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Abstract This paper discusses simple local search approaches for approximating the effi-
cient set of multiobjective combinatorial optimization problems. We focus on algorithms 
defined by a neighborhood structure and a dominance relation that iteratively improve an 
archive of nondominated solutions. Such methods are referred to as dominance-based mul-
tiobjective local search. We first provide a concise overview of existing algorithms, and
we propose a model trying to unify them through a fine-grained decomposition. The main
problem-independent search components of dominance relation, solution selection, neigh-
borhood exploration and archiving are largely discussed. Then, a number of state-of-the-
art and original strategies are experimented on solving a permutation flowshop scheduling
problem and a traveling salesman problem, both on a two- and a three-objective formula-
tion. Experimental results and a statistical comparison are reported in the paper, and some
directions for future research are highlighted.
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École des Mines de Douai, Département IA, 941 rue Charles Bourseul, BP 10838, 59508 Douai, France
E-mail: jeremie.humeau@mines-douai.fr

S. Mesmoudi
Laboratoire d’Imagerie Fonctionnelle (LIF), UMR 678 Inserm–UPMC, CHU Pitié-Salpêtrière
91 boulevard de l’Hôpital, 75634 Paris cedex 13, France
E-mail: salma.mesmoudi@iscpif.fr

L. Jourdan
E-mail: laetitia.jourdan@inria.fr

E.-G. Talbi
E-mail: talbi@lifl.fr



2

1 Introduction

One of the most challenging task in the field of multiobjective optimization relates to the
identification of the efficient solution set, or an approximation of it for rather difficult op-
timization problems. On the one hand, evolutionary algorithms are commonly used to this
end, since multiple solutions can be found in a single simulation run. On the other hand, local
search methods are known to provide good-quality solutions for many hard combinatorial
optimization problems. However, in comparison to the tremendous number of existing mul-
tiobjective evolutionary algorithms, the number of multiobjective local search approaches is
extremely small. They provide an interesting alternative to classical evolutionary algorithms
and often handle a relatively small number of parameters, but they are usually restricted to
a role of sub-procedure in the frame of a memetic or hybrid multiobjective metaheuristic.
Furthermore, from a practitioner point of view, it is often the case that a well-performing
single-objective local search method, with advanced problem-related components, is to be
extended in order to solve a multiobjective counterpart of the same problem. Then, designing
a multiobjective evolutionary algorithm for its investigation will not allow to reuse much of
the components developed for the single-objective problem.We here try to outline the main
issues to study before adapting or designing a local search method based on a dominance
relation.

In this paper, we focus on a class of pure neighborhood search methods for multiob-
jective combinatorial optimization. These simple algorithms can be seen as a generalization
of the most basic local search procedure (also known as hill-climbing, descent, iterative im-
provement, etc.) for the multiobjective case. Generally speaking, they combine the definition
of a neighborhood structure with the management of an archive of potentially efficient solu-
tions, according to a dominance relation. This archive is iteratively improved by exploring
the neighborhood of its own content until no further improvement is possible, or until an-
other stopping condition is satisfied. Such methods are often referred to as Pareto-based or
Pareto Local Search (Paquete et al, 2004; Talbi et al, 2001; Basseur et al, 2002). However,
we found the denomination Dominance-based Multiobjective Local Search (DMLS) more
relevant, because, contrary to existing approaches, other pairwise dominance relations, such
as weak-dominance, strict-dominance and so on, can be used to discriminate solutions in-
stead of the classical Pareto-dominance. Besides, the number of DMLS algorithms is very
limited in proportion to existing local search approaches dealing with the approximation to
the efficient set (Ehrgott and Gandibleux, 2004). Most methods are generally based on the
successive resolution of multiple scalarizations of the same objective vector function. Mul-
tiobjective local search principles based on a dominance relation appeared more recently in
the literature.

State-of-the-art DMLS algorithms are first reviewed. They include the Pareto Local
Search (Paquete et al, 2004; Talbi et al, 2001; Basseur et al, 2002), the Biobjective Lo-
cal Search (Angel et al, 2004), the Pareto Archived Evolution Strategy (Knowles and Corne,
2000), the Simple Evolutionary Multiobjective Optimizer (Laumanns et al, 2004), and a ran-
dom bit climber proposed by Aguirre and Tanaka (2005). The main issues related to their
design are identified, and an attempt of unifying these methods is provided. The problem-
free components of dominance relation, current set selection, neighborhood exploration,
archiving and stopping condition are described in detail, and a number of strategies for such
purpose are largely discussed. Next, we illustrate how the proposed unified view allows to
address existing methods as simple variants of the same structure, and how original methods
can conveniently be designed. In addition, we propose a software package, integrated into
the ParadisEO framework, that is dedicated to the flexible and reusable design of DMLS
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algorithms. Finally, a number of strategies for each design step of a DMLS method are ex-
perimented with. In particular, up to now, it has remain unclear how to: (i) select a proper set
of solutions whose neighborhood is to be explored, (ii) design a proper neighborhood explo-
ration strategy from this current set. Two combinatorial optimization problems, involving a
reasonable number of objective functions, are investigated. They consist of a permutation
Flowshop Scheduling Problem (FSP) and of a Traveling Salesman Problem (TSP), each one
being formulated as two and three objective problems. The strategies under investigation
give rise to a total number of eight DMLS algorithms that are rigorously compared with
each other on a set of both FSP and TSP benchmark test instances. The experiments con-
ducted in the paper show that DMLS algorithms are easily scalable, and successfully find
a good approximation of the efficient set for different problem types and sizes. We discuss
their respective behaviors and we try to highlight some useful guidelines about the choice
of the main DMLS-related design issues for multiobjective combinatorial optimization.

The paper is organized as follows. In Section 2, we begin with some background infor-
mation about multiobjective combinatorial optimization and multiobjective search methods.
In Section 3, a model for DMLS is proposed, and its main search components are largely
discussed. In Section 4, we provide a comparative study of different DMLS strategies for
solving two- and three-objective variants of a FSP and of a TSP. At last, Section 5 concludes
the paper and discusses future research.

2 Background Information

This section presents some basic concepts, notation and definitions about multiobjective
combinatorial optimization. Next, some issues related to the design of metaheuristics for
such purpose as well as a brief review and classification of existing multiobjective local
search methods are given.

2.1 Multiobjective Combinatorial Optimization

A Multiobjective Combinatorial Optimization Problem (MCOP) aims to optimize a set of
n≥ 2 objective functions ( f1, f2, . . . , fn) simultaneously. Let X denote the discrete set of fea-
sible solutions in the decision space (that usually has some additional combinatorial struc-
ture), and Z the set of feasible vectors in the objective space. Without loss of generality, we
assume that Z ⊆ Rn and that all n objective functions are to be minimized. To each deci-
sion vector x ∈ X is assigned an objective vector z ∈ Z on the basis of the vector function
f : X → Z with z = f (x). A MCOP can be defined as follows:

minimize f (x) = ( f1(x), f2(x), . . . , fn(x))
subject to x ∈ X

(1)

A dominance relation is then usually assumed so that a partial order is induced over X .
Numerous dominance relations exist in the literature and will be discussed later in the paper.
Let us define the well-known concept of Pareto-dominance.

Definition 1 (Pareto-dominance) An objective vector z ∈ Z is said to dominate an objec-
tive vector z′ ∈ Z iff ∀i ∈ {1,2, . . . ,n}, zi ≤ z′i and ∃ j ∈ {1,2, . . . ,n} such that z j < z′j. This
relation will be denoted by z� z′.
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We will also say that a decision vector x ∈ X dominates a decision vector x′ ∈ X , denoted by
x� x′, if f (x) dominates f (x′).

Definition 2 (Nondominated vector) An objective vector z∈ Z is said to be nondominated
iff there does not exist another objective vector z′ ∈ Z such that z′ � z.

Definition 3 (Efficient solution) A solution x ∈ X is said to be efficient (or Pareto optimal,
nondominated) iff its mapping in the objective space results in a nondominated vector.

The set of all efficient solutions is called efficient (or Pareto optimal) set, denoted by XE , and
its mapping in the objective space is called Pareto front, denoted by ZN . A possible approach
in MCOP solving is to find the minimal set of efficient solutions, i.e. one solution x ∈ XE
for each nondominated vector z ∈ ZN such that f (x) = z (in case multiple solutions map to
the same nondominated vector). But, generating the entire set of Pareto optimal solutions is
usually infeasible, due to the complexity of the underlying problem or to the large number
of optima. Therefore, the overall goal is often to identify a good efficient set approximation.

2.2 Metaheuristics for Multiobjective Combinatorial Optimization

Metaheuristics are a powerful class of general-purpose search methods (Talbi, 2009). They
have been successfully applied to a wide-range of optimization problems, and are able to
find good-quality solutions in a reasonable runtime. Approximating an efficient set is itself
a bi-objective problem. Indeed, the approximation to be found must have both good conver-
gence and distribution properties, as its mapping in the objective space has to be (i) close to,
and (ii) well-spread over the (generally unknown) optimal Pareto front. As a consequence,
the main difference between the design of a single-objective and of a multiobjective search
method deals with these two goals. Since they are naturally well-suited to find multiple so-
lutions in a single simulation run, population-based metaheuristics are commonly used to
approximate a MCOP efficient set. In particular, a large amount of multiobjective evolution-
ary algorithms have been proposed in the literature. Over the last decades, major advances,
from both algorithmic and theoretical aspects, have been made in the field of evolutionary
multiobjective optimization (Deb, 2001; Coello Coello et al, 2007). However, local search
methods are known to be effective metaheuristics and to provide high quality solutions for
solving many hard real-world applications. Nevertheless, a relatively small number of multi-
objective local search algorithms have been proposed so far. They are briefly reviewed in the
next section. The reader is referred to (Ehrgott and Gandibleux, 2004) for more information
about metaheuristics for multiobjective combinatorial optimization.

2.3 Multiobjective Local Search

A classical local search algorithm, also referred to as hill-climbing, descent, iterative im-
provement, etc., consists of iteratively improving an arbitrary solution according to its neigh-
borhood until a local optimum is reached. Hence, while dealing with such methods, the
definition of a neighborhood structure is required for the problem under consideration.

Definition 4 (Neighborhood structure) A neighborhood structure is a mapping function
N : X→ 2X that assigns a set of solutions N (x)⊂ X to any solution x ∈ X . N (x) is called
the neighborhood of x, and a solution x′ ∈N (x) is called a neighbor of x.
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Given that efficient solutions are to be found in the frame of multiobjective optimization,
the notion of local optimum has to be defined in terms of Pareto optimality. Let us define the
concept of locally efficient solution.

Definition 5 (Locally efficient solution) A solution x ∈ X is said to be locally efficient
with respect to a neighborhood structure N iff there does not exist a neighboring solution
x′ ∈N (x) such that x′ � x.

In the field of multiobjective optimization, a neighborhood search algorithm can generally
be used as a stand-alone approach to approximate a MCOP efficient set, or either to be hy-
bridized with other methods; see (Ehrgott and Gandibleux, 2008) for an overview of hybrid
multiobjective metaheuristics. Initial multiobjective local search approaches were based on
the successive and independent improvement of a single solution. Generally speaking, the
final approximation to be found is contained into an external set where potentially efficient
solutions are stored. However, some recent techniques intrinsically handle a population of
solutions to be evolved in parallel. Such methods can then capitalize the knowledge avail-
able within the population to guide and focus the search. In practice, combining local search
principles with the use of a population appears to be particularly promising for MCOP solv-
ing. Thus, while aiming at finding an efficient set approximation, existing multiobjective
local search methods are generally divided into two different categories: scalar approaches
and dominance-based approaches. They are briefly described below. More details can be
found in (Paquete and Stützle, 2007).

Approaches belonging to the first class consist of solving multiple single-objective opti-
mization problems by means of reducing the original MCOP through the scalarization of the
objective function vector. Scalar methods are often based on a weighted-sum aggregation,
i.e. fλ (x) = ∑

n
i=1 λi fi(x), where λi > 0 for all i ∈ {1, . . . ,n}. However, in the combinatorial

case, note that a number of efficient solutions, known as non-supported efficient solutions,
are not optimal for any weighted-sum aggregation function. Alternatively, techniques such
as ε-constraint or reference point methods can also be applied. The reader is referred to Mi-
ettinen (1999) for a detailed description of scalarization approaches for discrete multiobjec-
tive optimization. Then, once a scalar approach is defined, say a simple weighted-sum ag-
gregation function fλ , a classical single solution-based metaheuristic is applied until a local
optimum, with respect to fλ , is reached. This process is iterated by modifying the weight
vector λ . For each scalarization, the best found solution is incorporated into the efficient
set approximation whose dominated solutions are later discarded. For such purpose, single
solution-based metaheuristics go from simple local search (Paquete and Stützle, 2003) to
more advanced methods like tabu search (Gandibleux et al, 1997; Hansen, 1997) or simu-
lated annealing (Serafini, 1992; Ulungu et al, 1999).

The second class, which is of our interest in this paper, consists of defining the accep-
tance criterion for a dominance relation, like Pareto-dominance as given in Def. 1. This
class will be denoted by DMLS, for Dominance-based Multiobjective Local Search, in the
remainder of the paper. The idea of the most basic DMLS algorithm is to maintain an archive
of nondominated solutions, to explore the neighborhood of archive members, and to update
the content of the same archive with nondominated neighboring solutions until it does not
improve anymore. Therefore, contrary to scalar approaches, the archive is not only used
as an external storage, but also corresponds to the population to be improved. Different
variants of this basic idea have been proposed in the literature. Firstly, the Pareto Local
Search (Paquete et al, 2004) consists of starting from an initial solution to be added to the
archive. Then, a single solution is randomly selected from the archive. All its neighbors
are then evaluated and nondominated ones are proposed as candidate solutions to enter the
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archive. These steps are iterated until no further improvement is possible. This algorithm
has been proved to converge to a Pareto local optimum set by Paquete et al (2007). Very
similar approaches have been proposed (Talbi et al, 2001; Basseur et al, 2002; Angel et al,
2004). The only difference is that the neighborhood is here explored from the whole set of
archive members, and not from a single solution. Next, the Pareto Archived Evolution Strat-
egy (PAES) (Knowles and Corne, 2000) is a local search evolution strategy where a single
random neighbor is evaluated from a single archived solution. But note that PAES variants
where more than one archive solution is selected, and where more than one neighbor is
generated per solution have also been investigated (Knowles and Corne, 2000). Another no-
table difference is that PAES uses a bounded-size archiving technique to truncate the size of
the current nondominated set. A similar idea has been proposed by Laumanns et al (2004)
for the SEMO and FEMO algorithms, where a random neighbor of one solution from the
archive is explored. Such approaches also served as a basis from numerous theoretical re-
sults for multiobjective optimization (Neumann and Wegener, 2006; Brockhoff et al, 2007).
At last, different multiobjective local search algorithms have been investigated for bit strings
by Aguirre and Tanaka (2005). One of them, referred to as Random Bit Climber using the
Archive for Restarts, explores the neighborhood of a single archived solution until a domi-
nating one is found, or once no more neighbor can be created. If an improving neighbor is
found, it replaces the initial solution in the bounded archive. This process is repeated for all
archive members until no more progress can be made. This class of algorithms has shown
its efficiency for various MCOPs, either as stand-alone approaches (Paquete et al, 2004;
Paquete and Stützle, 2006; Geiger, 2007) or hybridized with other techniques like hybrid
metaheuristics (Talbi et al, 2001; Basseur et al, 2002) and two-phase heuristics (Paquete and
Stützle, 2006; Paquete and Stützle, 2009; Dubois-Lacoste et al, 2009; Lust and Teghem,
2010; Lust and Jaszkiewicz, 2010).

In the next section, we show that DMLS algorithms share a large number of basic com-
ponents. A general-purpose model unifying this class of multiobjective metaheuristics is
given and some related issues are discussed in detail.

3 A Model for Dominance-based Multiobjective Local Search

Conceiving a generic model is a relevant practice to abstract the design- and the implemen-
tation-specific details and to provide a general formulation. Until now, each DMLS algo-
rithm was designed independently of the others, and was implemented as a self-contained
method with its own specific elements. In the following, we identify the main search compo-
nents shared by all DMLS algorithms. Then, a unifying model that takes them into account
is presented in an attempt of providing a common terminology and classification. Such a
general classification provides a common description and comparison of DMLS algorithms,
and will allow to design new methods borrowing ideas from existing ones. Hence, whatever
the MCOP to be solved, the main search components for the design of a DMLS algorithm
can be stated as follows:

1. Design a representation;
2. Design an initialization strategy;
3. Design a way of evaluating a solution;
4. Design a suitable neighborhood structure;
5. Design a way of evaluating a neighboring solution incrementally (if possible);
6. Decide a dominance relation;
7. Decide a current set selection strategy;
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Fig. 1 Model for DMLS algorithms.

8. Decide a neighborhood exploration strategy;
9. Decide an archive management strategy;

10. Decide a stopping condition.

When dealing with any kind of metaheuristics, one may distinguish problem-related and
problem-independent components. Hence, the first five issues presented above strongly de-
pend of the MCOP under consideration, whereas the latter five ones can be seen as generic
components. In comparison to single-objective optimization, the evaluation and the incre-
mental evaluation can be seen as multiobjective-specific components because multiple ob-
jective functions are now to be computed. With regards to problem-free issues, almost all
components are explicitly defined for the multiobjective case, except for some simple stop-
ping conditions. Three additional data structures are involved to store (i) the current archive
content, (ii) the current set of solutions whose neighborhood is to be explored, and (iii) the
candidate set of neighbor solutions that will potentially enter the archive. Note that, in some
particular cases, if the neighborhood of a given solution is evaluated in an exhaustive way,
the corresponding solution should be marked as visited in order to avoid a useless neighbor-
hood revaluation. So, the archive may contain both visited and unvisited solutions.

Following this fine-grained decomposition, a conceptual model is presented in Fig. 1.
Since problem-related components are assumed to be designed for the MCOP at hand, they
do not appear in the figure. The model starts with a user-given set of mutually nondominated
solutions. These solutions are used to initialize the archive. Then, the following three steps
are iterated until a stopping criteria is satisfied. Firstly, a subset of archive solutions is se-
lected to build the current set. Next, the neighborhood of the current set is explored to build
the candidate set. At last, the archive is updated with new solutions from the candidate set.
At each step, a specific strategy is to be decided in order to build a specific DMLS instance.
The remainder of this section provides a detailed description of the components involved in
the DMLS model. Next, some state-of-the-art methods are treated as simple instances of it.

3.1 Problem-related Issues

The design of problem-specific search components is briefly discussed below.

– Representation. Solution representation is the starting point for anyone who plans to
design any kind of metaheuristic. A MCOP solution needs to be represented both in the
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decision space and in the objective space. While the representation in the objective space
can be seen as problem-independent, the representation in the decision space must be
relevant to the tackled problem.

– Initialization. Whatever the algorithmic solution to be designed, an initialization strategy
is expected. The way to initialize a solution (or a population of solutions) is closely
related to the problem under consideration and to the representation at hand.

– Evaluation. The problem at hand is to optimize a set of objective functions simultane-
ously over a given search space. Then, each time a new solution is produced, its objective
vector must be evaluated. Each objective vector component must quantify the quality of
the solution under consideration with respect to the corresponding objective function.

– Neighborhood. The design of a local search method requires the definition of a neigh-
borhood structure for the problem under consideration (see Def. 4). This is a key issue
for the local search efficiency. Note that different variants of the same local search can be
distinguished with respect to the order in which the neighboring solutions are generated:
deterministically, randomly, or also adaptively.

– Incremental evaluation. Since evaluating a solution is often the most expensive step of
a local search algorithm, an efficient way to evaluate a neighboring solution is rather
appreciated, when it is possible to compute it.

3.2 Problem-independent Issues

A detailed description of the five invariant components involved in the DMLS model is
given in this section. Additionally, state-of-the-art schemes as well as novel strategies are
presented and classified for dominance relation, current set selection, neighborhood explo-
ration, archiving and stopping condition.

3.2.1 Dominance Relation

Within dominance-based approaches for multiobjective optimization, the dominance rela-
tion under consideration is generally based on Pareto-dominance as given in Def. 1. How-
ever, in the literature, other dominance criteria are found and can easily be decided instead of
Pareto-dominance to instantiate a DMLS algorithm. Let us define the following examples.

Definition 6 (Weak-dominance) An objective vector z ∈ Z is said to weakly-dominate an
objective vector z′ ∈ Z iff ∀i ∈ {1, . . . ,n}, zi ≤ z′i.

Definition 7 (Strict-dominance) An objective vector z ∈ Z is said to strictly-dominate an
objective vector z′ ∈ Z iff ∀i ∈ {1,2, . . . ,n}, zi < z′i.

Definition 8 (ε-dominance) Let ε > 0. An objective vector z ∈ Z is said to ε-dominate an
objective vector z′ ∈ Z iff ∀i ∈ {1,2, . . . ,n}, (1+ ε) · zi ≤ z′i (Laumanns et al, 2002).

In the frame of a DMLS algorithm, the decision of such a dominance relation will not di-
rectly impact the search process, but it will strongly affect the behavior of the main problem-
independent search components. In particular, it will be involved during the archiving step,
where nondominated solutions are to be computed. Additionally, it can take part in some
dominance-based neighborhood exploration strategies, as it will be discussed later in the
paper. Of course, different dominance relations can also be defined at distinct steps of the
algorithm. However, let us note that the use of weak-dominance into DMLS algorithms may
lead to cycling, since solutions mapping to the same objective vector may be accepted (Pa-
quete et al, 2007).
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3.2.2 Current Set Selection

The initial phase of a local search iteration deals with the selection of a set of archived
solutions whose neighborhood is to be explored. In the first place, note that, if some archive
members are marked as visited, they must be discarded from the current set selection for
obvious efficiency reasons. Generally speaking, in the frame of the DMLS model presented
in the paper, two main classes can be identified:

– An exhaustive selection, where the whole set of solutions from the archive is selected.
– A partial selection, where only a subset of solutions is selected.

In the first case, every solutions will produce a number of candidate solutions by means of
the neighborhood operator (Talbi et al, 2001; Basseur et al, 2002; Angel et al, 2004). In the
latter case, existing approaches simply select a number of solutions (usually a single one)
at random (Paquete et al, 2004; Laumanns et al, 2004). Up to our knowledge, most DMLS
techniques from the literature all fit into these simple approaches, but more sophisticated
strategies can be designed. Hence, on the one hand, a subset of well-diversified solutions can
be selected with respect to a density measure, as it is the case in many evolutionary multiob-
jective optimization methods. Popular examples are sharing or crowding (Deb, 2001). For
instance, the less crowded solution from the archive can be selected (Aguirre and Tanaka,
2005). Indeed, assuming that solutions close to each other in the decision space are also in
the objective space, we can reasonably state that exploring the neighborhood of solutions
from an uncrowded region will help producing solutions in this objective-space area. On the
other hand, it could turn out to be fruitful to favor the selection of solutions that entered the
archive at the previous iteration in order to intensify the search (Knowles and Corne, 2000).
On the contrary, visiting solutions in the order in which they were included to the archive
would rather diversify the search.

3.2.3 Neighborhood Exploration

From the current set under consideration, a number of candidate solutions must be gener-
ated by means of a neighborhood structure. Such a set is obtained by a repeated local trans-
formation of every solution contained in the current set. Similarly to current set selection
strategies, for a given solution to be explored, two main classes can be clearly distinguished:

– An exhaustive neighborhood exploration, where the neighborhood is evaluated in a com-
plete and deterministic way.

– A partial neighborhood exploration, where only a subset of moves are applied.

These two classes can be seen as adaptations of the best-improving and the first-improving
strategies from the single-objective local search literature (Talbi, 2009), respectively. How-
ever, for the multiobjective case, multiple improving neighboring solutions can be identified
after an exhaustive neighborhood exploration, and different strategies can be designed for a
partial neighborhood exploration. These two classes are discussed below.

Exhaustive Neighborhood Exploration. In this case, the complete neighborhood examina-
tion of a given solution x is performed. Every possible move is applied and the nondominated
neighboring solutions, with respect to x, are all added to the candidate set. Note that, in such
an exhaustive neighborhood exploration, solutions from the current set can all be marked as
visited at the end of the corresponding step. This gives a strong advantage to this scheme,
since the revaluation of some neighbors is avoided, and since a natural stopping condition
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can then be met; see Sect. 3.2.5. However, this strategy could appear very time and space
consuming in practice, particularly if the size of the neighborhood or of the current set is
very large. It may even appear impracticable for some particular applications where the size
of the neighborhood is innumerable.

Partial Neighborhood Exploration. In existing DMLS techniques, the number of moves
to be applied within a partial neighborhood exploration is generally defined a priori by
a user-given parameter. For instance, in PAES (Knowles and Corne, 2000), this number
is generally set to 1, so that the application of a move is then closely related to a mutation
operator from an evolutionary computation point of view. However, a solution neighborhood
exploration may continue until a move produces a solution that is better, or not worst, than
the current one with respect to a dominance relation. Surprisingly, up to our knowledge,
such techniques, though largely employed in single-objective optimization, have not yet
been investigated in a DMLS-like algorithm, with the exception of (Aguirre and Tanaka,
2005). But note that equivalent ideas have also been proposed in a repeated single-solution-
based multiobjective local search (Ulungu et al, 1999). Let us divide partial neighborhood
exploration schemes as follows:

– Random neighbor. A single random neighbor per current solution is proposed as candi-
date solution for integrating the archive (Knowles and Corne, 2000).

– First nondominated neighbor. For each solution x from the current set, neighbors are
evaluated until a nondominated one, with respect to x, is found. This neighbor is then
proposed as a candidate for integrating the archive. If no nondominated neighbor is
found, the process stops once the neighborhood of x has been examined entirely. In
the best case, a single neighbor is to be evaluated, whereas in the worst case (i.e. all
neighbors of x are dominated by x), the neighborhood is examined completely, so that x
can be marked as visited.

– First dominating neighbor. For each solution x from the current set, neighbors are eval-
uated until a dominating one, with respect to x, is found (Aguirre and Tanaka, 2005).
Then, all evaluated nondominated neighbors are proposed as candidate solutions for
integrating the archive. Similarly to the previous strategy, the possible number of neigh-
bors to be evaluated per current solution goes from 1 to |N (x)|.

Of course, these three strategies can easily be extended to the case where more-than-one
random, nondominated, or dominating neighbors are to be found. Furthermore, note that a
different dominance relation than Pareto-dominance can be employed for a pairwise com-
parison of solutions; see Sect. 3.2.1. For non-random schemes, note that, in the worst case, a
complete evaluation of the neighborhood is performed on each solution from the current set.
However, in the case of a first dominating neighbor strategy, and given a solution x from the
current set, if no improving solution is found, every neighbor is evaluated, so that the cur-
rent solution can be marked as visited. Thus, assuming that dominated solutions are always
discarded from the archive, either the corresponding solution x will be marked as visited,
or it will not be included into the archive. As a consequence, the first dominating neighbor
scheme is the single partial neighborhood exploration strategy that gives rise to a natural
stopping condition, and that avoids the revaluation of solutions neighborhood.

3.2.4 Archiving

Another essential issue deals with maintaining the archive. This set allows to store either all
or a subset of nondominated solutions found during the search process. Its main aim is to pre-
vent the loss of interesting solutions during the stochastic optimization process. But archive
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members are also integrated into the search process by providing solutions to exploit in the
DMLS model presented in this paper. In the frame of such a model, one may distinguish
different archiving techniques depending on the problem properties, the designed algorithm
and the number of desired solutions: (i) an unbounded archive or (ii) a bounded archive1. An
archive usually comprises the current nondominated set approximation, as dominated solu-
tions are discarded. Then, an unbounded archive can be used in order to save the whole set of
nondominated solutions found until the beginning of the search process. However, as most
MCOPs contain an exponential number of nondominated solutions, it becomes impossible
to store them all for large-size problem instances. Additionally, it may appear computation-
ally prohibitive to explore the neighborhood of the whole archive exhaustively for some
configurations of DMLS algorithms. Therefore, additional operations must be used to re-
duce the number of solutions to be stored. Then, a common strategy is to bound the size of
the archive according to some strategy (Knowles and Corne, 2004). One of the most simple
example of bounding technique consists of the following principle (Rudolph and Agapie,
2000). While the archive is below its capacity, all nondominated solutions are incorporated.
On the other hand, if the archive content is at its highest level, only dominating solutions
are accepted. In both cases, any dominated solution is removed. However, other techniques
are based on a diversity criteria. For instance, solutions can be distinguished with respect to
a crowding distance (Deb, 2001). The crowding distance can be defined as the circumfer-
ence of the rectangle defined by a solution’s neighbors, with an infinite value for extreme
solutions. Otherwise, a relaxed form of dominance can be considered as well. For instance,
the ε-dominance concept (Def. 8) can be used to maintain the archive. This allows to reduce
the size of the archive without making the process much more complex compared to an un-
bounded strategy based on the classical Pareto-dominance. However, it is often difficult to
set an appropriate ε-value according to the required maximum number of archive items.

3.2.5 Stopping condition

Since an iterative method computes successive approximations, a practical test is gener-
ally required to determine when the process must stop. Popular examples are a user-given
maximum number of iterations or maximum runtime. However, when it is possible to mark
archive members as visited, depending on the neighborhood exploration scheme under con-
sideration (see Sect. 3.2.3), a natural stopping criterion consists of continuing the search
process until all archive members are marked as visited. Indeed, in such a case, the archive
only contains mutually nondominated solutions whose neighbors are dominated or equiv-
alent to at least one solution from the same archive. As a consequence, the corresponding
algorithm falls in a locally efficient set (Paquete et al, 2007). Another strategy is to enu-
merate the number of consecutive iterations without improvement, and to stop the search
process when it exceeds a user-given value. But a non-improving iteration is difficult to de-
fine while dealing with multiobjective optimization. For instance, an iteration can be stated
as non-improving if the number of new nondominated solutions added to the archive is null.

3.3 State-of-the-art Methods as Instances of the DMLS Model

The aim of this section is to show how state-of-the-art DMLS algorithms conveniently fit
into the unified view proposed in the paper. The Pareto Local Search 1 (PLS-1) proposed

1 As proposed in some multiobjective evolutionary algorithms (Zitzler et al, 2001), a fixed-size archive
could be considered as well.
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Table 1 State-of-the-art DMLS algorithms as instances of the DMLS model: PLS-1 (Paquete et al, 2004),
PLS-2 (Talbi et al, 2001; Basseur et al, 2002; Angel et al, 2004), PAES (Knowles and Corne, 2000), and
moRBC(|A| : 1+1)A (Aguirre and Tanaka, 2005).

components PLS-1 PLS-2 PAES moRBC(|A| : 1+1)A

dominance Pareto Pareto Pareto Pareto
relation dominance dominance dominance dominance

current set partial exhaustive partial partial
selection 1 random solution all solutions µ solutions 1 less crowded solution

neighborhood exhaustive exhaustive partial partial
exploration all neighbors all neighbors λ random neighbors 1 dominating neighbor

archiving unbounded unbounded bounded bounded
adaptive hypergrid crowding distance

stopping natural natural user-defined natural
condition all solutions visited all solutions visited all solutions visited

by Paquete et al (2004), the Pareto Local Search 2 (PLS-2) (Talbi et al, 2001; Basseur
et al, 2002; Angel et al, 2004), PAES (Knowles and Corne, 2000) and moRBC(|A| : 1+
1)A (Aguirre and Tanaka, 2005) are taken as examples. In Table 1, they are treated as simple
instances of the DMLS model. Of course, note that only problem-independent components
are presented. Firstly, note that all these algorithms handle Pareto-dominance as dominance
relation. Thus, at each iteration, PLS-1 selects an unvisited solution at random from the
archive, and explores its neighborhood exhaustively. It handles a natural stopping condition
that is verified when all archive members are marked as visited. An unbounded archive is
generally employed (Paquete et al, 2004), even if a bounding mechanism can be included as
well. The only difference between PLS-1 and PLS-2 is that the latter adds the whole set of
(unvisited) archive solutions to the current set at each iteration, so that a very large candidate
set may potentially be constructed. Next, in PAES, µ solutions are selected from the archive,
and a partial neighborhood exploration is performed, with the evaluation of λ random neigh-
bors per solution. In its basic version, note that µ and λ are both set to 1. The PAES current
set selection strategy consists in selecting either the current solution from the previous itera-
tion or the latest produced solution, depending on which one is in the less crowded region of
the archive. Furthermore, PAES uses a bounded-size archiving technique based on adaptive
crowding procedure where the search space is divided by a hypergrid (Knowles and Corne,
2000). The only differences between PAES and the SEMO algorithm from Laumanns et al
(2004) is that the latter does not handle any mechanism to bound the size of the archive, and
selects the current solution at random. At last, moRBC(|A| : 1+ 1)A also uses a bounded
archive based on crowding distance (Deb, 2001). A single solution, the less crowded one, is
then selected from the archive. Next, its neighbors are evaluated until a dominating one, with
respect to the current solution, is found, or once the corresponding neighborhood has been
completely explored. Every evaluated nondominated neighbor is added to the candidate set.
As illustrated in Table 1, these four well-known DMLS-like algorithms are based on simple
variations of the problem-independent components presented above.



13

4 Experimental Analysis

This section provides a comparison of a number of state-of-the-art and original strategies,
based on the DMLS model, to solve different kinds of MCOPs. Note that the aim of the ex-
perimental part is not to provide the best-performing search method for the particular case
of the problems under consideration. Instead, we discuss the respective behaviors of these
different strategies, and we try to provide useful guidelines about the choice of the main
DMLS-related design issues. This is the reason why we here choose to employ relatively
simple and basic problem-related components. Then, current set selection and neighbor-
hood exploration techniques are experimented on both a multiobjective flowshop schedul-
ing problem and a multiobjective traveling salesman problem. These two applications can
also be seen as illustrative examples of the DMLS model proposed in the paper. Even if
feasible solutions can be represented as permutations for both problems, they differ in the
nature of their objective functions, the cardinality of their Pareto fronts, and the solution
structure the search operators focus on. The resulting algorithms have all been implemented
under ParadisEO 1.2.1 and share the same base components for a fair comparison between
them. Moreover, note that the DMLS model has been implemented and integrated into the
ParadisEO-MOEO software framework (Liefooghe et al, 2010, 2011). ParadisEO is avail-
able for download at the following URL: http://paradiseo.gforge.inria.fr.

4.1 Experimental Design

In this section, the strategies under investigation are first presented. Next, we describe the
stopping and restarting criteria for all the experimented algorithms as well as the procedure
followed for assessing their performance.

4.1.1 Strategies under Investigation

A number of strategies are experimented for current set selection and neighborhood explo-
ration. This gives rise to a combination of 8 DMLS algorithms, as summarized in Fig. 2.
Firstly, with regards to current set selection, two simple strategies are investigated, either
(i) the whole set of solutions or (ii) a random single one is selected from the unvisited set of
the archive. Next, with regards to neighborhood exploration techniques, three partial strate-
gies and an exhaustive one are studied:

– 1 random neighbor. A single neighbor per solution is proposed as a candidate solution
for integrating the archive.

– 1 nondominated neighbor. For each solution x from the current set, the corresponding
first nondominated neighbor, with respect to x, is proposed as a candidate solution for
integrating the archive.

– 1 dominating neighbor. For each solution x from the current set, neighbors are evaluated
until a dominating one, with respect to x, is found. Then, all evaluated nondominated
neighbors are proposed as candidate solutions for integrating the archive.

– All neighbors. All neighbors of each solution from the current set are proposed as can-
didate solutions for integrating the archive.

The resulting algorithms are denoted by DMLS (1 · 1), DMLS (1 · 16≺), DMLS (1 · 1�),
DMLS (1 · ?), DMLS (? · 1), DMLS (? · 16≺), DMLS (? · 1�), and DMLS (? · ?), as re-
ported in Fig. 2. Note that some algorithms match, or are closely related to existing ap-
proaches from the literature. Indeed, DMLS (1 ·?) is equivalent to PLS-1 (Paquete et al,
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Fig. 2 Algorithms under investigation.

2004), and DMLS (? ·?) to PLS-2 (Talbi et al, 2001; Basseur et al, 2002; Angel et al,
2004). DMLS (1 ·1) is in somehow related to the SEMO approach of Laumanns et al
(2004), and to the (1+1)-PAES approach proposed by Knowles and Corne (2000). How-
ever, contrary to the approach of Knowles and Corne (2000), the archiving strategy used
here is not based on an adaptive hypergrid. At last, DMLS (1 · 1�) is closely related to
moRBC(|A| : 1+ 1)A (Aguirre and Tanaka, 2005), except that the latter one uses crowd-
ing distance to bound the archive size and to select a solution to explore. The dominance
relation used within all the DMLS methods under consideration is Pareto-dominance. The
archiving mechanisms used by the DMLS algorithms will be chosen according to the prob-
lem to be solved and will be explained in the remaining part of the paper, together with
the choice of stopping conditions. Additionally, in order to illustrate the efficiency of such
DMLS approaches, we will compare the results obtained by the algorithms of the frame-
work to another state-of-the-art metaheuristic for multiobjective optimization, namely the
Non-dominated Sorting Genetic Algorithm II (NSGA-II) proposed by Deb et al (2002).

4.1.2 Stopping and Restarting Conditions

For each problem instance to be solved, a maximum runtime value has been chosen. The cur-
rent approximation of the efficient set is stored every minute in order to study the evolution
of the search efficiency over time. However, we already pointed out that some of the algo-
rithms handle a natural stopping condition. Indeed, when the neighborhood of all archive
members has been explored in an exhaustive way, solutions are marked as visited and the
algorithm stops; see Sect. 3.2.5. In this case, a simple random restart strategy has been per-
formed to continue the search process until the maximum runtime is reached. Hence, the
search is restarted from another random initial population. This mechanism is repeated as
many times as necessary to reach the maximum runtime available. However, in order not to
penalize the algorithms that do not stop naturally, a simple non-improving stopping condi-
tion has been designed. The latter is verified when a number of consecutive iterations are
performed without any new nondominated solution incorporating the archive. This param-
eter is set to v for exhaustive selection strategies, and to (v×|A|) for single solution-based
selection strategies, where v stands for the number of neighbors per solution and |A| for the
size of the current archive. If the current iteration is stated as non-improving, note that |A|
stays constant over time. This parameter values are motivated by the fact that, with such a
number of iterations, the corresponding algorithms would have had the time to generate the
complete neighborhood of the actual nondominated set. The stopping condition correspond-
ing to any algorithm under investigation is reported in Fig. 2.
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4.1.3 Performance Assessment

In the frame of multiobjective optimization, the performance assessment of a number of
algorithms in solving the same problem is a key issue. In this study, a set of 20 runs per
instance and per algorithm is performed. In order to evaluate the quality of the nondominated
front approximations for every instance we experimented, we follow the protocol proposed
in (Knowles et al, 2006). For a given instance, let Zall denote the union of the outputs we
obtained during all our experiments. Note that Zall probably contains both dominated and
nondominated vectors, as a given approximation may contain vectors dominating the ones
of another approximation, and vice versa. We first compute a reference set Z?

N containing
all the nondominated vectors of Zall plus any other existing best know nondominated set
for the problem under consideration. Second, we define zmin = (zmin

1 , . . . ,zmin
n ) and zmax =

(zmax
1 , . . . ,zmax

n ), where zmin
k (resp. zmax

k ) denotes the lower (resp. upper) bound of the kth

objective for all the points contained in Zall . In order to give a roughly equal range to the
objective functions, values are normalized with respect to zmin and zmax.

Let us consider an efficient set approximation A. In order to measure the quality of A in
comparison to Z?

N , we compute the difference between these two sets by using the unary hy-
pervolume metric (Zitzler et al, 2003), zmax being the reference point. The hypervolume dif-
ference indicator (I−H ) computes the portion of the objective space that is weakly-dominated
by Z?

N and not by A. The closer this measure to zero, the better the approximation A. Fur-
thermore, we also consider the additive ε-indicator (Zitzler et al, 2003). The unary additive
ε-indicator (I1

ε+) gives the minimum factor by which an approximation A can or has to be
translated in the objective space to weakly-dominate the reference set Z?

N .
As a consequence, for each test instance, we obtain 20 I−H -values and 20 I1

ε+-values, cor-
responding to the 20 runs, per algorithm. Once all these values are computed, we first report
an average value per metric in order to study the evolution of all methods over time. Addi-
tionally, we perform a statistical analysis for a pairwise comparison of methods. To this end,
we use the Wilcoxon signed rank test. Such a non-parametric statistical test is motivated by
the fact that samples collected here correspond to matched samples. Details for this statisti-
cal testing procedure are given by Knowles et al (2006). Hence, for a given test instance, and
with respect to the indicator under consideration, this statistical test reveals if the sample of
approximation sets obtained by a given search method is significantly better than the one of
another search method, or if there is no significant difference between both. For the sake of
conciseness, we only report how many algorithms obtained statistically better results than
the corresponding algorithm for the instance under consideration. In other words, a value
of zero means that no other method generated significantly better approximations. Note that
all the performance assessment procedures have been achieved using the performance as-
sessment tools provided in PISA (Bleuler et al, 2003). The package is available at the URL:
http://www.tik.ee.ethz.ch/pisa/assessment.php.

4.2 Application 1: Permutation Flowshop Scheduling Problem

The Flowshop Scheduling Problem (FSP) is one of the most investigated scheduling prob-
lems of the literature. Most works consider it on a single-objective form and mainly aims
at minimizing the makespan, i.e. the total completion time. However, many objective func-
tions can be taken into account, and numerous multiobjective approaches have also been
proposed. The reader is referred to (T’Kindt and Billaut, 2002; Landa Silva et al, 2004) for
a survey on multiobjective scheduling. Note that both stand-alone and hybrid DMLS-like
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algorithms have already been applied with success to biobjective flowshop scheduling prob-
lems (Basseur et al, 2002; Geiger, 2007; Dubois-Lacoste et al, 2009). Here, some results are
also reported for the three-objective case.

4.2.1 Problem Description

The FSP consists of scheduling N jobs {J1,J2, . . . ,JN} on M machines {M1,M2, . . . ,MM}.
Machines are critical resources, i.e. two jobs cannot be assigned to the same machine at the
same time. A job Ji is composed of M tasks {ti1, ti2, . . . , tiM}, where ti j is the jth task of Ji,
requiring the machine M j. A processing time pi j is associated with each task ti j, and a due
date di is given to every job Ji. We here focus on a permutation FSP, where the operating
sequences of the jobs are identical and unidirectional for every machine. In this study, we
will consider a two-objective FSP (denoted by FSP-2), where both the makespan (Cmax)
and the total tardiness (T ) are to be minimized. Additionally, we will also consider a three-
objective variant (denoted by FSP-3), where the maximum tardiness (Tmax) is the additional
objective to be minimized. For each task ti j being scheduled at time si j, these objective
functions, that are among the most widely investigated ones of the literature (T’Kindt and
Billaut, 2002), can be computed as follows:

Cmax = max
i∈{1,...,N}

{siM + piM} (2)

T =
N

∑
i=1

{
max{0,siM + piM−di}

}
(3)

Tmax = max
i∈{1,...,N}

{
max{0,siM + piM−di}

}
(4)

According to Graham et al (1979), FSP-2 can be denoted by F/perm,di/(Cmax,T ), and
FSP-3 by F/perm,di/(Cmax,T ,Tmax). However, since minimizing the makespan, the total
tardiness or the maximum tardiness independently is already known to be strongly NP-hard
for more than two machines (T’Kindt and Billaut, 2002), so are the FSP-2 and the FSP-3. As
a consequence, large-size problem instances can generally not be solved by exact methods.

4.2.2 Problem-related Components

The problem-related components used for the specific case of the FSP presented above are
the following ones:

– Representation. Ordered sequence of jobs to be scheduled. A feasible solution for a
problem instance of N jobs and M machines is represented by a permutation of size N.

– Initialization. Randomly generated solution.
– Evaluation. Makespan and total tardiness for FSP-2; makespan, total tardiness and max-

imum tardiness for FSP-3.
– Neighborhood. Insertion operator, i.e. a job located at position i is inserted at posi-

tion j 6= i. The jobs located between positions i and j are shifted, as illustrated in Fig. 3.
The number of neighbors per solution is (N−1)2, where N stands for the size of a per-
mutation. Note that no particular order is considered to explore the neighborhood of a
given solution; neighbors are examined in a random order.

– Incremental evaluation. None, each neighboring solution is evaluated from scratch.
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Fig. 3 Illustration of the insertion neighborhood operator for the FSP.

4.2.3 Benchmark Test Instances

To evaluate the performance of the algorithms, we consider a set of benchmark test in-
stances (Liefooghe et al, 2007). They have been built from the single-objective instances
from Taillard (1993) and extended to the multiobjective case by adding a due date for
every job. These instances are available at the URL: http://www.lifl.fr/~liefooga/
benchmarks/. As proposed by Taillard (1993), processing times are first randomly gen-
erated with respect to a uniform distribution in the interval [0,99]. Next, we compute the
average value of those processing times. Let p denote the average processing time value for
the instance under consideration. Due dates are then unifromly generated using a random
value between p×M and p×(N+M−1), where N stands for the number of jobs and M for
the number of machines. Thus, the due date of a given job roughly lies between the average
completion date of the first job from the schedule and the average completion date of the
last job from the schedule. An instance denoted by N×M× i refers to the ith instance with
N jobs and M machines. In this paper, we experiment a set of 8 problem instances involving
from 20 jobs and 5 machines to 100 jobs and 20 machines.

4.2.4 Parameter Setting

For all the experiments, the initial population size is set to 1. The stopping condition is
fixed with respect to the size of the instance under consideration. Hence, we set a maximum
runtime of: 10 minutes for 20-job instances, 20 minutes for 50-job instances, and 30 minutes
for 100-job instances. At last, due to the reasonable number of nondominated solutions
found during our experiments, an unbounded archive is here maintained. The parameters
used for NSGA-II are the following ones: a population size of 100 solutions, a crossover
rate of 0.8 and a mutation rate of 1.0. Note that the crossover operator used for the FSP is
the two-point crossover proposed by Ishibuchi and Murata (1998), and the mutation operator
is based on the insertion neighborhood operator used for the DMLS.

4.2.5 Experimental Results and Discussion

The set of FSP-related experiments has been conducted on an Intel Core 2 Duo 6600 (2×
2.40 GHz, 2 GB RAM) machine, with GCC 4.1.2 running under Linux. FSP-2 and FSP-3
results are presented in Table 2 for the I−H indicator. Due to space limitations, we highlight
only the statistical outputs for three different stopping criteria, fixed according to the in-
stance under consideration: a small, a medium and a large runtime. The table for the I1

ε+

indicator as well as visual plots of the average I−H - and I1
ε+-values over time are available

at the URL: http://www.lifl.fr/~liefooga/sup/dmls/. First of all, let us remark that
two distinct sets of instances can clearly be distinguished with respect to algorithmic per-
formance. The first set contains relatively small-size instances, including 20-job and 50-job
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Table 2 Comparison of DMLS algorithms with respect to the I−H indicator for FSP benchmark test instances.
The first value stands for the number of algorithms that statistically outperform the one under consideration.
The number in brackets stands for the normalized average I−H -value (×10−1).

Instance Runtime DMLS DMLS DMLS DMLS DMLS DMLS DMLS DMLS NSGA-II
(1 ·1) (1 ·1 6≺) (1 ·1�) (1 ·?) (? ·1) (? ·1 6≺) (? ·1�) (? ·?)

FSP-2
020×05×01 1’ 4 (0.511) 6 (1.378) 0 (0.034) 1 (0.055) 5 (0.882) 5 (1.146) 0 (0.021) 3 (0.133) 8 (2.934)

5’ 4 (0.055) 6 (0.663) 0 (0.003) 1 (0.005) 6 (0.362) 4 (0.080) 0 (0.004) 1 (0.005) 8 (2.856)
10’ 4 (0.027) 6 (0.199) 0 (0.002) 2 (0.003) 7 (0.189) 4 (0.036) 0 (0.002) 3 (0.004) 8 (2.841)

020×10×01 1’ 4 (0.852) 4 (0.847) 1 (0.385) 1 (0.373) 7 (1.886) 4 (0.813) 0 (0.235) 1 (0.420) 7 (2.326)
5’ 4 (0.327) 4 (0.372) 0 (0.063) 2 (0.181) 7 (0.865) 4 (0.376) 0 (0.074) 0 (0.117) 8 (1.812)

10’ 4 (0.178) 5 (0.267) 0 (0.021) 2 (0.080) 7 (0.524) 4 (0.233) 0 (0.020) 2 (0.081) 8 (1.608)
020×20×01 1’ 3 (1.490) 4 (1.732) 0 (0.463) 2 (0.897) 7 (2.894) 4 (1.530) 1 (0.623) 2 (1.143) 8 (5.549)

5’ 4 (0.466) 6 (0.858) 0 (0.136) 1 (0.200) 7 (1.514) 4 (0.539) 0 (0.175) 3 (0.295) 8 (4.799)
10’ 4 (0.243) 6 (0.611) 0 (0.052) 2 (0.142) 7 (1.042) 5 (0.332) 1 (0.077) 2 (0.149) 8 (4.668)

050×05×01 2’ 3 (1.114) 2 (1.123) 0 (0.793) 2 (0.987) 4 (1.216) 2 (1.047) 0 (0.771) 7 (1.812) 8 (2.658)
10’ 3 (0.737) 6 (0.880) 0 (0.475) 1 (0.545) 5 (0.876) 4 (0.795) 0 (0.396) 2 (0.665) 8 (2.466)
20’ 3 (0.592) 6 (0.792) 0 (0.289) 1 (0.359) 5 (0.756) 5 (0.728) 0 (0.262) 3 (0.504) 8 (2.461)

050×10×01 2’ 1 (1.519) 0 (1.443) 0 (1.372) 5 (1.849) 5 (1.707) 0 (1.406) 0 (1.337) 8 (5.156) 7 (3.027)
10’ 3 (1.070) 5 (1.296) 0 (0.603) 2 (0.927) 3 (1.157) 5 (1.316) 0 (0.652) 2 (1.062) 8 (2.514)
20’ 4 (0.876) 6 (1.271) 0 (0.467) 2 (0.611) 5 (1.014) 5 (1.187) 0 (0.508) 3 (0.758) 8 (2.440)

050×20×01 2’ 0 (1.225) 0 (1.274) 0 (1.302) 5 (1.794) 3 (1.413) 0 (1.220) 5 (1.698) 8 (5.864) 7 (2.202)
10’ 1 (0.783) 5 (1.069) 0 (0.666) 1 (0.781) 4 (0.909) 3 (0.964) 0 (0.732) 7 (1.644) 7 (1.737)
20’ 2 (0.652) 6 (1.060) 0 (0.477) 0 (0.564) 4 (0.810) 5 (0.937) 0 (0.476) 2 (0.739) 8 (1.663)

100×10×01 3’ 4 (1.164) 0 (0.601) 1 (0.790) 7 (3.638) 4 (1.125) 0 (0.700) 2 (0.874) 8 (7.961) 6 (2.051)
15’ 1 (0.484) 0 (0.285) 1 (0.431) 6 (1.277) 1 (0.463) 1 (0.410) 1 (0.448) 8 (5.820) 7 (1.648)
30’ 2 (0.354) 0 (0.213) 1 (0.300) 6 (0.741) 1 (0.296) 1 (0.348) 1 (0.325) 8 (4.540) 7 (1.565)

100×20×01 3’ 2 (1.754) 0 (1.335) 2 (1.720) 7 (5.637) 2 (1.703) 0 (1.334) 4 (1.928) 8 (8.902) 6 (2.432)
15’ 0 (0.824) 0 (0.734) 4 (1.062) 7 (2.332) 0 (0.692) 0 (0.735) 4 (1.144) 8 (7.426) 6 (1.658)
30’ 0 (0.544) 0 (0.513) 4 (0.759) 6 (1.483) 0 (0.485) 0 (0.577) 4 (0.845) 8 (6.354) 6 (1.489)

FSP-3
020×05×01 1’ 5 (0.928) 3 (0.524) 0 (0.231) 2 (0.400) 5 (1.057) 2 (0.413) 0 (0.214) 7 (1.313) 8 (4.653)

5’ 4 (0.319) 4 (0.309) 0 (0.040) 2 (0.087) 4 (0.318) 2 (0.070) 0 (0.034) 4 (0.250) 8 (3.846)
10’ 5 (0.180) 5 (0.208) 1 (0.023) 2 (0.045) 5 (0.197) 2 (0.035) 0 (0.017) 3 (0.104) 8 (3.677)

020×10×01 1’ 4 (1.184) 4 (0.992) 0 (0.386) 2 (0.698) 6 (1.782) 2 (0.880) 0 (0.451) 6 (2.505) 8 (3.829)
5’ 4 (0.417) 5 (0.524) 0 (0.116) 2 (0.234) 7 (0.685) 3 (0.407) 0 (0.083) 3 (0.344) 8 (2.301)

10’ 5 (0.276) 6 (0.367) 0 (0.043) 2 (0.128) 6 (0.436) 4 (0.224) 0 (0.039) 2 (0.152) 8 (1.996)
020×20×01 1’ 2 (1.714) 1 (1.451) 0 (1.041) 3 (1.682) 6 (2.066) 2 (1.626) 0 (1.118) 7 (4.945) 7 (5.002)

5’ 3 (0.622) 5 (0.890) 0 (0.178) 2 (0.319) 5 (0.907) 5 (0.952) 0 (0.180) 3 (0.620) 8 (3.541)
10’ 4 (0.375) 5 (0.522) 0 (0.097) 2 (0.159) 6 (0.600) 5 (0.464) 0 (0.069) 3 (0.320) 8 (3.228)

050×05×01 2’ 4 (0.864) 0 (0.428) 2 (0.725) 6 (1.640) 2 (0.673) 0 (0.400) 3 (0.815) 8 (8.373) 6 (1.693)
10’ 3 (0.377) 1 (0.332) 0 (0.266) 6 (0.469) 3 (0.339) 0 (0.291) 0 (0.292) 8 (6.719) 7 (1.354)
20’ 2 (0.308) 2 (0.314) 0 (0.175) 2 (0.284) 2 (0.297) 2 (0.283) 1 (0.226) 8 (5.412) 7 (1.300)

050×10×01 2’ 3 (1.546) 0 (1.087) 4 (1.836) 6 (2.780) 2 (1.358) 0 (1.058) 5 (2.495) 8 (8.698) 6 (2.917)
10’ 3 (0.662) 0 (0.499) 4 (0.856) 5 (1.439) 1 (0.558) 0 (0.477) 5 (1.406) 8 (7.400) 7 (2.419)
20’ 2 (0.436) 0 (0.335) 2 (0.454) 5 (0.947) 0 (0.368) 0 (0.320) 5 (0.962) 8 (6.522) 7 (2.233)

050×20×01 2’ 3 (1.761) 1 (1.509) 4 (2.489) 5 (3.385) 1 (1.582) 0 (1.330) 6 (3.392) 8 (8.961) 5 (3.009)
10’ 1 (0.751) 2 (0.808) 4 (1.175) 5 (1.626) 0 (0.664) 0 (0.672) 6 (2.063) 8 (7.889) 6 (2.276)
20’ 0 (0.500) 3 (0.605) 2 (0.602) 5 (1.106) 0 (0.412) 0 (0.451) 6 (1.470) 8 (7.094) 7 (2.090)

100×10×01 3’ 4 (3.115) 0 (2.102) 1 (2.171) 7 (6.450) 3 (2.872) 0 (2.012) 6 (3.559) 8 (9.466) 4 (3.155)
15’ 3 (1.192) 0 (0.554) 2 (1.038) 7 (3.874) 3 (1.213) 0 (0.577) 5 (1.728) 8 (9.240) 6 (2.253)
30’ 2 (0.716) 0 (0.228) 2 (0.772) 7 (2.981) 2 (0.700) 0 (0.235) 5 (1.186) 8 (9.084) 6 (2.026)

100×20×01 3’ 2 (4.036) 0 (3.354) 2 (3.908) 7 (8.127) 2 (3.843) 1 (3.593) 6 (5.868) 8 (9.743) 5 (4.398)
15’ 2 (1.797) 0 (1.063) 4 (2.117) 7 (5.193) 2 (1.676) 1 (1.370) 6 (3.919) 8 (9.540) 5 (3.302)
30’ 3 (1.084) 0 (0.412) 4 (1.590) 7 (3.888) 2 (0.973) 1 (0.594) 5 (3.054) 8 (9.441) 5 (2.983)

FSP-2 instances as well as 20-job FSP-3-instances. The second set contains large-size in-
stances and comprises 50-job FSP-3 instances as well as 100-job FSP-2 and FSP-3 instances.
In terms of size, we then speak here both about the size of the search space and the number
of objective functions.

For the small-size set, the two best-performing algorithms are clearly DMLS (1 · 1�)
and DMLS (? ·1�). The only exceptions are the 020×10×01 and the 050×20×01 FSP-2
instances, where DMLS (1 ·1�) (resp. DMLS (? ·1�)) is outperformed by at least one other
algorithm, including DMLS (? ·1�) (resp. DMLS (1 ·1�)), when a short amount of runtime
is allowed. However, DMLS (1 ·?) seems to be a solid competitor. As well, the results ob-
tained by DMLS (? · ?) are not too bad for very small FSP-2 instances, but the latter can
generally not compete with others for larger instances. At last, except for a few exceptions,
all the other methods, including NSGA-II, globally obtain very poor performance in com-
parison to the methods discussed above. Thus, we can reasonably conclude that stopping
the neighborhood exploration once an improving neighbor, in terms of Pareto-dominance,
is found for each current solution, is the best strategy to adopt for this set of instances,
whatever the current set selection scheme under consideration.
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Table 3 Average number of random restart operations for FSP benchmark test instances. The size of the best
nondominated set for the instance under consideration is given as information in the second column (|Z?

N |).

Instance |Z?
N | DMLS DMLS DMLS DMLS DMLS DMLS DMLS DMLS

(1 ·1) (1 ·1 6≺) (1 ·1�) (1 ·?) (? ·1) (? ·1 6≺) (? ·1�) (? ·?)
FSP-2
020×05×01 18 977.80 86.15 2878.20 1100.05 4932.15 206.35 2228.25 430.70
020×10×01 24 458.85 47.10 392.10 226.25 1789.10 68.55 265.05 97.75
020×20×01 30 329.30 18.85 220.10 151.95 1239.65 32.30 145.70 66.85
050×05×01 28 85.20 4.70 77.40 22.05 141.15 4.50 56.40 6.40
050×10×01 48 37.10 1.20 14.45 7.35 63.75 0.30 8.85 1.60
050×20×01 38 18.70 1.00 6.40 4.00 46.75 0.00 3.45 0.70
100×10×01 89 1.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00
100×20×01 76 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FSP-3
020×05×01 278 19.85 11.65 52.00 17.40 273.15 35.20 34.60 6.60
020×10×01 191 38.40 10.65 75.00 35.05 406.80 23.15 42.80 10.95
020×20×01 423 11.85 3.10 18.40 9.80 133.10 2.00 8.75 3.15
050×05×01 273 1.65 1.00 3.70 0.70 0.00 0.00 1.70 0.00
050×10×01 969 1.10 1.00 0.00 0.00 0.00 0.00 0.00 0.00
050×20×01 592 1.25 1.00 0.00 0.00 0.00 0.00 0.00 0.00
100×10×01 696 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
100×20×01 618 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

For large-size instances, the more efficient neighborhood exploration strategy clearly
corresponds to the “first nondominated neighbor” scheme. Indeed, both DMLS (1 ·16≺) and
DMLS (? ·16≺) are never dominated by another method at the same time. However, even if
it is often outperformed by methods mentioned above, DMLS (1 · 1�) obtain good perfor-
mance also on large-size instances on average, contrary to DMLS (? ·1�) that presents poor
performance, especially for FSP-3 instances. Besides, the results obtained by DMLS (? ·?)
are very poor, corroborating the results highlighted from the first set of instances. So are
the ones of DMLS (1 ·?), in opposite to small-size instances. On the contrary, quite simple
methods like DMLS (1 · 1) and DMLS (? · 1) obtain good performance on large instances.
At last, the performances of NSGA-II seem to be lithly higher than for small-size problems.

To summarize, there does not exist a unambiguous strategy to adopt in terms of current
set selection. However, stopping the exploration of a solution neighborhood once the first
dominating neighbor is found appears to be very efficient for small instances, whereas stop-
ping it once the first nondominated neighbor is found performs better an larger problems.
Such a behavior could be related to the number of restarts performed by the corresponding
algorithms. Indeed, as pointed out in Table 3, both DMLS (1 ·1�) and DMLS (? ·1�) restart
more often than DMLS (1 ·16≺) and DMLS (? ·16≺) for small instances, where they perform
better. But for large instances, where the latter methods outperform the former ones, the
number of restarts is close to zero and then more or less comparable between both. Note
that this might also be related to the number of points located in the trade-off surface for
the instance under consideration. As reported in Table 3, this number gets bigger for large-
size instances. As a matter of fact, we can reasonably assume that, the larger the number of
efficient solutions, the larger the number of nondominated points are actually found by the
algorithms, and then the larger the size of the archive is. Consequently, the chance to fall in
a kind of Pareto local optimum set is reduced, and so is the chance to restart for all methods.

4.3 Application 2: Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is probably the most often investigated combinato-
rial optimization problem. In its usual single-objective form, the TSP aims at finding a tour
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such as a single total cost has to be minimized. However, in practice, additional costs such
as distance or travel time are to be considered as well. This may explain the reason why
the TSP started to be widely investigated in a multiobjective way in recent years; see for
instance (Jaszkiewicz, 2002; Paquete and Stützle, 2003; Angel et al, 2004). Successful ap-
plications of DMLS algorithms for the biobjective TSP can be found in (Angel et al, 2004;
Paquete and Stützle, 2009; Lust and Teghem, 2010; Lust and Jaszkiewicz, 2010). Note that
Paquete and Stützle (2009) also performed a deep analysis of problem-related components
(initialization, neighborhood) involved in a DMLS algorithm for the biobjective TSP.

4.3.1 Problem Description

The TSP can be defined by a complete graph G = (V,E) where V = {v1,v2, . . . ,vp} is a set
of nodes and E = {[vi,v j]|vi,v j ∈V} is a set of edges. In the n-objective case, we have n cost
matrices Ck, k = 1, ...,n. To each edge [vi,v j] ∈ E is then assigned a non-negative cost ck

i j
for each objective function k ∈ {1, . . . ,n}. The aim is to find simple cyclic permutations π

of {v1, . . . ,vp} (with π(p) = v1) that minimize ( f1(π), . . . , fn(π)), such that:

fk(π) = ck
π(p)π(1)+

n−1

∑
i=1

ck
π(i)π(i+1) (5)

The multiobjective TSP is NP-hard (Serafini, 1986). TSP variants with two and three objec-
tive functions are considered here. They will be respectively denoted by TSP-2 and TSP-3.

4.3.2 Problem-related Components

The TSP-specific components used for the design of local search methods are:
– Representation. Ordered sequence of nodes, excluding v1. A feasible solution for a prob-

lem instance of p nodes is represented by a permutation of size (p−1).
– Evaluation: Two cost matrices are considered for TSP-2, and three ones for TSP-3.
– Initialization. Randomly generated solution.
– Neighborhood. 2-opt exchange operator, i.e. the sequence located between π(i) and π( j)

is reversed. Hence, there exists a set of (p−1)·(p−2)
2 neighbors per solution.

– Incremental evaluation. For every objective function fk with k ∈ {1, . . . ,n}, subtracting
(ck

π(i−1)π(i)+ck
π( j)π( j+1)) and adding (ck

π(i−1)π( j)+ck
π(i)π( j+1)). Neighbors are examined

in a random order.

4.3.3 Benchmark Test Instances

Each objective function of a multiobjective TSP is computed with an independent cost ma-
trix, so that a number of 2 (resp. 3) cost matrices is required for TSP-2 (resp. TSP-3). In the
literature, the set of Krolak, Fets and Nelson euclidean instances available in the TSPLIB
(files prefixed by Kro) are in general tackled for the multiobjective TSP (Jaszkiewicz, 2002;
Paquete and Stützle, 2003; Paquete et al, 2004; Angel et al, 2004). However, the size of
these instances is equal or below 200 nodes. This is the reason why Paquete and Stützle
(2009) proposed euclidean costs matrices built in the same way, but involving a larger num-
ber of nodes, i.e. 100, 300 and 500 nodes. These data allow to build a set of 9 TSP-2 and
6 TSP-3 euclidean instances that are used in our experiments. The authors also make their
best found nondominated front available on the web, so that a good reference set exists for
those instances. TSP instances as well as their corresponding best found nondominated set
are available at the URL: http://eden.dei.uc.pt/~paquete/tsp/.
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4.3.4 Parameter Setting

Similarly to what has been done for the FSP, the initial population size is set to 1, and
the stopping condition is fixed with respect to the size of the instance under consideration.
The maximum runtime is set as follows: 10 minutes for 100-node instances, 20 minutes
for 300-node instances, and 30 minutes for 500-node instances. Due to the large number
of nondominated solutions generally found for both TSP-2 and TSP-3, a bounding archiv-
ing mechanism is here required. However, since it will always rely on an assumed trade-off
between efficiency and effectiveness, the choice of a proper strategy is subject to endless
discussion and is closely related to the problem property and the maximum runtime avail-
able. Thus, we here choose to employ a very simple, but computationally effective, bound-
ing mechanism as described in Sect. 3.2.4. A new nondominated solution x is added to the
archive only if (i) the archive is not full or (ii) x dominates at least one solution from the
archive, so that one of the dominated solutions is replaced by the new one. All dominated
solutions are then discarded. In addition to its obvious simplicity, this strategy has the ad-
vantage of being reasonable in terms of time complexity. The maximum archive size is set
to 100 for all instances. The NSGA-II parameters are identical to the ones used for the FSP.
The recombination operator consists in an order crossover (Davis, 1985).

4.3.5 Experimental Results and Discussion

All the TSP-related experiments have been conducted on an Intel Core 2 Quad 6600 (4×
2.40 GHz, 3 GB RAM) machine, with GCC 4.1.3 running under Linux. Results are reported
in Table 4 for the I−H indicator. As for FSP experiments, note that the counterpart for the I1

ε+

indicator, together with the plots of the average I−H - and I1
ε+-values over time for the TSP are

available at the URL: http://www.lifl.fr/~liefooga/sup/dmls/.
The statistical tests performed for both TSP-2 and TSP-3 clearly indicate the high per-

formance of DMLS (1 · 1�) for most instances. Indeed, this method is never statistically
outperformed for 300- and 500-node TSP-2 instances as well as the whole set of TSP-
3 instances. However, note that DMLS (? · 1�) almost always come at second position,
except for 100-node instances. Now, for 100-node TSP-2 instances, DMLS (1 · 16≺) and
DMLS (? ·16≺) globally seem to be more suited. These two methods also obtain quite satis-
fying results for larger instances, and for 100-node TSP-3 instances as well, at least once a
large amount of computational time is allowed. NSGA-II and the remaining DMLS methods
investigated in this paper generally obtain very poor results when compared to the ones men-
tioned above. NSGA-II becomes also competitive for large-size problem instances, in terms
of search space and number of objective functions. Some DMLS algorithms are, however,
known to be very efficient, especially the DMLS (1 ·?) algorithm that corresponds to PLS-1.
Indeed, PLS-1 is reported to be one of the best performing search method with regards to
biobjective TSP solving in the specialized literature (Paquete et al, 2004). But note that the
approach investigated by the authors reports better results when using the 3-opt exchange
neighborhood operator. Hence, we believe that measuring the efficiency of DMLS (1 · 1�)
within such an operator could be attractively investigated in future research. Finally, let us
note that, in comparison to the FSP, experiments performed on the TSP does not lead to a
large number of restart operations for most algorithms and instances. Indeed, as reported in
Table 5, all methods never restart for both TSP-2 and TSP-3 instances involving 300 nodes
and more. Only 100-node problems give rise to several restarts for some approaches. This
seems to be related to the high number of non-dominated points generally obtained for TSP
instances, in contrast to the FSP.
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Table 4 Comparison of DMLS algorithms with respect to the I−H indicator for TSP benchmark test instances.
The first value stands for the number of algorithms that statistically outperform the one under consideration.
The number in brackets stands for the normalized average I−H -value (×10−1). Some results for the DMLS
(? ·?) strategy are not available because of memory issues due to the large size of the current set.

Instance Runtime DMLS DMLS DMLS DMLS DMLS DMLS DMLS DMLS NSGA-II
(1 ·1) (1 ·1 6≺) (1 ·1�) (1 ·?) (? ·1) (? ·1 6≺) (? ·1�) (? ·?)

TSP-2
euclidAB100 1’ 6 (2.769) 3 (1.166) 0 (0.828) 4 (2.274) 5 (2.644) 2 (1.132) 1 (0.973) 8 (9.379) 7 (3.782)

5’ 5 (0.959) 0 (0.200) 2 (0.327) 5 (0.943) 4 (0.889) 0 (0.195) 2 (0.274) 8 (8.400) 7 (2.173)
10’ 5 (0.479) 0 (0.120) 3 (0.230) 6 (0.650) 4 (0.445) 0 (0.106) 2 (0.176) 8 (7.329) 7 (1.735)

euclidCD100 1’ 5 (2.815) 2 (1.201) 0 (0.907) 4 (2.367) 5 (2.784) 2 (1.164) 1 (1.056) 8 (9.535) 7 (4.073)
5’ 5 (0.998) 0 (0.251) 3 (0.470) 6 (1.055) 4 (0.913) 0 (0.223) 2 (0.353) 8 (8.524) 7 (2.286)

10’ 4 (0.487) 0 (0.154) 3 (0.348) 6 (0.825) 4 (0.451) 0 (0.131) 2 (0.258) 8 (7.370) 7 (1.807)
euclidEF100 1’ 6 (2.868) 3 (1.213) 0 (0.812) 4 (2.455) 5 (2.798) 2 (1.139) 1 (1.015) 8 (9.652) 7 (4.098)

5’ 5 (1.010) 0 (0.224) 3 (0.419) 5 (1.028) 4 (0.902) 0 (0.218) 2 (0.306) 8 (8.658) 7 (2.295)
10’ 5 (0.501) 0 (0.121) 3 (0.251) 6 (0.728) 4 (0.448) 0 (0.129) 2 (0.178) 8 (7.533) 7 (1.805)

euclidAB300 2’ 5 (8.152) 3 (7.043) 0 (1.952) 4 (8.029) 7 (8.530) 4 (7.786) 1 (5.680) - 2 (6.378)
10’ 6 (5.932) 2 (3.942) 0 (0.357) 3 (4.330) 7 (6.188) 3 (4.542) 1 (0.742) - 5 (4.779)
20’ 6 (4.857) 2 (2.479) 0 (0.177) 4 (3.222) 7 (5.033) 3 (2.871) 1 (0.243) - 5 (4.111)

euclidCD300 2’ 5 (7.878) 3 (6.935) 0 (1.879) 4 (7.717) 7 (8.290) 4 (7.631) 1 (5.570) - 2 (6.010)
10’ 6 (5.812) 2 (3.921) 0 (0.361) 3 (4.343) 7 (6.067) 3 (4.471) 1 (0.748) - 3 (4.483)
20’ 6 (4.741) 2 (2.445) 0 (0.184) 4 (3.308) 7 (4.940) 3 (2.782) 1 (0.279) - 5 (3.895)

euclidEF300 2’ 5 (8.074) 3 (7.052) 0 (1.896) 4 (7.747) 7 (8.473) 4 (7.832) 1 (5.698) - 2 (6.129)
10’ 6 (5.984) 2 (3.983) 0 (0.293) 2 (4.239) 7 (6.241) 4 (4.524) 1 (0.657) - 4 (4.482)
20’ 6 (4.893) 2 (2.436) 0 (0.099) 4 (3.032) 7 (5.070) 3 (2.771) 1 (0.173) - 5 (3.894)

euclidAB500 3’ 4 (8.551) 3 (8.067) 0 (4.683) 7 (9.169) 6 (8.840) 5 (8.664) 2 (7.763) - 1 (6.109)
15’ 6 (7.132) 3 (6.122) 0 (0.696) 3 (6.248) 7 (7.469) 5 (6.840) 1 (3.936) - 2 (4.857)
30’ 6 (6.363) 3 (4.975) 0 (0.138) 2 (4.754) 7 (6.669) 5 (5.604) 1 (1.246) - 2 (4.349)

euclidCD500 3’ 4 (8.630) 3 (8.172) 0 (4.673) 7 (9.191) 6 (8.924) 5 (8.754) 2 (7.873) - 1 (6.209)
15’ 6 (7.249) 3 (6.301) 0 (0.665) 3 (6.113) 7 (7.539) 5 (6.919) 1 (3.988) - 2 (4.890)
30’ 6 (6.480) 4 (5.139) 0 (0.142) 2 (4.569) 7 (6.741) 5 (5.681) 1 (1.291) - 2 (4.338)

euclidEF500 3’ 4 (8.764) 2 (8.251) 0 (4.793) 7 (9.321) 6 (9.057) 5 (8.900) 2 (8.010) - 1 (6.332)
15’ 6 (7.312) 4 (6.317) 0 (0.679) 3 (5.991) 7 (7.676) 5 (7.084) 1 (4.065) - 2 (5.050)
30’ 6 (6.540) 4 (5.129) 0 (0.162) 2 (4.456) 7 (6.857) 5 (5.784) 1 (1.285) - 2 (4.540)

TSP-3
euclidABC100 1’ 5 (5.314) 2 (4.263) 0 (2.629) 5 (5.481) 4 (5.101) 1 (3.996) 3 (4.726) 8 (9.832) 7 (6.527)

5’ 4 (2.330) 1 (1.212) 0 (1.066) 3 (1.816) 4 (2.209) 1 (1.174) 6 (2.569) 8 (9.463) 7 (5.653)
10’ 4 (1.432) 0 (0.741) 0 (0.653) 3 (1.230) 4 (1.342) 0 (0.685) 6 (1.772) 8 (8.915) 7 (5.394)

euclidDEF100 1’ 5 (5.424) 2 (4.228) 0 (2.721) 5 (5.673) 4 (5.245) 1 (4.012) 3 (4.828) 8 (9.891) 7 (6.666)
5’ 4 (2.321) 0 (1.265) 0 (1.251) 3 (1.953) 4 (2.289) 0 (1.271) 6 (2.617) 8 (9.573) 7 (5.762)

10’ 3 (1.433) 0 (0.807) 0 (0.854) 3 (1.359) 4 (1.481) 0 (0.796) 6 (1.761) 8 (9.076) 7 (5.500)
euclidABC300 2’ 4 (9.561) 3 (9.390) 0 (5.071) 7 (9.809) 6 (9.684) 5 (9.608) 1 (8.692) - 1 (8.694)

10’ 5 (8.156) 2 (7.358) 0 (0.959) 4 (7.982) 7 (8.300) 3 (7.747) 1 (4.017) - 5 (8.127)
20’ 5 (7.090) 2 (5.780) 0 (0.254) 2 (5.993) 6 (7.199) 3 (6.119) 1 (2.143) - 7 (7.940)

euclidDEF300 2’ 4 (9.506) 3 (9.365) 0 (5.108) 7 (9.802) 6 (9.661) 5 (9.590) 2 (8.656) - 1 (8.562)
10’ 4 (8.021) 2 (7.325) 0 (1.059) 4 (8.102) 6 (8.251) 3 (7.686) 1 (4.016) - 4 (8.000)
20’ 5 (6.969) 2 (5.748) 0 (0.321) 2 (5.863) 6 (7.093) 3 (6.035) 1 (2.231) - 7 (7.841)

euclidABC500 3’ 4 (9.794) 3 (9.739) 0 (7.429) 7 (9.928) 6 (9.857) 5 (9.836) 2 (9.599) - 1 (8.687)
15’ 4 (9.158) 3 (8.920) 0 (1.303) 7 (9.488) 6 (9.339) 5 (9.184) 1 (6.453) - 2 (8.210)
30’ 4 (8.497) 2 (8.008) 0 (0.248) 6 (8.683) 6 (8.703) 4 (8.386) 1 (3.636) - 3 (8.051)

euclidDEF500 3’ 4 (9.830) 3 (9.805) 0 (7.734) 7 (9.938) 6 (9.881) 5 (9.871) 2 (9.667) - 1 (8.820)
15’ 4 (9.289) 3 (9.091) 0 (1.517) 7 (9.540) 6 (9.445) 5 (9.314) 1 (6.837) - 2 (8.339)
30’ 5 (8.712) 3 (8.306) 0 (0.228) 5 (8.768) 7 (8.920) 4 (8.588) 1 (3.887) - 2 (8.189)

Table 5 Average number of random restart operations for TSP benchmark test instances. The size of the best
nondominated set for the instance under consideration is given as information in the second column (|Z?

N |).

Instance |Z?
N | DMLS DMLS DMLS DMLS DMLS DMLS DMLS DMLS

(1 ·1) (1 ·1 6≺) (1 ·1�) (1 ·?) (? ·1) (? ·16≺) (? ·1�) (? ·?)
TSP-2
euclidAB100 1719 1.00 1.00 4.95 0.05 0.00 0.00 1.35 0.00
euclidCD100 2123 1.00 1.00 4.95 0.40 0.00 0.00 1.15 0.00
euclidEF100 2387 1.00 1.00 5.10 0.15 0.00 0.00 1.45 0.00
euclidAB300 8691 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -
euclidCD300 8628 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -
euclidEF300 8205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -
euclidAB500 16391 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -
euclidCD500 14925 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -
euclidEF500 14413 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -
TSP-3
euclidABC100 1155 1.00 1.00 1.80 0.05 0.00 0.00 0.00 0.00
euclidDEF100 1431 1.00 1.00 1.60 0.15 0.00 0.00 0.00 0.00
euclidABC300 588 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -
euclidDEF300 480 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -
euclidABC500 473 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -
euclidDEF500 691 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -
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4.4 Further Comments

The experimental part has been conducted on two different multiobjective combinatorial op-
timization problems, the FSP and the TSP, both an a two-objective and a three-objective way.
First of all, let us remark that the TSP and the FSP share some similarities since the feasible
solutions for both problems can be represented as permutations. However, there also exists
some differences between them. First, the objective functions for the TSP are from the same
nature, whereas they are intrinsically correlated and of different kinds for the FSP (T’Kindt
and Billaut, 2002). Second, as reported in Table 3 and Table 5, the size of the nondominated
set is quite different from a problem to another. Indeed, identifying the whole efficient set
for the TSP becomes computationally prohibitive for large-size problem instances, so that
we generally have to deal with a bounded-size approximation. At last, even if both problems
share a permutation-based encoding, the efficiency of problem-related search operators is
not only related to the representation, but also to the type of problem to be solved (Talbi,
2009). For the TSP, the main focus relies on the adjacency of the elements contained in the
permutation, whereas this is the relative order in the sequence that is important for the FSP.
This is the reason why the neighborhood operator is not the same for the two problems. For
instance, the 2-opt exchange operator is well-known to be efficient for the TSP because there
exists a strong locality between the nodes, so that it generates small variations only. On the
contrary, it is not very efficient for the FSP because it generates large variations.

From a purely design perspective, DMLS (? · ?) seems to be the overall more relevant
method if an unlimited amount of CPU time and memory space is assumed. Indeed, its
search space exploration capability is likely the larger one when compared to other DMLS
approaches. However, it becomes quickly limited in practice with respect to the size of the
search space and of the Pareto front. DMLS (1 · ?) overcomes these scalability limitations
by reducing time and space complexity. Indeed, it evaluates a limited subset of neighbors
per iteration, and the number of exhaustive neighborhood examination is reduced. In prac-
tice, DMLS (1 · ?) globally obtains better results than DMLS (? · ?), at least for large-size
instances, and does not cause any scalability problem. On the other hand, and in opposition
to the methods mentioned above, DMLS (1 ·1) and DMLS (? ·1) first appear to be a bit too
random. They provide good diversification abilities but present a lack of exploitation, as the
intensification pressure is applied during the archiving step only. Our FSP results indicate
their decent performance on problem instances where a large amount of efficient solutions
are likely to be found. But, for the TSP, where the number of nondominated solutions is even
higher, these approaches seem to fail due to the bounded archiving mechanism. Indeed, let
us remind that solutions that are nondominated and nondominating at the same time are not
allowed anymore when the archive is at its full capacity.

In consequence, while keeping the trade-off between intensification and diversification
in mind, guiding the neighborhood exploration scheme by a dominance-based strategy ap-
pears to be more reliable. Firstly, in comparison to examining a random neighbor per current
solution, the DMLS (1 · 16≺) and DMLS (? · 1 6≺) algorithms offer equivalent diversification
aptitudes. But they do not consume computational resources to handle dominated, and then
unattractive solutions. Besides, restricting the acceptance of a neighboring solution increases
the chance of getting an improving solution with regards to the current nondominated set,
so that there is an indirect enhancement of exploration. The general trends of the results are
quite similar to the ones reported for DMLS (1 ·1) and DMLS (? ·1), but with a highest per-
formance. At last, the ‘first improving’ strategy seems to be the ideal trade-off between the
‘first nondominated’ one and the exhaustive one, then providing an interesting exploration-
exploitation compromise. Indeed, intensification abilities are clearly improved with respect
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to both DMLS (1 ·16≺) and DMLS (? ·1 6≺), while keeping diversification reasonable, as non-
dominated neighbors found during the neighborhood exploration process are still proposed
for archiving. Furthermore, when compared to DMLS (1 ·?) and DMLS (? ·?), the conver-
gence to a locally efficient optimum set is accelerated. Although, the latter ones are more
likely to move closer to the Pareto optimal front than former ones at a given iteration. In
practice, DMLS (1 · 1�) and DMLS (? · 1�) are the overall best-performing methods for
almost the whole set of our experiments.

Now, with regards to current set selection, the experimental analysis does not allow to
provide a clear conclusion on the strategy to adopt. However, it seems that selecting a single
random solution is slightly more efficient, because corresponding DMLS approaches obtain
statistically better results than their respective counterparts more often than the opposite.

5 Conclusion and Future Research

This paper investigated a class of local search methods for multiobjective combinatorial op-
timization. When applying local search methods to approximate a MCOP efficient set, two
general approaches can generally be distinguished: scalar and dominance-based methodolo-
gies. We here focused on methods based on the successive improvement of the current set
of nondominated solutions by means of a dominance relation. The first goal was to pro-
vide useful guidelines to practitioners on the design of such algorithms. Our attempt was
to extend single-objective local search to multiobjective combinatorial optimization while
matching its classical features as far as possible. Following a brief review of the literature,
we identified the main search components for a better understanding of their working mech-
anisms. We discussed both problem-related and problem-independent components, and we
identified different schemes, from very simple to more advanced ones. The general-purpose
issues of dominance relation, current set selection, neighborhood exploration, archiving and
stopping condition have been presented in more depth. We highlighted how existing ap-
proaches follow the same general methodology, and we proposed a general model unifying
the design of DMLS methods, as well as a software package for their flexible implementa-
tion under the ParadisEO-MOEO framework. The model proposed in the paper provides a
common description of DMLS algorithms, and allows the design of new techniques. At last,
we studied the impact of some search components on solving different MCOPs: a two- and
a three-objective FSP, as well as a two- and a three-objective TSP. In particular, we analyzed
how relevant are existing and original current set selection and neighborhood exploration
strategies on the overall algorithm efficiency. The experimental results were analyzed in a
concise and sound way, following a rigorous statistical methodology for assessing the per-
formance of multiobjective search methods.

The outcome of our experimental analysis gives valuable insight on the performance
of different DMLS search components, at least for the MCOPs investigated in this paper.
Firstly, it seems more accurate to guide the neighborhood exploration of a given solution by
a clear dominance-based rule, and then to obtain a good trade-off between the evaluation
of a single random neighbor and the evaluation of all neighbors. Indeed, our results are
unambiguous and indicates that the neighborhood exploration of a current solution x should
stop either once a nondominated neighbor, or once a dominating one, with respect to x, is
found. With such strategies, the number of neighbor evaluations is somehow intrinsically
chosen adaptively, depending on the current solution quality and then its presumed ability to
find potentially interesting neighbors. Indeed, it should be more difficult to find a dominating
neighbor at the end of the search, given that a current solution is supposed to be closer to the
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Pareto front. Nevertheless, the choice of continuing the exploration until a nondominated
neighbor, or a dominating one, is found is not that clear. However, it seems to be closely
related to the size of the problem to be solved, to the number of objective functions to
handle, and to the number of efficient solutions that are likely to be found. Though, from
our set of experiments, it seems that the ‘first dominating neighbor’ strategy is the overall
more efficient one. Secondly, the choice of the number of solutions to be explored at a given
iteration does not seem to have a major influence on the algorithm performance. Indeed,
selecting the whole current nondominated set or a single item at random globally obtain
similar results, even if a partial selection seems to perform slightly better. Furthermore, note
that, depending on the implementation, selecting the set of archived solutions exhaustively
could appear impracticable for large-size problems. It could still be interesting to decide a
good trade-off between a single and the whole set of solutions to select.

A number of issues are open for future investigation. Some of them are discussed below.

• Further research is required to experimentally analyze the influence of other DMLS
search components on the overall algorithm behavior. More advanced problem-related
components would surely improve the results, especially in terms of initialization and
neighborhood operator, as already shown by Paquete and Stützle (2009) for the TSP.
For instance, we already know that the performance of PLS-1 can be largely improved
while starting with a number of good-quality solutions, as empirically shown by recent
studies (Paquete and Stützle, 2006; Paquete and Stützle, 2009; Dubois-Lacoste et al,
2009; Lust and Teghem, 2010; Lust and Jaszkiewicz, 2010).
• Problem-independent issues, including archiving, might also be subject to investigation

in the frame of DMLS algorithmic design, even if archiving techniques have already
been subject to discussion in the specialized literature (Knowles and Corne, 2004). So-
phisticated archiving techniques are generally time-consuming, whereas it is always a
hard task to find the ideal trade-off between computational time and solution quality.
A good alternative would be to base the archiving rule on ε-dominance, as proposed
by Laumanns et al (2002). But the setting of a proper ε-value generally requires a deep
knowledge about the problem to be solved in order to obtain a suitable archive size.
• Another issue is the analysis of the influence of DMLS components depending on the

search space characteristics, including connectedness between efficient solutions (Ehrgott
and Klamroth, 1997).
• Further experiments of DMLS algorithms should also be lead for solving other MCOPs,

including real-world applications. In particular, we believe that DMLS (1 · 1�) could
offer an attractive search method. Indeed, DMLS algorithms already offer a high level of
simplicity while requiring a very small number of parameters. This is the reason why the
performance of DMLS methods should also be compared to state-of-art multiobjective
evolutionary algorithms, that are known to handle a highest number of parameters. As
well, designing hybrid metaheuristics between both would offer an alternative to existing
ones that often handle scalar local search methods (Ehrgott and Gandibleux, 2008).
• Advanced DMLS variants, based on tabu search or simulated annealing, might also be

explored, together with parallel and distributed versions. Finally, extending and gener-
alizing the DMLS model proposed in the paper to other existing multiobjective local
search methods would provide a powerful methodology for the design of efficient mul-
tiobjective search methods.
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