluation strategy, which remains an open ques-
tions in clustering. In lot of works, classification benchmark datasets are
commonly used to validate and compared clustering models (see for instance
[3, 31, 32]). As mentioned in several works [33, 34|, this strategy can be
sometimes dangerous and misleading. Indeed, this evaluation strategy relies
on the assumption that class labels coincide with cluster structure, which can
be true for some datasets and not for others. Another strategy can be the use
of artificial datasets. But this strategy can also be criticized, since it evalu-
ates the clustering only under particular assumption on the data generating
process. [35] argues that the best way to evaluate clustering is probably to
work on real world datasets, and to explain how the obtained clusters make
sense.
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In this section, each of these three strategies will be used. First, a simu-
lation study will be carried out to compare Funclust with two challengers
for functional data clustering as well as usual clustering methods for finite
dimensional data applied on FPCA scores. In a second part, the comparison
is based on three classification datasets. Finally, a clustering of the surface
of the soil of Mars will be estimated with Funclust, and a physical interpre-
tation of the clusters will be used to validate the usefulness of the obtained
clustering.

4.2. Simulation study

In this simulation, the number of clusters is assumed to be known: K=2.
A sample of n = 100 curves are simulated according to the following model
inspired by (36, 37|:

Class 1 : X(t) = Ulhl(t) -+ Ughg(t) -+ E(t), te [1,21],
Class 2 X(t) = Uph(t) + €(t), te[l,21],

where U; and U, are independent Gaussian variables such that E[U;] =
E[U3] =0, Var(U;) = Var(Us) = 1/12 and €(t) is a white noise, independent
of U;’s and such that Var(e;) = 1/12. The function h; and hy are defined,
for t € [1,21], by hy(t) = 6 — |t — 7| and hs(t) = 6 — |t — 15|. The mixing
proportions 7;’s are choosen to be equal, and the curves are observed in 41
equidistant points (¢ = 1,1.5,...,21). Figure 1 plots the simulated curves.
The functional form of the data is reconstructed using linear spline smoothing
(with 30 equidistant knots).

Funclust is compared with two challengers for functional data clustering,
FunHDDC (16| and felust [13], and three clustering methods traditionally
devoted to clustering finite-dimensional data applied on the FPCA scores:
Gaussian mixture models on the FPCA scores (GMM, [4]) via the Rmizmod
package for R, k-means [2| and hierarchical clustering (packages kmeans and
helust). The selection of the number of FPCA components is carried out
by the Cattell scree test. For FunHDDC and GMM, which proposes several
models, the best model according to BIC has been retained. Figure 2 shows
the correct classification rates over 100 simulations, which exhibited better
results for Funclust on this simulation set-up.

12
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Figure 1: Class 1 (left), Class 2 (center) and both classes (right).
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Figure 2: Correct classification rates over 100 simulations.

4.3. Benchmark study

Funclust is now compared with other clustering methods on the basis of
the capacity to find the class labels of three classification datasets.

4.8.1. The data
Three real datasets are considered: the Kneading, Growth, and ECG
datasets. These three datasets are plotted in Figure 3. The Kneading dataset
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Growth (2 groups)
Kneading data (3 groups) ECG (2 groups)

80 100 120 140 160 180 200

Figure 3: Kneading, Growth and ECG datasets.

comes from Danone Vitapole Paris Research Center and concerns the quality
of cookies and the relationship with the flour kneading process. The kneading
dataset is described in detail in [38]. There are 115 different flours for which
the dough resistance is measured during the kneading process for 480 seconds.
One obtains 115 kneading curves observed at 241 equispaced instants of time
in the interval [0, 480]. The 115 flours produce cookies of different quality: 50
of them have produced cookies of good quality, 25 produced medium quality
and 40 low quality. This data, have been already studied in a supervised
classification context [38, 39]. They are known to be hard to discriminate,
even for supervised classifiers, partly because of the medium quality class.
Taking into account that the resistance of dough is a smooth curve measured
with error, and following previous works on this data [38, 39|, least squares
approximation on a basis of cubic B-spline functions (with 18 knots) is used
to reconstruct the true functional form of each sample curve.

The Growth dataset comes from the Berkeley growth study [40] and is avail-
able in the fda package of R. In this dataset, the heights of 54 girls and 39
boys were measured at 31 stages, from 1 to 18 years. The goal is to cluster
the growth curves and to determine whether the resulting clusters reflect
gender differences. The ECG dataset is taken from the UCR Time Series
Classification and Clustering website'. This dataset consists of 200 electro-
cardiogram from 2 groups of patients sampled at 96 time instants, and has
already been studied in [41]. For these two datasets, the same basis functions
as for the Kneading dataset has been arbitrarily chosen (20 cubic B-splines).

Lnttp: / /www.cs.ucr.edu/~eamonn/time_ series_ data/
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4.3.2. Experimental setup

In this benchmark study, Funclust is compared with FunHDDC and fclust,
as in the simulation study. The Growth dataset allows an additional compar-
ison with k-centres (kCFC, [11]), since they present in [11] the correct classifi-
cation rate they obtained on the Growth dataset (their code are not available
to the best of our knowledge). Concerning the finite-dimensional methods
to which Funclust is compared, we added to GMM, k-means and hierarchi-
cal clustering, two methods dedicated to the clustering of high-dimensional
data: HDDC' [7] and MiztPPCA (6| (HDclassif package). These methods for
finite-dimensional data have been applied on the FPCA scores with choice
of the number of components with the Cattell scree test, but also directly
on the discrete observations of the curves and on the coefficients in the cubic
B-spline basis approximation.

Details for Funclust. The maximum number of iterations is fixed to 200.
Note that for these three applications, the maximum number of iterations
has always been reached. Nevertheless, since the iterations corresponding to
the retained solutions (according to the best pseudo-likelihood) were always
relatively far from the last one, we assume this maximum number of iterations
as sufficient. The threshold of the Cattell scree test allowing to select the
approximation order ¢ is fixed to 0.05. In order to avoid convergence to
a local maximum of the pseudo likelihood, our EM-like algorithm has been
initialized with the best solutions of 20 small EM-like algorithms with 20
iterations each [42]. With this experimental set-up, Funclust estimation is
obtained in about 30 seconds for each dataset, on a laptop (2.80GHz CPU)
and with a code in R software.

4.3.3. Results

The estimated approximation order g, for Funclust are the following:
Kneading (3 = 2, ¢ = 1, g3 = 3), Growth (¢ = 2, ¢ = 3), ECG
(n =9, g2 = 4). The correct classification rates (CCR) according to the
known partitions are given in Table 1. Funclust performs better to estimate
the class label than all the other methods on two datasets among three
(Kneading and ECG). On the last dataset, the results are relatively poor
(69.89% accurate whereas some method are about 97% accurate), but the
performance can be greatly increased (95.70%) if the dimensions ¢, are fixed
to 2 (as the number of FPCA scores used by the non functional methods).
This dataset illustrates that the choice of the approximation order is a very

15



Kneading Kneading
f . 2-steps discretized | spline coeff. | FPCA scores
unctional ) .
methods (241 instants) (20 splines) (4 components)
Funclust 66.96 HDDC 66.09 53.91 44.35
FunHDDC 62.61 MixtPPCA 65.22 64.35 62.61
fclust 64 GMM 63.48 50.43 60
kCFC - k-means 62.61 62.61 62.61
hclust 63.48 63.48 63.48
Growth Growth
. 2-steps discretized | spline coeff. | FPCA scores
functional ) )
methods (350 instants) (20 splines) (2 components)
Funclust 69.89 HDDC 56.99 50.51 97.85
FunHDDC 96.77 MixtPPCA 62.36 50.53 97.85
fclust 69.89 GMM 65.59 63.44 95.70
kCFC 93.55 k-means 65.59 66.67 64.52
hclust 51.61 75.27 68.81
ECG ECG
. 2-steps discretized | spline coeff. | FPCA scores
functional . .
methods (96 instants) (20 splines) (19 components)
Funclust 84 HDDC 74.5 73.5 74.5
FunHDDC 75 MixtPPCA 74.5 73.5 74.5
fclust 74.5 GMM 81 80.5 81.5
kCFC - k-means 74.5 72.5 74.5
hclust 73 76.5 64

Table 1: Correct classification rates (CCR) in percentage for Funclust, FunHDDC (best
model according BIC), fclust, kCFC and usual non-functional methods on the Kneading,
Growth and ECG datasets.
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important question, and that further works have to be carried out in this
direction. A last remark concerns the use of non functional methods. These
methods can sometimes perform very well to estimate the class label, but the
main problem is that, in the present unsupervised context, we have no way
to choose between working with the discrete data, with the spline coefficients
or with the FPCA scores. For instance, HDDC and MixtPPCA are very well
performing on the Growth dataset using the FPCA scores, but they are very
poor using the discrete data or the spline coefficients.

4.4. Application to Mars surface characterization

This data, provided by the Laboratory of Planetology of Grenoble [43,
44|, were acquired by the OMEGA imaging satellite. The soil of Mars has
been observed with a resolution between 300 and 3000 meters depending on
the altitude of the satellite. It was acquired for each pixel a spectra whose
wavelengths range from 0.36 to 5.2 microns and stored this information in
a vector of 256 dimensions. The purpose of this preliminary study is to
characterize the composition of the surface of Mars by determining zones
composed of similar material. The number of groups has been fixed to 8§,
since the experts expect 8 main classes of mineralogical. The analysis of some
spectra in each cluster will allow the expert to indicate to which mineralogical
corresponds each cluster. A photography of size 300 x 128 pixels of the surface
of Mars (left image of Figure 4) is considered, each of 38,400 pixels being
described by a spectrum (right image of Figure 4).

w0 50
spectral band

Figure 4: Mars data: image of the studied zone.
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Figure 5: Funclust clustering in 8 groups.

The clusters resulting from Funclust is represented in Figure 5. This
clustering seems to be in accordance with the photography of Figure 4) (we
recall that no spatial information has been used for this clustering). More-
over, the experts of the Laboratory of Planetology of Grenoble particularly
appreciated that our method is able to detect specific cluster, in the form of
edging, at the border of the main areas: for instance the magenta and cyan
clusters separate the main blue and orange area. Analysing some spectra in
each cluster has allowed to deduce that these clusters reflect the presence of
particular materials (mixture of carbonate and ice) at the border of main
materials (ice and dust).

5. Conclusion

In this paper we propose a new clustering procedure for functional data
based on an approximation of the notion of density of a random function. The
main tool is the use of the probability densities of the principal components
scores. Assuming that the functional data are sampled from a Gaussian pro-
cess, the resulting mixture model is an extrapolation of the finite dimensional
Gaussian mixture model to the infinite dimensional setting. We defined an
EM-like algorithm for the parameter estimation and performed several nu-
merical applications, in order to show the performance of this approach with
respect to usual clustering procedures.

Future work is devoted to investigate the choice of the approximation orders.
We observed in our application study that a bad choice of these dimension
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can drastically deteriorate the clustering results. However, allowing the ap-
proximation order to change in the estimation algorithm leads to loose the
properties of the EM algorithm. In particular, the pseudo likelihood is not
necessarily increasing, and we have to stop the algorithm after a given num-
ber of iterations and to choose the best reached solutions.
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