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Abstra
t

A new method for 
lustering fun
tional data is proposed under the name

Fun
lust. This method relies on the approximation of the notion of proba-

bility density for fun
tional random variables, whi
h generally does not exists.

Using the Karhunen-Loeve expansion of a sto
hasti
 pro
ess, this approxima-

tion leads to de�ne an approximation for the density of fun
tional variables.

Based on this density approximation, a parametri
 mixture model is pro-

posed. The parameter estimation is 
arried out by an EM-like algorithm,

and the maximum a posteriori rule provides the 
lusters. The e�
ien
y of

Fun
lust is illustrated on several real datasets, as well as for the 
hara
teri-

zation of the Mars surfa
e.

Keywords: Fun
tional data, model-based 
lustering, random variable

density, fun
tional prin
ipal 
omponent analysis.

1. Introdu
tion

Cluster analysis aims to identify homogeneous groups of data without

using any prior knowledge on the group labels of data. Several methods,

from hierar
hi
al 
lustering [1℄ or k-means [2℄ to more re
ent probabilisti


model-based 
lustering algorithms [3, 4℄ have been proposed. A parti
ular

type of data for whi
h 
lustering is a di�
ult task is the fun
tional data

(
urves or traje
tories [5℄). The main di�
ulty in 
lustering su
h data arises

be
ause of the in�nite dimensional spa
e that data belong to.

Consequently, most of 
lustering algorithms for fun
tional data 
onsists

in a �rst step of transforming the in�nite dimensional problem into a �nite

dimensional one and in a se
ond step, using a model-based 
lustering method
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designed for �nite dimensional data. The representation of fun
tions in a

�nite dimensional spa
e 
an be 
arried out in several ways: dis
retizing the

time interval, approximating data into a �nite basis of fun
tions or using

some dimension redu
tion te
hniques su
h as fun
tional prin
ipal 
omponent

analysis (FPCA, [5℄). Note that using time interval dis
retization, we need

to observe all 
urves at the same time stamps. The size of dis
retization

being generally large, regularized 
lustering algorithm should be used [3,

4, 6, 7, 8℄. The approximation of data (
urves) into a �nite dimensional

spa
e of fun
tions � using a basis of fun
tions su
h as spline or Fourier � has

the advantage to take into a

ount possible measurement errors. Indeed, in

presen
e of su
h errors, a least square approximation approa
h 
an be used to

estimate the 
oe�
ients of the basis approximation, whereas an interpolation

method 
an be used if the data are observed without noise. More about

smoothing fun
tional data is presented in [5℄.

In the framework of 
lustering, the main 
ontributions use the k-means al-

gorithm, applied on a B-spline �tting [9℄, on de�ned prin
ipal points of 
urves
[10℄, on the trun
ated Karhunen-Loeve expansion [11℄ or more re
ently on

wavelets [12℄. As in the �nite dimensional setting, where Gaussian model-

based 
lustering generalizes the k-means algorithm, some other works intro-

du
e more sophisti
ated model-based te
hniques: [13℄ de�ne an approa
h

parti
ularly e�e
tive for sparsely sampled fun
tional data, [14℄ propose a

nonparametri
 Bayes wavelet model for 
lustering of fun
tional data based

on a mixture of Diri
hlet pro
esses, [15℄ build a spe
i�
 
lustering algorithm

based on parametri
 time series models, [16℄ extend the high-dimensional

data 
lustering algorithm (HDDC, [7℄) to the fun
tional 
ase.

In the �nite dimensional setting, model-based 
lustering algorithms as-

sume that the data is sampled from a mixture of probability densities. This is

not dire
tly appli
able to fun
tional data sin
e the notion of probability den-

sity generally does not exist for fun
tional random variable. Consequently,

model-based 
lustering algorithms previously 
ited assume a parametri
 dis-

tribution on a �nite series of 
oe�
ients 
hara
terizing the 
urves.

In the present paper, we use the density approximation de�ned in [17℄ to

build our model-based 
lustering. This density approximation, based on the

trun
ation of the Karhunen-Loeve expansion, relies on the probability density

of the �rst prin
ipal 
omponents [5℄ of the 
urves. Our model assumes a


luster-spe
i�
 Gaussian distribution for the prin
ipal 
omponent s
ores. The

number of prin
ipal 
omponents as well as the 
omputation of the prin
ipal


omponent s
ores are 
luster spe
i�
.
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The most related methods are the k-
entres algorithm (kCFC, [11℄) and

the FunHDDC algorithm [16℄. In [11℄, the k-means algorithm is based on the

distan
e between the trun
ated Karhunen-Loeve expansion of the 
urves. As

for our model, di�erent trun
ation orders are allowed for ea
h 
luster. But,


ontrary to our model, the k-means algorithm assumed equal within-
luster

variations. Moreover, the estimation algorithm used in k-means performed


lassi�
ation at ea
h iteration, whereas only a fuzzy partition is used in our

algorithm. These di�eren
es are similar to the di�eren
es between k-means

and more general Gaussian mixture models: k-means assumes equal diagonal


ovarian
e matri
es for ea
h 
luster, whereas Gaussian mixture models allow

more general 
ovarian
e stru
tures; k-means uses a CEM algorithm (Classi�-


ation Expe
tation Maximisation, [18℄) whereas Gaussian mixture models are

generally estimated more e�
iently by the EM algorithm (Expe
tation Max-

imisation, [19℄). In [16℄, the authors assume a parsimonious Gaussian model

on the prin
ipal 
omponent s
ores issued from 
luster-spe
i�
 fun
tional prin-


ipal 
omponents analysis (FPCA). Real-data appli
ations (Se
tion 4) will

illustrate numeri
ally these di�eren
es between our method, kCFC and Fun-

HDDC.

The paper is organized as follows. Se
tion 2 presents the approximation

for the probability density of a fun
tional random variable introdu
ed in

[17℄. Model-based 
lustering using this approximation as well as the model

estimation pro
edure, based on the EM algorithm, are presented in Se
tion

3. Finally, Se
tion 4 
ompares our method with other 
lustering algorithms

on real datasets. An appli
ation to the 
hara
terization of the surfa
e of

Mars using 
lustering of spe
trum 
on
ludes the paper.

2. Density approximation for fun
tional data

Let X be a fun
tional random variable with values in L2([0, T ]), T > 0,
and assume that X is a L2-
ontinuous sto
hasti
 pro
ess, X = {X(t), t ∈
[0, T ]}. Let X = (X1, . . . , Xn) be an i.i.d sample of size n from the same

probability distribution as X. X is generally 
alled a sample of fun
tional

data for whi
h the underlying model is X.

It is well known that the notion of probability density for this type of

random variables is not well de�ned. In [20℄ a non parametri
 approa
h

for the estimation of probability density is presented as an extension of the

multivariate �nite 
ase. This non parametri
 approximation is not helpful in

the 
ontext of model-based approa
hes.
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Our work is based on the idea developed in [17℄ where an "approximation

density" for X is proposed using the Karhunen-Loeve expansion (or prin
ipal


omponent analysis (PCA)):

X(t) = µ(t) +

∞∑

j=1

Cjψj(t), (1)

where µ is the mean fun
tion of X, Cj =

ˆ T

0

(X(t)−µ(t))ψj(t)dt, j ≥ 1, are

zero-mean random variables (
alled prin
ipal 
omponents) and ψj 's form an

orthonormal system of eigen-fun
tions of the 
ovarian
e operator of X:

ˆ T

0

Cov(X(t), X(s))ψj(s)ds = λjψj(t), ∀t ∈ [0, T ].

Noti
e that the prin
ipal 
omponents Cj's are un
orrelated random vari-

ables of varian
e λj . Considering the prin
ipal 
omponents indexed upon

the des
ending order of the eigenvalues (λ1 ≥ λ2 ≥ . . .), let X(q)
denotes the

approximation of X by trun
ating (1) at the q �rst terms, q ≥ 1,

X(q)(t) = µ(t) +

q∑

j=1

Cjψj(t). (2)

Then, X(q)
is the best approximation of X, under the mean square 
riterion,

among all the approximations of the same type (linear 
ombination of q
deterministi
 fun
tions of t with random 
oe�
ients, [21℄). Denoting by ‖.‖
the usual norm on L2([0, T ]), we have

E(‖X −X(q)‖2) =
∑

j≥q+1

λj and ‖X −X(q)‖
m.s.

−−−→
q→∞

0. (3)

Without loss of generality, we will suppose in the following that X is a zero-

mean sto
hasti
 pro
ess, i.e. µ(t) = 0, ∀t ∈ [0, T ].
Based on the approximation of X by X(q)

, in [17℄ it is shown that the

probability of X to belong to a ball of radius h 
entred in x ∈ L2[0, T ] 
an

4



be written as

logP (‖X − x‖ ≤ h) =

q∑

j=1

log fCj
(cj(x)) + ξ(h, q(h)) + o(q(h)), (4)

where fCj
is the probability density of Cj and cj(x) is the jth prin
ipal


omponent s
ore of x, cj(x) =< x, ψj >L2 . The fun
tions q and ξ are su
h

that q grows to in�nity when h de
reases to zero and ξ is depending only

on h. Thus, the dependen
y of logP (‖X − x‖ ≤ h) with x is 
ontained in

the term

∑q

j=1 log fCj
(cj(x)). Sin
e the notion of probability density 
an be

seen in the �nite dimensional 
ase as the limit of P (‖X − x‖ ≤ h)/h when h
tends to 0, [17℄ suggests the use of

∏q

j=1 fCj
(cj(x)) as an approximation for

the density of X. In the sequel we give some additional justi�
ations to this

approximation.

Moreover, observe that we have, ∀h > 0, x ∈ L2[0, T ],

P
(
‖X(q) − x‖ ≤ h − ‖X − X(q)‖

)
≤ P (‖X − x‖ ≤ h) ≤ P

(
‖X(q) − x‖ ≤ h + ‖X − X(q)‖

)
. (5)

The relation (3) and (5) also suggest that the probability P (‖X − x‖ ≤ h)

ould be approximated by P (‖X(q) − x‖ ≤ h).

Let f
(q)
X denotes the joint probability density of C(q) = (C1, . . . , Cq). If x =∑

j≥1 cj(x)ψj and x
(q) =

∑q

j=1 cj(x)ψj then

P (‖X(q) − x‖ ≤ h) =

ˆ

D
(q)
x

f
(q)
X (y)dy, (6)

where D
(q)
x = {y ∈ R

q : ‖y − x(q)‖Rq ≤
√
h2 −

∑
j≥q+1 c

2
j(x)}. The equation

(5) and (6) suggest that the density f
(q)
X 
an then be used as an approximation

of the density of X. Moreover, when X is a Gaussian pro
ess, the prin
ipal


omponents Cj are Gaussian and independent. The density f
(q)
X is then:

f
(q)
X (x) =

q∏

j=1

fCj
(cj(x)), (7)

with fCj
the Gaussian 
entred density of varian
e λj.

These results justify at least theoreti
ally, the use of the prin
ipal 
ompo-

nent densities fCj
to approximate the notion of probability density of X. In
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parti
ular, it gives a theoreti
al justi�
ation to the method kCFC [11℄ whi
h

applies k-means on the prin
ipal 
omponents.

3. Model-based 
lustering for fun
tional data

Several 
lustering algorithms for fun
tional data used a trun
ation of the

Karhunen-Loeve expansion [11, 22℄. In these works, the trun
ation is used

in order to de�ne a distan
e between fun
tion, whi
h relies on the di�eren
e

between the �rst Karhunen-Loeve expansion 
oe�
ients. The approxima-

tion provided in (7) allows to de�ne more general model-based 
lustering

by 
onsidering that the observed 
urves re sampled from a mixture of su
h

densities.

Let us 
onsider that there exists a latent group variable Z, ofK modalities

(K groups), su
h that Z = Z1, . . . , ZK with Zg = 1 ifX belongs to the 
luster

g, 1 ≤ g ≤ K, and 0 otherwise. Conditionally on Zg = 1, let assume that X

is a Gaussian random variable of density f
(qg)
X|Zg=1

(x). Here, qg is the number

of prin
ipal 
omponents used to approximate the density of X 
onditionally

on the group g (Zg = 1). For ea
h i = 1, . . . , n, let asso
iate to Xi the


orresponding 
ategori
al variable Zi indi
ating the group Xi belongs.

3.1. The mixture model

Let assume that ea
h 
ouple (Xi, Zi) is an independent realization of the

random ve
tor (X,Z). Given a group Zg = 1, we 
onsider the approximation

(7) of the density of X|Zg=1 being:

f
(qg)
X|Zg=1

(x; Σg) =

qg∏

j=1

fCj |Zg=1
(cj,g(x);λj,g)

where qg is the number of the �rst prin
ipal 
omponents retained in the

approximation (7) for the group g, cj,g(x) is the jth prin
ipal 
omponent s
ore

ofX|Zg=1 forX = x, fCj,g
its probability density and Σg is the diagonal matrix

diag(λ1,g, . . . , λqg,g). Conditionally on the group, the probability density fCj,g

of the jth prin
ipal 
omponent ofX is assumed to be the univariate Gaussian

density with zero mean (the prin
ipal 
omponent are 
entred) and varian
e

λj,g. This assumption is satis�ed when X|Zg=1 is a Gaussian pro
ess.

The ve
tor Z = (Z1, . . . , ZK) is assumed to have one order multinomial

distribution M1(π1, . . . , πK), where π1, . . . , πK are the mixing probabilities
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(

∑K

g=1 πg = 1). Under this model it follows that the un
onditional approxi-

mated density of X is given by

f
(q)
X (x; θ) =

K∑

g=1

πg

qg∏

j=1

fCj,g
(cj,g(x);λj,g) (8)

where θ = (πg, λ1,g, . . . , λqg,g)1≤g≤K have to be estimated and q = (q1, . . . , qK).
By extrapolation of the �nite dimensional setting, we de�ne a pseudo likeli-

hood by:

l(q)(θ;X) =
n∏

i=1

K∑

g=1

πg

qg∏

j=1

1√
2πλj,g

exp

(
−

1

2

C2
i,j,g

λj,g

)
(9)

where Ci,j,g = Cj,g(Xi) is the jth prin
ipal s
ore of the 
urve Xi belonging

to the group g.

3.2. Parameter estimation

In the unsupervised 
ontext the estimation of the mixture model param-

eters is not as straightforward as in the supervised 
ontext sin
e the groups

labels Zi are unknown. A 
lassi
al way to maximise a mixture model like-

lihood when data are missing (here the 
lusters indi
ators Zi) is to use the

iterative EM algorithm [23℄. In this work we use an EM-like algorithm in-


luding in the M step the 
omputation of the prin
ipal 
omponents s
ores of

ea
h group and the sele
tion of the group spe
i�
 dimension qg. Our EM-like

algorithm 
onsists in maximizing the pseudo 
ompleted log-likelihood

L(q)
c (θ;X,Z) =

n∑

i=1

K∑

g=1

Zi,g

(
log πg +

qg∑

j=1

log fCj,g
(Ci,j,g)

)
,

whi
h is easier to maximise than its in
omplete version (9), and leads to the

same estimate. Let θ(h)
be the 
urrent value of the estimated parameter at

step h, h ≥ 1.

E step. As the group indi
ators Zi,g's are unknown, the E step 
onsists in


omputing the 
onditional expe
tation of the pseudo 
ompleted log-likelihood:
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Q(θ; θ(h)) = Eθ(h) [L(q)
c (θ;X,Z)|X = x] =

n∑

i=1

K∑

g=1

τi,g


log πg +

qg∑

j=1

log fCj,g
(ci,j,g)




where τi,g is the probability for the 
urve Xi to belong to the group g

onditionally to Ci,j,g = ci,j,g:

τi,g = Eθ(h)[Zi,g|X = x] ≃
πg

∏qg

j=1 fCj,g
(ci,j,g)∑K

l=1 πl

∏ql

j=1 fCj,l
(ci,j,l)

. (10)

The approximation (10) is due to the use of the approximation of the density

of X given by (7).

M step. The M step is 
omposed of three stages:

1. Prin
ipal s
ore update.

The prin
ipal 
omponents Cj,g of group g are 
omputed by weighting

the 
urves a

ording to the 
onditional probabilities τi,g (1 ≤ i ≤ n)

omputed in the E step. The estimation of the prin
ipal 
omponents

is des
ribed in Se
tion 3.3.

2. Group spe
i�
 dimension qg sele
tion.

The estimation of the group spe
i�
 dimension qg is an open problem.

In this work we propose to use, on
e the group spe
i�
 FPCA have

been 
omputed, the s
ree-test of Cattell [24℄ in order to sele
t ea
h

group spe
i�
 dimension qg. The advantage of using this test is that

one hyperparameter (the threshold of the Cattell s
ree-test) allows to

estimate K approximation orders.

3. Parameters update.

The M step 
onsists in 
omputing the mixture model parameters θ(h+1)

whi
h maximizes Q(θ; θ(h)). The varian
e λj,g of the jth prin
ipal 
om-

ponent for 
luster g has already been 
omputed in the prin
ipal s
ore

update step. For the mixing proportions, the usual estimator is ob-

tained:

π(h+1)
g =

1

n

n∑

i=1

τi,g.

Let re
all that the mean of the prin
ipal 
omponent Cj,g is not 
onsid-
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ered sin
e it is 0. The average shape of the 
urves of a 
luster is taken

into a

ount in the 
omputing of the prin
ipal 
omponents Cj,g of the


luster.

Stopping 
riterion. When using an EM algorithm, usual stopping 
riterion

is based on the growth of the likelihood. In our work, sin
e the group spe-


i�
 approximation orders 
an 
hange between two steps of the algorithm,

the likelihood 
an arti�
ially 
hange (in
rease or de
rease). In pra
ti
e, we

noti
e quite often that the estimation algorithm is hesitating between ap-

proximation orders, whi
h prevents 
onvergen
e of the pseudo likelihood.

For this reason, the algorithm often stops on the maximum number of itera-

tions allowed. In this 
ase, the retained solution is the solution maximizing

the pseudo-likelihood.

The proposed mixture model and the 
orresponding estimation algorithm

will be 
alled Fun
lust in what follows.

3.3. Estimation and approximation for fun
tional prin
ipal 
omponent anal-

ysis (FPCA)

Ex
ept some theoreti
al models (e.g. Brownian motion, Poisson pro-


ess), the mean and the 
ovarian
e fun
tion of the sto
hasti
 pro
ess X are

unknown. They are estimated from an i.i.d. sample of X, {X1, . . . , Xn},
n > 1, by

µ̂(t) =
1

n

n∑

i=1

Xi(t), t ∈ [0, T ],

and

Ĉov(t, s) =
1

n− 1

n∑

i=1

(Xi(t) − µ̂(t))(Xi(s) − µ̂(s)).

In the 
ontext of fun
tional prin
ipal 
omponents, the asymptoti
 properties

of these estimators are studied in [25℄ and [3℄. Under the existen
e 
ondition

of fourth moment of X, in [26℄ are provided 
onvergen
es rates for the esti-

mators of the eigenvalues and of the eigenfun
tion of the integral operator

with kernel Ĉov(t, s). See also [27℄ for more details.

3.3.1. Smoothing and interpolating 
urves

In pra
ti
e, a new problem appears be
ause of the 
ontinuous-time feature

of the X ′
is. In pra
ti
e, a 
urve Xi = {Xi(t), t ∈ [0, T ]} is usually observed

9



only is a dis
rete set of time-points, {X(ti,s), 0 ≤ s ≤ mi, ti,s ∈ [0, T ]},
that is, we have only dis
rete observations of ea
h sample path Xi at a

dis
rete set of knots {ti,s : s = 1, . . . , mi}. Be
ause of this, the �rst step in

fun
tional data analysis is often the re
onstru
tion of the fun
tional form of

data from dis
rete observations. In [28℄ it is shown that this is equivalent

to the 
hoi
e of a metri
 in the spa
e of dis
rete observations. The most


ommon solution to this problem is to 
onsider that sample paths belong

to a �nite dimensional spa
e of fun
tions spanned by a basis of fun
tions

{φj}j=1,...p (see, for example, [5℄).

Xi(t) =

p∑

j=1

γi,jφ(t), p ≥ 1.

An alternative way of solving this problem is based on nonparametri
 smooth-

ing of fun
tions (see [20℄).

Sample paths basis 
oe�
ients γi,j's are estimated from dis
rete-time ob-

servations by using an appropriate numeri
al method. If the fun
tional pre-

di
tor is observed with error,

Xobs
i (ti,s) = Xi(ti,s) + εis s = 0, . . . , mi,

least square smoothing is used after 
hoosing a suitable basis, for example,

trigonometri
 fun
tions, B-splines or wavelets (see [5℄ for a detailed study).

In this 
ase, the basis 
oe�
ients of ea
h sample path Xi are approximated

by

γ̂i = (Θ′
iΘi)

−1
Θ′

iX
obs
i ,

with Θi = (φj(tis))1≤i≤n,1≤s≤mi
and Xobs

i = (Xobs
i (ti,0), . . . , X

obs
i (ti,mi

))′.
The 
hoi
e of the basis fun
tions as well as the dimension of this basis are

quite subje
tive. If the sample paths of X are smooth and periodi
 then

Fourier basis 
ould be a good 
hoi
e. However, the optimal properties of 
u-

bi
 B-spline fun
tions make them the �rst 
hoi
e for smoothing noisy data.

See for example the monograph [29℄ and, in the 
ontext of fun
tional data,

see [5℄.

If the sample 
urves are observed without error, an interpolation pro
edure


an be used. For example, in [30℄ 
uasi-
ubi
 spline interpolation for re
on-

stru
ting annual temperatures 
urves from monthly values is proposed. More

about interpolation of fun
tional data is provided in [21℄.
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3.3.2. FPCA 
omputation

Let Γ be the n × p expansion 
oe�
ients γij matrix and W be the ma-

trix of the inner produ
ts between the basis fun
tions wjℓ =
´ T

0
φj(t)φℓ(t)dt

(1 ≤ j, ℓ ≤ p). We explain here the 
omputation of the prin
ipal 
om-

ponent Cj,g of group g appearing in the M step previously des
ribe. This


omputation is 
arried out by weighting the importan
e of ea
h 
urve in the


onstru
tion of the prin
ipal 
omponents with the 
onditional probabilities

Tg = diag(τ1,g, . . . , τn,g). Consequently, the �rst step 
onsists in 
entring the


urve X i
within the group g by subtra
tion of the mean 
urve 
omputed

using the τi,g's. The expansion 
oe�
ients of the 
entred 
urves are given

by:

Γg = (In − 1In(τ1,g, . . . , τn,g))Γ,

where In and 1In are respe
tively the identity n × n-matrix and the unit n-
ve
tor. The jth prin
ipal 
omponent s
ores Cj,g is then the jth eigenve
tor

of the matrix ΓgWΓ′
gTg asso
iated to the jth eigenvalue λj,g:

ΓgWΓ′
gTgCj,g = λj,gCj,g.

Note that usual FPCA 
omputation o

urs if Tg = 1
n
In.

4. Appli
ations

4.1. Clustering evaluation

Before validating the proposed 
lustering method on numeri
al appli
a-

tions, we have to 
hoose an evaluation strategy, whi
h remains an open ques-

tions in 
lustering. In lot of works, 
lassi�
ation ben
hmark datasets are


ommonly used to validate and 
ompared 
lustering models (see for instan
e

[3, 31, 32℄). As mentioned in several works [33, 34℄, this strategy 
an be

sometimes dangerous and misleading. Indeed, this evaluation strategy relies

on the assumption that 
lass labels 
oin
ide with 
luster stru
ture, whi
h 
an

be true for some datasets and not for others. Another strategy 
an be the use

of arti�
ial datasets. But this strategy 
an also be 
riti
ized, sin
e it evalu-

ates the 
lustering only under parti
ular assumption on the data generating

pro
ess. [35℄ argues that the best way to evaluate 
lustering is probably to

work on real world datasets, and to explain how the obtained 
lusters make

sense.
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In this se
tion, ea
h of these three strategies will be used. First, a simu-

lation study will be 
arried out to 
ompare Fun
lust with two 
hallengers

for fun
tional data 
lustering as well as usual 
lustering methods for �nite

dimensional data applied on FPCA s
ores. In a se
ond part, the 
omparison

is based on three 
lassi�
ation datasets. Finally, a 
lustering of the surfa
e

of the soil of Mars will be estimated with Fun
lust, and a physi
al interpre-

tation of the 
lusters will be used to validate the usefulness of the obtained


lustering.

4.2. Simulation study

In this simulation, the number of 
lusters is assumed to be known: K=2.

A sample of n = 100 
urves are simulated a

ording to the following model

inspired by [36, 37℄:

Class 1 : X(t) = U1h1(t) + U2h2(t) + ǫ(t), t ∈ [1, 21],

Class 2 : X(t) = U1h1(t) + ǫ(t), t ∈ [1, 21],

where U1 and U2 are independent Gaussian variables su
h that E[U1] =
E[U2] = 0, Var(U1) = Var(U2) = 1/12 and ǫ(t) is a white noise, independent
of Ui's and su
h that Var(ǫt) = 1/12. The fun
tion h1 and h2 are de�ned,

for t ∈ [1, 21], by h1(t) = 6 − |t − 7| and h2(t) = 6 − |t − 15|. The mixing

proportions πi's are 
hoosen to be equal, and the 
urves are observed in 41
equidistant points (t = 1, 1.5, . . . , 21). Figure 1 plots the simulated 
urves.

The fun
tional form of the data is re
onstru
ted using linear spline smoothing

(with 30 equidistant knots).

Fun
lust is 
ompared with two 
hallengers for fun
tional data 
lustering,

FunHDDC [16℄ and f
lust [13℄, and three 
lustering methods traditionally

devoted to 
lustering �nite-dimensional data applied on the FPCA s
ores:

Gaussian mixture models on the FPCA s
ores (GMM, [4℄) via the Rmixmod

pa
kage for R, k-means [2℄ and hierar
hi
al 
lustering (pa
kages kmeans and

h
lust). The sele
tion of the number of FPCA 
omponents is 
arried out

by the Cattell s
ree test. For FunHDDC and GMM, whi
h proposes several

models, the best model a

ording to BIC has been retained. Figure 2 shows

the 
orre
t 
lassi�
ation rates over 100 simulations, whi
h exhibited better

results for Fun
lust on this simulation set-up.

12
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enter) and both 
lasses (right).
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Figure 2: Corre
t 
lassi�
ation rates over 100 simulations.

4.3. Ben
hmark study

Fun
lust is now 
ompared with other 
lustering methods on the basis of

the 
apa
ity to �nd the 
lass labels of three 
lassi�
ation datasets.

4.3.1. The data

Three real datasets are 
onsidered: the Kneading, Growth, and ECG

datasets. These three datasets are plotted in Figure 3. The Kneading dataset
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Figure 3: Kneading, Growth and ECG datasets.


omes from Danone Vitapole Paris Resear
h Center and 
on
erns the quality

of 
ookies and the relationship with the �our kneading pro
ess. The kneading

dataset is des
ribed in detail in [38℄. There are 115 di�erent �ours for whi
h

the dough resistan
e is measured during the kneading pro
ess for 480 se
onds.

One obtains 115 kneading 
urves observed at 241 equispa
ed instants of time

in the interval [0, 480]. The 115 �ours produ
e 
ookies of di�erent quality: 50
of them have produ
ed 
ookies of good quality, 25 produ
ed medium quality

and 40 low quality. This data, have been already studied in a supervised


lassi�
ation 
ontext [38, 39℄. They are known to be hard to dis
riminate,

even for supervised 
lassi�ers, partly be
ause of the medium quality 
lass.

Taking into a

ount that the resistan
e of dough is a smooth 
urve measured

with error, and following previous works on this data [38, 39℄, least squares

approximation on a basis of 
ubi
 B-spline fun
tions (with 18 knots) is used

to re
onstru
t the true fun
tional form of ea
h sample 
urve.

The Growth dataset 
omes from the Berkeley growth study [40℄ and is avail-

able in the fda pa
kage of R. In this dataset, the heights of 54 girls and 39

boys were measured at 31 stages, from 1 to 18 years. The goal is to 
luster

the growth 
urves and to determine whether the resulting 
lusters re�e
t

gender di�eren
es. The ECG dataset is taken from the UCR Time Series

Classi�
ation and Clustering website

1

. This dataset 
onsists of 200 ele
tro-


ardiogram from 2 groups of patients sampled at 96 time instants, and has

already been studied in [41℄. For these two datasets, the same basis fun
tions

as for the Kneading dataset has been arbitrarily 
hosen (20 
ubi
 B-splines).

1

http://www.
s.u
r.edu/∼eamonn/time_series_data/
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4.3.2. Experimental setup

In this ben
hmark study, Fun
lust is 
ompared with FunHDDC and f
lust,

as in the simulation study. The Growth dataset allows an additional 
ompar-

ison with k-
entres (kCFC, [11℄), sin
e they present in [11℄ the 
orre
t 
lassi�-

ation rate they obtained on the Growth dataset (their 
ode are not available

to the best of our knowledge). Con
erning the �nite-dimensional methods

to whi
h Fun
lust is 
ompared, we added to GMM, k-means and hierar
hi-


al 
lustering, two methods dedi
ated to the 
lustering of high-dimensional

data: HDDC [7℄ and MixtPPCA [6℄ (HD
lassif pa
kage). These methods for

�nite-dimensional data have been applied on the FPCA s
ores with 
hoi
e

of the number of 
omponents with the Cattell s
ree test, but also dire
tly

on the dis
rete observations of the 
urves and on the 
oe�
ients in the 
ubi


B-spline basis approximation.

Details for Fun
lust. The maximum number of iterations is �xed to 200.

Note that for these three appli
ations, the maximum number of iterations

has always been rea
hed. Nevertheless, sin
e the iterations 
orresponding to

the retained solutions (a

ording to the best pseudo-likelihood) were always

relatively far from the last one, we assume this maximum number of iterations

as su�
ient. The threshold of the Cattell s
ree test allowing to sele
t the

approximation order qk is �xed to 0.05. In order to avoid 
onvergen
e to

a lo
al maximum of the pseudo likelihood, our EM-like algorithm has been

initialized with the best solutions of 20 small EM-like algorithms with 20

iterations ea
h [42℄. With this experimental set-up, Fun
lust estimation is

obtained in about 30 se
onds for ea
h dataset, on a laptop (2.80GHz CPU)

and with a 
ode in R software.

4.3.3. Results

The estimated approximation order qg for Fun
lust are the following:

Kneading (q1 = 2, q2 = 1, q3 = 3), Growth (q1 = 2, q2 = 3), ECG
(q1 = 9, q2 = 4). The 
orre
t 
lassi�
ation rates (CCR) a

ording to the

known partitions are given in Table 1. Fun
lust performs better to estimate

the 
lass label than all the other methods on two datasets among three

(Kneading and ECG). On the last dataset, the results are relatively poor

(69.89% a

urate whereas some method are about 97% a

urate), but the

performan
e 
an be greatly in
reased (95.70%) if the dimensions qg are �xed
to 2 (as the number of FPCA s
ores used by the non fun
tional methods).

This dataset illustrates that the 
hoi
e of the approximation order is a very
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Kneading Kneading

fun
tional

2-steps dis
retized spline 
oe�. FPCA s
ores

methods (241 instants) (20 splines) (4 
omponents)

Fun
lust 66.96 HDDC 66.09 53.91 44.35

FunHDDC 62.61 MixtPPCA 65.22 64.35 62.61

f
lust 64 GMM 63.48 50.43 60

kCFC - k-means 62.61 62.61 62.61

h
lust 63.48 63.48 63.48

Growth Growth

fun
tional

2-steps dis
retized spline 
oe�. FPCA s
ores

methods (350 instants) (20 splines) (2 
omponents)

Fun
lust 69.89 HDDC 56.99 50.51 97.85

FunHDDC 96.77 MixtPPCA 62.36 50.53 97.85

f
lust 69.89 GMM 65.59 63.44 95.70

kCFC 93.55 k-means 65.59 66.67 64.52

h
lust 51.61 75.27 68.81

ECG ECG

fun
tional

2-steps dis
retized spline 
oe�. FPCA s
ores

methods (96 instants) (20 splines) (19 
omponents)

Fun
lust 84 HDDC 74.5 73.5 74.5

FunHDDC 75 MixtPPCA 74.5 73.5 74.5

f
lust 74.5 GMM 81 80.5 81.5

kCFC - k-means 74.5 72.5 74.5

h
lust 73 76.5 64

Table 1: Corre
t 
lassi�
ation rates (CCR) in per
entage for Fun
lust, FunHDDC (best

model a

ording BIC), f
lust, kCFC and usual non-fun
tional methods on the Kneading,

Growth and ECG datasets.
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important question, and that further works have to be 
arried out in this

dire
tion. A last remark 
on
erns the use of non fun
tional methods. These

methods 
an sometimes perform very well to estimate the 
lass label, but the

main problem is that, in the present unsupervised 
ontext, we have no way

to 
hoose between working with the dis
rete data, with the spline 
oe�
ients

or with the FPCA s
ores. For instan
e, HDDC and MixtPPCA are very well

performing on the Growth dataset using the FPCA s
ores, but they are very

poor using the dis
rete data or the spline 
oe�
ients.

4.4. Appli
ation to Mars surfa
e 
hara
terization

This data, provided by the Laboratory of Planetology of Grenoble [43,

44℄, were a
quired by the OMEGA imaging satellite. The soil of Mars has

been observed with a resolution between 300 and 3000 meters depending on

the altitude of the satellite. It was a
quired for ea
h pixel a spe
tra whose

wavelengths range from 0.36 to 5.2 mi
rons and stored this information in

a ve
tor of 256 dimensions. The purpose of this preliminary study is to


hara
terize the 
omposition of the surfa
e of Mars by determining zones


omposed of similar material. The number of groups has been �xed to 8,

sin
e the experts expe
t 8 main 
lasses of mineralogi
al. The analysis of some

spe
tra in ea
h 
luster will allow the expert to indi
ate to whi
h mineralogi
al


orresponds ea
h 
luster. A photography of size 300×128 pixels of the surfa
e
of Mars (left image of Figure 4) is 
onsidered, ea
h of 38,400 pixels being

des
ribed by a spe
trum (right image of Figure 4).
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Figure 4: Mars data: image of the studied zone.
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Figure 5: Fun
lust 
lustering in 8 groups.

The 
lusters resulting from Fun
lust is represented in Figure 5. This


lustering seems to be in a

ordan
e with the photography of Figure 4) (we

re
all that no spatial information has been used for this 
lustering). More-

over, the experts of the Laboratory of Planetology of Grenoble parti
ularly

appre
iated that our method is able to dete
t spe
i�
 
luster, in the form of

edging, at the border of the main areas: for instan
e the magenta and 
yan


lusters separate the main blue and orange area. Analysing some spe
tra in

ea
h 
luster has allowed to dedu
e that these 
lusters re�e
t the presen
e of

parti
ular materials (mixture of 
arbonate and i
e) at the border of main

materials (i
e and dust).

5. Con
lusion

In this paper we propose a new 
lustering pro
edure for fun
tional data

based on an approximation of the notion of density of a random fun
tion. The

main tool is the use of the probability densities of the prin
ipal 
omponents

s
ores. Assuming that the fun
tional data are sampled from a Gaussian pro-


ess, the resulting mixture model is an extrapolation of the �nite dimensional

Gaussian mixture model to the in�nite dimensional setting. We de�ned an

EM-like algorithm for the parameter estimation and performed several nu-

meri
al appli
ations, in order to show the performan
e of this approa
h with

respe
t to usual 
lustering pro
edures.

Future work is devoted to investigate the 
hoi
e of the approximation orders.

We observed in our appli
ation study that a bad 
hoi
e of these dimension

18




an drasti
ally deteriorate the 
lustering results. However, allowing the ap-

proximation order to 
hange in the estimation algorithm leads to loose the

properties of the EM algorithm. In parti
ular, the pseudo likelihood is not

ne
essarily in
reasing, and we have to stop the algorithm after a given num-

ber of iterations and to 
hoose the best rea
hed solutions.
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