N

HAL

open science

On rotationally invariant codes

Marie-Pierre Béal

» To cite this version:

‘ Marie-Pierre Béal. On rotationally invariant codes. 1998. hal-00628163

HAL Id: hal-00628163
https://hal.science/hal-00628163

Submitted on 30 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00628163
https://hal.archives-ouvertes.fr

ON ROTATIONALLY INVARIANT CODES

MARIE-PIERRE BEAL"

Abstract. We give an extension of the work of Trott et al. on rotationally invariant
codes and the work of Adler et al. and Marcus on constrained codes, to constrained codes
invariant by a permutative map. A constructive proof is given of the existence a finite-state
invertible ¢-invariant code from arbitrary n-ary sequences to a ¢-invariant sofic system at
constant rate 1 : 1 provided that ¢ is a permutative conjugacy of the sofic channel and
that the Shannon capacity of the channel exceeds the capacity of the source. In the case
of equality of the capacities of the source and of the ¢-invariant channel, the same result
holds when the permutative map has no bi-infinite fixed point which is a direct extension
of the result of Trott et al. for the rotational case. The decoders can be made both sliding
block, or “state independent”, and ¢-invariant.

1. Introduction. In this paper, we shall consider constrained systems
modelled by finite automata. They are called sofic systems and defined as
the sets of all bi-infinite sequences generated by walks on a finite directed
graph labeled by symbols in a finite alphabet. The labeled graph is called
an automaton. Encoding unconstrained sequences into constrained ones has
many practical applications for storage devices (see for instance [19], [25]).
In many cases, both encoder and decoder are finite state automata and the
decoder is sliding block, that is, the output of the decoder depends only on
a bounded window of the input of the decoder. Indeed, usually the encoded
sequences are fed as inputs to a noisy channel and, if the decoder is sliding
block, a given channel error will give rise to at a most finitely many data
errors. Several general coding methods for constrained channels have been
since given to solve these coding problems (see [25] and references therein).
All methods build finite state invertible codes at a constant rate p : ¢ from
the set of all bi-infinite sequences over a finite alphabet to a sofic system.
The coding rate depends on the Shannon capacity of the channel and of the
source. It can be assumed that the rate is 1 : 1 after a recoding. Some
constraints are called finite type constraints when they are characterized
by a finite list of forbidden blocks. The bi-infinite constrained sequences
are thus exactly the sequences that do not contain any element of the list
as a subblock. Of special interest are the run-length sequences which are
of finite type [29]. Another class of sofic constrained channel is the class of
constrained systems called almost of finite (see [20], [11]). All these channels
play an important role in symbolic dynamics. For practical applications,
the codes are constructed on semi-infinite or one-sided sequences. But the
treatment takes the bi-infinite or two sided point of view since it appears to
be very natural and useful for the one sided situation.

“Institut Gaspard Monge, Université de Marne-la-Vallée, 77454 Marne-la-Vallée Cedex
2, France. beal@univ-mlv.fr.

Beside the domain of coding for constrained channels is trellis coding,
mostly used to correct errors. One aspect of trellis coding that has come
under increasing study is the search for codes that can handle phase rotations
of a signal set. The rotations considered are those caused for instance by
a demodulator in a communication system. The modulation signal set has
a two dimensional rotational symmetry and the transmission system can
introduce a phase ambiguity at the receiver. In such a practical system, the
receiver must recover the correct phase of the signal. If phase symmetries
exist, the receiver may lock to the wrong phase. Thus the code must either
have no phase symmetries or be immune to any rotations resulting from these
symmetries. The latter type is known as rotationally invariant codes. It is
a conventional method to solve this problem. The idea behind rotationally
invariant codes is to find an encoder and a decoder that ensure the following
property : given any code sequence, if we rotate each symbol through a fixed
rotational symmetry, then the new sequence of rotated symbols is also a valid
code sequence. Moreover all rotations of a code sequence have to decode to
the same source sequence. Conditions for rotational invariance and several
rotationally invariant codes were described by Wei [31] in [32]. Many papers
have been since devoted to code constructions. Several classes of codes have
raised ; some of them use nonlinear parity check equations, linear systems
over rings, algebraic systems, group systems (see [12, 13, 14]).

A basic theory of rotational invariance has been developed in [30] and
[10]. It provides a mathematical foundation of rotationally invariant codes
and rotationally invariant encoders which is independent from their algebraic
structure. The code sequences have a finite state trellis diagram. They are
thus modelled again by a sofic system. In a lot of cases, the channel is
unconstrained in the sense that it is the set of all bi-infinite sequences of
letters in a finite alphabet. Each letter represents a signal point in the plane.
The rotation in the plane corresponds to a permutation ¢ which has no fixed
point in the alphabet. This permutation is then applied to the bi-infinite
sequences (letter by letter) and a channel is invariant by permutation if
the permutation of any bi-infinite sequence is a code sequence. An encoder
associates to each bi-infinite unconstrained input sequence an output one in
the channel. The decoder is said to be invariant by rotation, or ¢-invariant,
if each rotated coded sequence has the same decoding. These rotationally
invariant codes are usually finite state invertible codes at a constant rate
p : q, with a sliding block decoder which is moreover invariant by rotation.
In [30] are given necessary and sufficient conditions for codes and encoders to
be rotationally invariant. A rotationally invariant code construction is also
given in the case where the permutation does not fix any letter alphabet.
The method uses the symbolic dynamics state splitting process which is
applied to channels of finite type and represented by a graph which has a
constant outdegree. In order to handle channel representations that have
not a constant outdegree, the state splitting algorithm of Adler et al. [1] can

be used to solve this question (see [30, Section IV-D-2] where the method is
outlined).

The following coding theorem for constrained channels was proved in [1],
where cap(S) denotes the Shannon capacity of a channel S.

THEOREM 1.1. Let A and B be two finite alphabets. Let S C B% be
a shift of finite type such that cap(S) > cap(A%). Then there is a finite
state invertible code from A” to S at constant rate 1 : 1 with sliding block
decoder.

The results from [30] lead then to the following coding theorem for ro-
tation channels.

THEOREM 1.2. Let A and B be two finite alphabets and ¢ a permutation
of B which has no fized point in B. Let S C B% be a ¢-invariant shift of
finite type such that cap(S) > cap(A?). Then there is a finite state invertible
code from A% to S at constant rate 1 : 1 with sliding block and ¢-invariant
decoder.

In this paper, we extend Theorem 1.2 to ¢-invariant constrained chan-
nels, where ¢ is a one-block map conjugacy of the channel induced by any
permutation of the alphabet. We call such a map a permutative map. The
construction generalizes the method presented in [30] that applies in the case
where ¢ is induced by a rotation which has no fixed point in the alphabet B.
As in [30], we use state splittings to construct the encoder, but in the case
of such permutations, we need to “split more” the finite state machine that
models the channel, and choose an order for the splittings. We also use the
important notion of sharp automaton introduced in [30]. The hypothesis on
¢ is here weaker than that given in [30] since ¢ is only assumed to have no
bi-infinite fixed point. Thus, our encoder construction may apply to signal
sets that have a point at the origin, which is fixed by a nontrivial rotation.
Nevertheless, this is only a theoretical improvement, since the requirement
of no fixed point in the alphabet entails no loss of generality for rotation
channels. Indeed, in the applications, it is possible to choose an alphabet B
in such a way that the phase rotation induces a permutation of B that fixes
no point of the alphabet. A sufficiently fine partition of the signal constella-
tion has no cells fixed by the rotation. The construction includes the state
splitting process method outlined in [30, Section IV-D-2], to get a graph
which has a constant outdegree, that we extend to graphs that may have
several strongly connected components. We point out that it is not possi-
ble to handle only representations that have a strongly connected graph to
obtain the result.

The method does not apply to the more general case of a channel mod-
elled by a sofic system in the case where the source and the channel have the
same capacity, although some extensions to almost of finite type shifts could
be considered (see the discussion at the end of the paper). In the case of
sofic shifts with a capacity that strictly exceeds the capacity of the source,
the following coding theorem has been obtained in [24] using results in [1]

(see also [5]).

THEOREM 1.3. Let A and B be two finite alphabets. Let S C B” be
a sofic system such that cap(S) > cap(A%). Then there exist a subshift of
finite type T C S and a finite state invertible code from A” to T at constant
rate 1 : 1 with sliding block decoder.

We extend this result to ¢-invariant sofic channels, i. e. to sofic chan-
nels invariant by a permutative conjugacy ¢. Since we consider channels
whose capacity is strictly greater than the source capacity, this allows us to
completely remove the hypothesis that ¢ has no fixed point. We prove the
following result.

THEOREM 1.4. Let A and B be two finite alphabets and ¢ be a permu-
tative map from A% to B%. Let S C B” be a ¢-invariant sofic system such
that cap(S) > cap(A?) Then there exist a subshift of finite type T C S and
a finite state invertible code from A% to T at constant rate 1 : 1 with sliding
block and ¢-invariant decoder.

The construction that we use in the proof does not use state splitting this
time but the “method of poles” or “method of principal states” introduced
by P. A. Franaszek and adapted to sofic channels in [8] (see also [16], [17],
[18], [6], [4], [25]). It uses the notion of strongly synchronizing states of
an automaton introduced in [7]. Again, we mention that is not possible
to restrict us here to channels that have a presentation which is both ¢-
invariant and has a strongly connected graph.

The results presented in the paper do not provide new useful codes for
rotation channels. In this framework, rotationally invariant codes appear to
be a special case of a larger class that we call codes invariant by a permuta-
tion or a permutative conjugacy. Although the hypothesis on the conjugacy
of being permutative is still very strong, it seems nevertheless difficult to
weaken it to obtain similar results for more general conjugacies.

The paper is organized as follows. In the second section, we mention
some motivations of the need of rotationally invariant codes and refer to
[30] for more details. We recall some background on symbolic dynamics, au-
tomata theory, and coding theory. The terminology borrows from all these
areas (see [15] for a multilingual dictionary). We give the main definitions
of objects used in the paper like an automaton, a transducer, a sofic system
and a shift of finite type, the operation of state splitting in an automaton.
We describe the rotation and the permutation channel. Such a channel is
called ¢-invariant. Several examples of such channels are given. We men-
tion the test obtained in [30] to check whether a sofic code is invariant by
a permutation. Section 3 is devoted to the construction of coding schemes
adapted to ¢-invariant channels where ¢ is a permutative conjugacy. We
prove Theorems 1.2 and 1.4. We build a transducer with a deterministic
input automaton which recognizes the source sequences in a k-letter alpha-
bet, and with a local (or definite) output automaton that recognizes the
code sequences. The decoder is a sliding block decoder and hence, it has a

limited error propagation. An example of code construction is given which
illustrates the proof of Theorem 1.2. Some possible extensions of the results
are discussed at the end of the paper.

2. Definitions and background.

2.1. The rotation channel. Rotationally invariant trellis codes ap-
ply to overcome the phase ambiguity in some kinds of modulation chan-
nels. Let us consider for example a two-dimensional discrete input sequence
((ak, b)) kez generated by a source. It is separated into two one dimensional
sequences and low-pass filtered. The resulting signals A(¢) and B(t) corre-
sponding to one pair (ay, b;) are modulated, summed and transmitted over
a noisy channel. The transmitted signal is

s(t) = A(t) cos(2nm fct) + B(t) sin(27 f.t).

Due to the propagation delay and in the case where there is no noise, the
received signal r(¢) can have the following form

r(t) = A(t) cos(2nw fet + @) + B(t) sin(2w fot + ¢).

At the reception the carrier phase ¢ is estimated before the amplitude.
It comes out that the carrier phase is estimated up to an ambiguity of
360° /M, where M is a constant which depends of the signal constellation.
This phase error is due to the method used to recover the phase which is
sometimes based on networks that first kill the carrier information. We
shall not discuss here these techniques and refer to [28] for a description of
demodulation schemes. The phase recovered is denoted by qAﬁ and the phase
error is defined as K

be = b — .
One then multiplies the received signal r(£) by cos (2 fot+¢) and by sin(2x fot+
g%) The components of double frequency are eliminated to give the estima-
tions A(t) and B(t) of A(t) and B(t) respectively.

One easily get, by the use of some elementary trigonometric equalities,

{1(t) = A(t) cos ¢pe — B(t) sin ¢
B(t) = A(t) sin ¢ + B(t) cos pe.

Hence, if (ay, I;k) is the two dimensional output signal point recombined after
demodulation, we get

ar \ _ [cos¢e —sing, ak
b) \ sing. cosg, b, -
Thus the input signal (ay, by) is rotated in the plane by the phase error ¢..

We consider the set of all possible signal sequences and call it the chan-
nel S. One way to solve the carrier phase recovery problem is to encode

an unconstrained sequence into a sequence of S, where S is supposed to be
invariant by the rotation p by ¢, and then by the group generated by the
rotation. The decoding scheme must then associate to all rotations of a code
sequence the same input sequence. In a sense, the phase ambiguity is not
solved by the receiver. The problem is addressed to the encoder and the
decoder simply ignores the phase error instead of trying to learn and correct
it.

A channel which is invariant by a fixed rotation is called a rotationally
invariant system or channel. A coding scheme such as one described above
is called a rotationally invariant encoder. The channel model that we shall
use is a discrete memoryless and two dimensional channel. It is corrupted
by a fixed rotation p that generates the rotation group of the system. We
call channels of that type rotation channels.

Let us consider for example the 4-PSK signal set or QPSK signal set
(Quadrature Phase Shift Keying) shown in Figure 2.1. The code is the set
of all sequences on the alphabet {0,1,2,3}. It is invariant by the rotation
group generated by a rotation p about the origin point by 90°.

y
1 T~ 0

2 73

Fig. 2.1. A 4-PSK constellation

Trellis codes are usually described in terms of partitioning a signal set.
We shall denote by A such a partition, whose elements are called the cells.
In this paper, we shall not be interested in the fine structure of the cells and
the symbol A simply denotes a label alphabet whose elements are called
letters.

When the group of transformations is no more a rotation group, but
more generally a permutation group on signal points, we speak of a channel
or a system invariant by permutation, and of a permutation channel. The
signal system is modelled by a finite state machine. From the point of view
of symbolic dynamics, the channel is a sofic system.

2.2. Shifts invariant by permutation. In the sequel, A will be the
alphabet composed of signal points. The set of bi-infinite sequences of points

of A is denoted by A%Z. A bi-infinite sequence
C e WWWWWW . ..,

obtained by a bi-infinite concatenation of a finite word w and where the dot
is before the letter of index 0, is denoted by “w".

A finite automaton A = (Q, E) is composed of a finite set of states @
and a finite set of edges E labeled in A. Thus £ C @ x A x). The code,
denoted by S, is a sofic system, if it is the set of bi-infinite sequences that
are the labels of bi-infinite paths of a finite automaton. The sofic system is
said to be recognized by the automaton A.

The capacity (or topological entropy) of a subshift § C A% is defined as

cap(S) = lim 1 log card (S, N A"),
n—oo n,
where S;, denotes the set of finite blocks of length n that are factors of
bi-infinite words of S. It is known that the capacity of a sofic channel is
computable from an unambiguous (or lossless) automaton which recognizes
the channel (see for instance [23]).

A finite automaton is said to be deterministic, or right-resolving, if there
is at most one edge going out from a given state and with a given label. It is
codeterministic, or left-resolving, if the automaton obtained by reversing the
sense of the edges is deterministic. It is deterministic with a finite delay d,
or right-closing, if whenever two paths of length d + 1 start at the same
state and have the same label, then they must have the same initial state.
A finite automaton is said to be (m,a)-local (or (m,a)-definite) if there are
two nonnegative integers m and a, such that whenever two finite paths of
length m + a, ((pi, @i, Pit1))o<i<(m+a) and (95, @i Piy1))o<i<(m+a) have the
same label, then p,, = p/,. An automaton is local if it is (m, a)-local for some
integers m and a (m is for memory and a for anticipation). Remark that if
an automaton is (m,a)-local, it is also (m,a + 1)-local and (m + 1, a)-local.
A deterministic automaton is local if and only if the previous condition is
satisfied with a null anticipation. It is then said to be m-local.

The following known property gives a polynomial time decision proce-
dure to check whether a finite automaton is local (see for instance [7, 23, 9]).

PROPOSITION 2.1. Let A be an automaton which has a strongly con-
nected graph or which is unambiguous. The two following properties are
equivalent.

(i) the automaton A is local.
(ii) the automaton A has at most one cycle with a given label.

A sofic system which can be recognized by a local automaton is called
a subshift of finite type. A sofic system which can be recognized by an au-
tomaton with a strongly connected graph is called an irreducible subshift.

When the channel is not irreducible, one generally extracts a strongly con-
nected component which constitutes a new channel of same capacity which
is irreducible. The finite type condition appears to be satisfied in lot of
applications.

We recall the notion of strongly synchronizing states introduced in [7].
Let m and @ be two nonnegative integers. For each state p of an automaton
A, we define the set E,Sm’“) as the set of finite words uv, where w is a word
of length m which is the label of a path terminating at p, and v is a word
of length a which is the label of a path starting at p.

A state p of an automaton A is said to be (m, a)-strongly synchronizing

if EI(,m’a) N Eém’a) = () for any state ¢ # p. A state is said to be strongly
synchronizing if it is (m, a)-strongly synchronizing for some integers m and
a. A state p of a deterministic automaton is (m, a)-strongly synchronizing
if and only if it is (m, 0)-strongly synchronizing.

A state p of an automaton A is strongly synchronizing if and only there
are not two distinct equally labeled bi-infinite paths such that the first one
goes through the state p at some index ¢, and the second one goes through a
state ¢ # p at the same index. This property is computable in a polynomial
time in the number of states of A (see [7] page 72). An automaton is local
if and only if all its states are strongly synchronizing.

A synchronizing word, or reset sequence, or magic word, of an automaton
is a finite word uw, where u is a word of length m and v a word of length
a, such that all paths labeled by uv in the automaton go through the same
state at the index m. All words in the set E,(,m’a)
synchronizing state are synchronizing words.

of an (m,a)-strongly

The word b for instance is a synchronizing word of the automaton of
Figure 2.2. It focuses to state 1. But none state of this automaton is
strongly synchronizing.

)

Fi1G. 2.2. An automaton without any strongly synchronizing state

We now come to the definition of conjugacies. Let A and B be two finite
alphabets. A function f from A% to B” is a sliding block map if there are
nonnegative integers m, a, and a function f from A! to B, where ! = m+a+1,
such that for all u € A%, the image v = f(u) of u is the bi-infinite word of
B” defined by v, = f(un—m - tnie) for all n € Z. Thus the letter v, only
depends on the finite subblock u,, , - - - 414 of u. The integer [= m+a+1

is called the size of the so called sliding window. We shall say that f is a
(m, a)-sliding block map. The integer m is called the memory and a the
anticipation of the sliding block map. A sliding block map f is said to have
memory m and anticipation a if there is a map f defined as above. Note
that m and a depend on the choice of f and may not be unique.

A conjugacy between a subshift S C A% and a subshift T C B?% is a
bijective sliding block map. Its inverse is also a sliding block map, sometimes
with a different sliding window size. A sliding block window is represented
in Figure 2.3.

Fic. 2.3. A sliding block window

A sliding block map f is said to be right-resolving if there is a nonnegative
integer m and a function f from A@m+1D) o B such that for allu € A%, if v =
f(u) then u, = f(un_m e Up—1Up—m - - - Un—10yp). It is actually a property of
the inverse of the map f. It is right-closing if there are nonnegative integers
m,a and a function f from A@mtetl) to B such that for all u € A%, if
v = f(u) then u, = f(tup—m .- Un—1Vn—m .- Vnta))-

Let m be a permutation of the alphabet A, and IT the group of permuta-
tions generated by . The permutation 7 on A induces a conjugacy ¢ from

A” to A” defined by
P((ar)rez) = (7(ak))kez-

If uw=ay...a, is a finite word of A*, we also denote by ¢(u) the word
m(ay)...m(ay). Such a conjugacy is called a permutative conjugacy. The
subshift or channel is invariant by permutation or ¢-invariant if $(S) = S.
The conjugacy ¢ and its inverse are sliding block maps with no memory and
no anticipation.

Let f be a conjugacy of a subshift S with memory m and anticipation a.
Let © = Uj—m . . . UjUjp1Ujtq+r De a finite word of length m + a + r, where r
is a nonnegative integer. We denote by f(u) the finite word v = v; ... v, of
length r defined by v; = f(ti—m - . . Uilhis1Uita)-

As an example, the rotation about the origin by 90° on the 4-PSK sig-
nal of Figure 2.1 induces the permutation = = (1230), expressed in the
standard cycle notation, on the alphabet A = {0,1,2,3}. The group II is
{Id, 7, 72,73}, where Id denotes the identity map on A. In this example,
the channel is the set of all bi-infinite paths of A%. It is called the full shift
on a 4-letter alphabet.

FiGg. 2.4. Oerder’s 6-state m-PSK code

The example of Figure 2.4 is Oerder’s 6-state m-PSK code (see [30]
and [27]). It is a 4-PSK code with label alphabet A = {0,1,2,3}. The
90° rotation induces the circular permutation (0123) on A. This rotation
induces in turn the permutation (1234)(56) on graph nodes of the automaton
of Figure 2.4. This means that if a sequence u in the channel is the label
of a path going through state ¢ at time ¢, the image 7(u) of u is a code
sequence which is the label of a path going through the state m(q) at the

same time.
a b

FiG. 2.5. A channel invariant by permutation

Another example of shift of a finite type S invariant by permutation is
the shift recognized by the automaton of Figure 2.5. It is invariant by the
permutation ©# = (ac)(b) on A = {a,b,c}. This permutation has a fixed
point in A, the point b, but has no fixed channel sequence since “b“ does
not belong to S.

The shift § given by Figure 2.6 is a shift of finite type invariant by
permutation. It is invariant by the permutation 7 = (ac)(b)(d) on A =
{a,b,c,d}. This permutation has a fixed point in A, the point b, and it has
a fixed channel sequence “b“.

It is known that any irreducible sofic shift has a minimal representation,
that is a minimal finite state machine which recognizes it (see for instance [7],
(23], [9]). This minimal representation is a deterministic finite automaton

10

<;:>b

F1G. 2.6. Another channel invariant by permutation

called the Fischer cover of the sofic system. The sofic shift is of finite type
if and only if its minimal automaton is local.

Let 7 be a fixed permutation of A. Let S be an irreducible sofic shift.
We define the image of S by the permutation 7 by 7(S) = {w(u),u € S}.
We define the image of an automaton A = (Q, F) by 7 as the automaton
r(A) = (Q,(E)), where (E) = {(p,7(a),q) | (paq) € E}. If S is
recognized by an automaton A = (Q, F), then 7(S5) is recognized by 7(A).

PROPOSITION 2.2 ([30]). An irreducible sofic shift, whose minimal au-
tomaton is A, is invariant by a permutation w if and only if, up to an
isomorphism, A= m(A).

2.3. State splitting. In this subsection, we recall a well known con-
struction on automata and graphs that is the state splitting process (see
[1, 23, 22, 25, 26, 7]).

r |~ m/b U
e \
I

Fi1G. 2.7. An input state splitting

We define the operation of input state splitting in an automaton A =
(Q,E). Let g be a vertex of @ and let I be the set of edges coming in q.
Let I = I' + I" be a partition of I. The operation of input state splitting
relative to (I’,I") transforms A into the automaton B = (Q', E'), where

11

Q = (Q\ {q}) Uq U{q" is obtained from @ by splitting state ¢ into two
states ¢’ and ¢”, and where E’ is defined as follows.

(i) All edges of E that are not incident to ¢ are left unchanged.
(ii) Both states ¢’ and ¢” have the same output edges as gq.

(iii) The input edges of ¢ are distributed between ¢’ and ¢” according
to the partition of I into I’ and I"”. We denote U’ and U” the sets of input
edges of ¢’ and ¢" respectively. Thus U’ = {(p,z,¢') | (p,z,q) € I'} and
U"={(p,z.q") | (p,z,q) € I"}.

An input state splitting transforms a deterministic automaton in a de-
terministic automaton. The notion of output state splitting is defined simi-
larly [23].

A state splitting induces a conjugacy between the bi-infinite paths of
an automaton and the bi-infinite paths of the split automaton. The split
automaton recognizes the same sofic shift as the initial one. State splitting
keeps the locality of an automaton. More precisely, we have the following
known properties (see for example [23] or [7]).

PROPOSITION 2.3. An input state splitting transforms a (m,a)-local au-
tomaton in a (m+1,a)-local automaton. An output state splitting transforms
a (m,a)-local automaton in a (m,a + 1)-local automaton.

3. A coding scheme for the ¢-invariant channel.

3.1. Transducers and coding/decoding schemes. In this section A
and B are finite alphabets. We consider an irreducible sofic channel S ¢ B%
and ¢ a conjugacy of S. Such a channel is ¢-invariant.

A transducer will be here an automaton labeled in A x B. The input
(resp. output) automaton of the transducer is the automaton obtained af-
ter discarding the second (resp. first) component of labels of edges of the
transducer.

The coding/decoding schemes that we shall use are modelled by trans-
ducers which have a complete deterministic input automaton which recog-
nizes the full shift on a k-letter alphabet, and a local output automaton
which recognizes a ¢-invariant subshift of finite type 7" of the channel S.
The coding scheme consists in choosing an initial state in the transducer
and associating to each sequence of source symbols the output label of the
unique path that begins at the initial state and which is input-labeled by
the source sequence. The coding is thus sequential since the transducer has
a deterministic input automaton. Since the output of the transducer is lo-
cal, each bi-infinite word of T is the label of a unique path of the output
of the transducer. We then decode it by the input label of this path. It
is well known that the decoding function d is a sliding block map (see for
instance [1], [23], [7], [9]). Such a decoding scheme is implemented by a
purely combinatorial network and avoids error propagation.

12

The decoder of a coding/decoding scheme (or a transducer) is said to be
a ¢-invariant if and only if it is a sliding block map such that, moreover, for
any u € S,

We say that a sliding block map ¢ has no fixed channel sequence if
¢(u) # u for any u € S. If ¢ is conjugacy from B? to B? such that
#(S) = S, we define I as

I={uesS|¢(u)=u}

Thus ¢ has no fixed point if and only if I is empty. The set I can be
computed as follows. Let us assume that ¢ has memory m and anticipation
a. Let F' be the set of blocks 4 = u_,, ... u, of length m + a + 1 such that
up = ¢(u). Let X be set of bi-infinite sequences such that all finite factors
of length m + a + 1 are in X. Thus X is subshift of finite type and SN X
is a computable sofic shift equal to I. In the case where ¢ is induced by
a permutation 7 of the finite alphabet B, an automaton recognizing I is
obtained from an automaton recognizing S by discarding all edges labeled
by letters fixed by .

The permutation 7 in Example 2.2 for instance has no fixed channel
sequence but has a fixed point in the alphabet. The permutation 7 in
Example 2.2 has a fixed point in the alphabet.

3.2. Permutation induced on the states. Let A by a finite automa-
ton which recognizes a sofic shift S C B”. Let ¢ be a sliding block map
from B% to B% such that ¢(S) = S. For any state g of A, we define the set
of bi-infinite words E, as the set of labels of bi-infinite paths (g;, bi, gi+1)icz
such that gy = q. We denote by ¢(F,) the set of bi-infinite words ¢(u) for
all u € E,. The sliding block map ¢ induces a permutation of the states of
the automaton if and only if there is a permutation 7 of the states of the
automaton such that, for any state g,

¢(EL1) = ETF(L])‘

We consider the case where the automaton A is local and where ¢ is a con-
jugacy of S. Let us assume that ¢ has memory m and anticipation a. Since
all states of A are strongly synchronizing, there are integers m/, a’ such that
EZ(,m,’a,) N Eém,’a,) = () for any states p # gq. Then ¢ induces a permutation 7
on the states of A if and only if, for any state g, ¢(E§m+m,’a+a,)) = Efrg)’a,).

It is not always true that a sliding block map ¢ induces a permutation
of the states of a local automaton even if ¢ is a conjugacy induced by a
permutation of the letters of the alphabet. Consider for example the local
automaton of Figure 3.1. It recognizes the same shift of finite type as the
shift of Figure 2.5, which is invariant by permutation. For each state ¢,

13

the set E§2’0) is represented inside the state himself in the figure. The
permutation m = (ac)(b) of {a,b,c} does not induce a permutation of the
set of states.

Fic. 3.1. The permutation © = (ac)(b) does not permute the states

Note that if ¢ induces a permutation of the states of an automaton, it
is in general not true that this property holds for a split automaton.

3.3. The sharpness condition. We now define the notion of a sharp
state of an automaton relatively to a sliding block map ¢. The notion of
sharpness for an automaton was introduced in [30] in the context of rotation
channels.

Let A by a finite automaton which recognizes a sofic shift S ¢ B%. Let
¢ be a sliding block map from B% to B% such that ¢(S) = S. For any state
¢, let E, be the set of labels of bi-infinite paths (g;, bi,gi+1)icz such that
qgo = q. A state p is said to be sharp if

$(Ep) N Ep = 0.

The automaton itself is said to be sharp if all its states are sharp.

In the case where the automaton A is (m', a’)-local and where ¢ a con-
jugacy of S of memory m and anticipation a, a state p is sharp if and only
if qs(E,Em*m"“*“')) N E,()m”a,) = (). If ¢ induces a permutation 7 on the states
of the automaton, the automaton is sharp if and only if 7 has no fixed point
on the states.

The sharpness condition appears to be a necessary property of the output
automaton of a ¢-invariant transducer that models a sequential encoder
with a sliding block decoder. The following proposition appears in [30]
in the context of rotationally invariant encoders. We give a proof of the
proposition adapted to ¢-invariant channels.

PrOPOSITION 3.1 ([30]). A ¢-invariant transducer with a deterministic
and strongly connected input automata, and where ¢ is not the identity map,
has a sharp output automaton

Proof. Let T be a transducer whose output automaton A is (m’,a’)-
local and strongly connected. Let ¢ be a conjugacy with memory m and

14

anticipation a such that T is ¢-invariant. We define for each state ¢ the set
E, of bi-infinite sequences which are labels of bi-infinite paths of A going
through ¢ at time 0.

Let us assume that the automaton A is not sharp. Then there is a state
p such that ¢(E,) N E, # (. Let x be a bi-infinite sequence such that x and
¢(x) belong to Ey. Let u = 2 _(y4pmsy---2—1 and v = 2g ... T(qq'—1)- The
word uv is the label of the finite path ¢ = ((pi, Zi, Pi+1)) —(m+m/)<i<(ata'—1)
of length m + m’' + a' + a going through p at time 0. Let v be the label of
a bi-infinite path C of the automaton that extends the finite path ¢. Thus
¢(v) is the label of a bi-infinite path C’ that goes also through the state p
at time 0. We denote by R (resp. R’') the right-infinite part of nonnegative
indices of C (resp. C’). As the transducer is ¢-invariant, the input labels
of the edges along the bi-infinite paths C' and C' are the same. Since the
input automaton of the transducer is deterministic, the right-infinite paths
R and R’ starting at p are equal. The strongly connectivity of the graph of
the transducer implies then that ¢ is the identity on the shift of finite type
recognized by A. O

Note that the proposition still holds if the input automaton of the trans-
ducer is only deterministic with a finite delay.

3.4. Construction of a ¢-invariant transducer. A general coding
scheme into finite type constrained channels has been obtained in [1] by the
use of state splittings. The corresponding theorem can be stated as follows
(see also [23] or [25, p. 1687]).

THEOREM 3.2 (Adler, Coppersmith and Hassner [1]). Let A and B be
two finite alphabets. Let S C B” be a shift of finite such that cap(S) >
cap(A%). Then there exist a subshift of finite type T C S and a right-
resolving and onto sliding block map d from T to A”.

The proof of the theorem provides a sequential encoder and a sliding
block decoder to encode any sequence of letters of A into the constrained
system defined by T.

We extend Theorem 3.2 to ¢-invariant constrained channels, where ¢
is a one-block map conjugacy of the channel induced by a permutation, as
follows.

THEOREM 3.3. Let A and B be two finite alphabets. Let S C B” be a
shift of finite such that cap(S) > cap(A%) and ¢ be a permutative conjugacy
of S which has no fixed point in S. Then there exist a subshift of finite type
T C S and a right-resolving and onto sliding block map d from T to A* such
that do ¢ = d.

Our construction extends a method presented in [30] that applies in the
case where ¢ is induced by a rotation, that is a permutation which has no
fixed point in the alphabet B. The hypothesis on ¢ is here weaker since
¢ is only assumed to have no bi-infinite fixed point. Thus, our encoder
construction may apply to signal sets that have a point at the origin, which

15

is fixed by a nontrivial rotation. As already mentioned in the introduction,
this is only a slight theoretical improvement since the requirement of no fixed
point in the alphabet entails no loss of generality for rotation channels.

We first give a lemma used in the proof of Theorem 3.3 which extends
to permutation the construction given in [30].

LEMMA 3.4. Let S C B” be a shift of finite type such that cap(S) >
cap(A”) and ¢ a permutative conjugacy of S which has no fized point. Then
S is recognized by a deterministic local automaton such that ¢ induces a
permutation of the states of the automaton which has no fized state.

Proof. Let A be a deterministic local automaton recognizing S whose
set of states is . Thus all states of A are (m,0)-strongly synchronizing
for some nonnegative integer m. If ¢ has no fixed point, there exists, by a
compacity argument, a nonnegative integer [such that, for any word u of
length [, ¢(u) # u. Without loss of generality, we choose m > I.

For each state g, we denote by P, the set of left-infinite labels of left-
infinite paths ending at ¢ and by P the set of finite words u of length m
which are labels of paths ending at p. Since all states are (m,0)-strongly
synchronizing, we have for any states p # g,

P NP =0.

For each state g, we define the finite word z, as the longest common
suffix of words in P;". The word z;, may thus be empty. We choose a state
p such that 2z, has a minimal length among all words z,, for ¢ € (). If the
length of z, is strictly less than m, the set P)" contains two words uaz, and
u'bzy, where v,v" are words, and a, b are two distinct letters of the alphabet.

If z, is not the empty word, let ¢ be its last letter and x the word defined
by z, = zc. We do an input state splitting of the state p by partitioning
the incoming edges of p in the ones beginning in a state ¢ such that bz is
a suffix of z;, and the other ones. If z, is the empty word, we do an input
state splitting of the state p by partitioning the incoming edges of p in the
ones labeled by a and the other ones. The state p is split in states p; and
p2. We get P! = PJ" N A%bz, and Pjy = P' — PJl. Hence (P}, P}})
is a partition of P)". In general, the automaton obtained after an input
state splitting of a m-local deterministic automaton is a (m + 1)-local one.
With this kind of input state splitting, the automaton that we get is still
m-local since (P}, P7) is a partition of Pj". It follows that all states of
the split automaton are still (m,0)-strongly synchronizing. Note that the
cardinalities of Pl and P are strictly less than the cardinality of PJ".

By iterating this input state splitting process, we get an deterministic
local automaton such that for each state g, the state P} is a singleton. For
this automaton, each z, is the unique word of length m of P;". Thus, the

words z, for this final automaton A satisfy the following conditions.

(i) each left-infinite path ending at ¢ has a label suffixed by z,.

16

(ii) zq is not a suffix of z, for any ¢’ # ¢.
(iii) z4 is not constant by ¢.

We now prove that ¢ induces a permutation of A. For any state ¢, we define
m(q) as the unique state such that

Zr(q) = ¢(zq) .

The existence of 7(g) is due to the fact that there is at least one bi-infinite
path extending a finite path of label z; ending at q. The unicity is due to
the fact that each state is (m, 0)-strongly synchronizing. By considering the
inverse of ¢, it is clear that 7 is onto and is thus a permutation of the set
of states of A. Since for any state g, z, is not constant by ¢, 7 has no fixed
point. O

It is also possible to get a codeterministic local automaton that has the
same property by doing output state splittings.

We now prove Theorem 3.3. The proof uses 3.4 and includes the state
splitting process outlined in [30, Section IV-D-2]. Since the representations
of the channels are not supposed to have a strongly connected graph, we
make the splitting process run on several strongly connected components.

We need some notation to give the proof. If u and v are vectors,
min{u, v} denotes the componentwise minimum of u and v. For a real
number s, let |s] denote the integer floor of s.

Proof. [of Theorem 3.3] The proof uses Lemma 3.4 and Theorem 3.2.
By Lemma 3.4, we obtain a representation of S such that ¢ induces a per-
mutation of states. If cap(S) > cap(A%) = log(k), we obtain by the proof of
Theorem 3.2, and by the use of output state splittings, an automaton recog-
nizing the channel S whose graph has a minimum outdegree at least k. We
would like that both properties hold for a same local representation. Since
an output state splitting does not keep in general the property of inducing
a permutation of the states, we have to show that the output state splitting
process of [1] can be adapted to guarantee this property.

Let A = (Q,E) be the deterministic local automaton computed in
Lemma 3.4. Let us assume that ¢ is induced by a permutation 7 of the
letters of the alphabet. The permutative conjugacy ¢ permutes the states of
A and we still denote by the same symbol & this permutation. Then ¢ in-
duces a conjugacy between the bi-infinite paths of A. For any bi-infinite
path C' = ((pi,a;,pit1)icz, the image of C by ¢ is defined by ¢(C) =
((w(pi), m(a;), 7(pit+1))icz. Hence ¢ induces a permutation of the edges E
of A. If e = (p,a,q) is an edge in F, we define w(e) = (7(p),n(a), 7(q)).
Finally, ¢ defines an automorphism of the automaton A. Let C be a strongly
connected component of A which has a maximal capacity. We restrict the
automaton A to its part composed of the disjoint union of the sub-automata
7" (C), for all n > 0. Note that this new automaton may be composed of

17

several strongly connected components which are not connected and have
the same capacity as the full code. It recognizes a subshift of finite of S
which has the same capacity as S.

The output state splittings of [1] are guided by a positive k-approximate
eigenvector of the adjacency matrix M of the graph of A, that is a vector
v such that Mv > kv. Since the strongly connected components of A
have the same capacity which is greater than log(k), the automaton admits
a positive k-approximate eigenvector which can be computed by the use
of Franaszek’s algorithm [23, p. 153] which catches a positive approximate
eigenvector with smallest maximal entry. For a great enough positive integer
values r, it can be obtained as the fixed point of the sequence of column

vectors (v(™),>o indexed by @, where v(0) = (r,r,...,r)T and v(»*1) =
min{v(”), L%Mv(”)J}. Since for any nonnegative integer n, vén) = 1)7(:81), the

automaton A admits a positive k-approximate eigenvector v such that for
each index state g, vy = vy(g). In the case where all components of v are
non equal, it is shown in [1] that one can split a state p in two states p; and
P2, according to a partition (O1,02) of the output edges of p in A, in such
a way that there is a k-approximate eigenvector v’ of the split automaton
such that v, + vy, = v, and vy = v, for ¢ # p1,p2. Since the choice of p
and (O1,03) is governed by the approximate eigenvector, for any positive
integer n, (7"(01), 7" (02)) is a partition of the outgoing edges of 7" (p) in
A which allows a splitting of the state 7™ (p) with the same properties. It is
then possible to split simultaneously each state 7"(p) in two states 7™ (p);
and 7" (p)y according to the partitions (7™ (01), 7" (02)). An edge that ends
in a state 7" (p) in A is duplicated in two edges in the split graph, one going
to 7™ (p)1, the other one going to 7™ (p)2. This split automaton A’ can also
be obtained by several consecutive elementary output state splittings. It
admits a k-approximate eigenvector v' such that that vy, + g, = v, for
q € II(p) and vy = v, otherwise. Moreover ¢ induces a permutation 7' of
the states of A’ defined by 7'(¢q) = 7w(q) if ¢ ¢ I(p) and «'(¢1) = 7(¢)1,
m'(q2) = 7w(q)2 if ¢ € (p). For any states q,q' € Il(p), vy, = U;,l and
Vg, = v; . 2"

The process can be iterated until one gets an automaton with a k-
approximate eigenvector whose all components are equal. Its minimum out-
degree is thus at least k. The final automaton is local, recognizes the same
code, and ¢ induces a permutation 7 of its states. In each orbit of the per-
mutation of the states, we choose one state ¢ and a set O, of k outgoing
edges of ¢. Thus 7"(0y) is a set of k outgoing edges of 7" (g). The automa-
ton obtained by discarding the edges that have not been chosen, is a local
automaton with a constant outdegree k. It recognizes a ¢-invariant shift of
finite type T" C S and ¢ induces the permutation 7 on its states. Let us
denote by B this automaton.

Thus for any state g of A’, v, = v;,(

Let 7 be a transducer whose output automaton is B. We define the

18

input labels of the edges of 7 as follows. In each orbit of the permutation 7
of the states, we choose one state ¢ we label each of the £ edges in O, with
a distinct letter of the alphabet A. For each state 7"(q), we then define the
input label of an edge e in Ozn(,) as the input tag of the edge 7" (e). Note
that this possible since 7 has no fixed point. Since the output automaton of
the transducer is local, it realizes a sliding block map d from T onto A”. The
map associates to a bi-infinite sequence u in 7' the input label of the unique
bi-infinite path whose output label is u. Since the input automaton of the
transducer is deterministic, the map d is right-resolving. By construction,
do¢ =don T. Thus the transducer is ¢-invariant. 0

By using codeterministic automata in Lemma 3.4, it is possible to con-
struct in Theorem 3.3 a ¢-invariant transducer which has a deterministic
input automaton recognizing A%, and a local output automaton recognizing
T C S which is moreover codeterministic with a finite delay.

We give below an example of the construction of Lemma 3.4 for the
channel S of Figure 3.2 with 7 = (ac)(b) on B = {a,b,c}. The capacity
of this channel is log(2). We have P? = {ab,cb}, P; = {ac, ba,cc}, and
P} = {aa,bc,ca}. After splitting states 2 and 3 one time each, we get the

c b c

FiG. 3.2. A channel S invariant by permutation

automaton of Figure 3.3, where the set Pq2 is given inside the state q.

b b

Fi1G. 3.3. After two splittings

After several rounds of state splittings we get the local automaton which
is the output automaton of the transducer represented in Figure 3.4. A
possible input tag such that the tranducer is ¢-invariant is given in the
same Figure. The input alphabet is the 2-letter alphabet A = {0,1}. For

19

Ola

F1a. 3.4. The coding/decoding transducer

this choice of the input labeling, the decoding d is a 3-sliding block map and
can thus be performed with a window of length 3. The sliding block window
decoding property ensures that the decoder is immune to catastrophic error
propagation.

Note that the hypothesis of Theorem 3.3 that the permutative conjugacy
¢ does not fix any any bi-infinite codeword is necessary. Indeed, let us
consider a ¢-invariant transducer with a deterministic input automaton and
a (m, a)-local output automaton. By the sharpness condition, for any state g,
¢(Eq)NE; = 0, where E, is the set of labels of bi-infinite paths going through
q at the index 0. This implies that ¢ has no fixed point.

3.5. Extension to ¢-invariant sofic channels. Coding schemes that
allow to encode arbitrary sequences into a constrained system of sequences
which is modelled by a sofic system which is not of finite type, have been
obtained in [1], [20], [8, 7]. In order to get a sliding block decoder, and
since we consider here transducer with a constant rate 1 : 1, the capacity
of the channel has to be strictly greater than the capacity of the source, or
some other conditions on the channel have to be added, like to be almost of
finite type [20]. In the former case, the corresponding coding theorem due
to Marcus [24] (see also [1]) is the following.

THEOREM 3.5. Let A and B be two finite alphabets. Let S C B% be
a sofic system such that cap(S) > cap(A”?). Then there exist a subshift of
finite type T C S and a right-resolving and onto sliding block map d from T
to A”.

In this section, we extend this result to ¢-invariant sofic channels, i. e.

20

to sofic channels invariant by a permutative conjugacy ¢. Since we consider
channels whose capacity is strictly greater than the source capacity, this
allows us to remove the hypothesis that ¢ has no fixed point. Recall from
Section 3 that this hypothesis was necessary in the case of equality of the
capacities of the source and of the channel. The construction that we use in
the proof does not use the state splitting process of [1] but the method of
poles for sofic channels presented in [8].

THEOREM 3.6. Let A and B be two finite alphabets. Let S C B% be a
sofic system such that cap(S) > cap(A”?) and ¢ be a permutative conjugacy
of S. Then there exist a subshift of finite type T C S and a right-resolving
and onto sliding block map d from T to A” such that do ¢ = d.

We shall use in the proof the following definitions.

We define the rank of a finite word w in a deterministic automaton as
number of states ¢q that end a path labeled by u. Recall that a synchronizing
word is a word of rank 1. An automaton is said to be follower-separated if
any two distinct states p, ¢ have a different future, that is, there is a finite
word wu that is the label of some path starting at p and that is not the label
of any path starting at ¢ (or conversely). For any sofic shift S, there is a
deterministic follower-separated automaton that recognizes it. It is moreover
possible to choose an essential automaton, that is, an automaton such that
each state has at least one outgoing edge end at least one incoming edge. If
S is irreducible, it is its minimal automaton. It is known that, in such an
automaton, any finite word can be extended on the right to a synchronizing
word [23, Proposition 3.3.16].

We call orbit of a finite word u the finite set {¢"(u),n > 0}.

LEMMA 3.7. Let A be an essential deterministic follower-separated au-
tomaton recognizing a ¢-invariant sofic S, where ¢ is a permutative conju-
gacy which is not the identity. Then the automaton A admits a synchro-
nizing word = such that ¢(x) # = and each word in the orbit of = is a
synchronizing word.

Proof. If ¢ is not the identity, there is a bi-infinite word which is not
constant by ¢. By compacity there is a finite word « which is not constant
by ¢. We extend w on the right to a synchronizing word x which is not
constant by ¢. Since ¢ is permutative, there is a positive integer r such
that ¢” is the identity. Let us assume that z,$(z),...#'(z) are synchro-
nizing, for 0 < i < r. If ¢(+1(z) is not synchronizing, we extend it on
the right to a synchronizing word ¢(t1)(z)v. Let y = x¢~*+Y(v). Then
Y, d(y), ... ¢t (y) are synchronizing. By induction, we get then that there
is word which is not constant by ¢ and whose orbit contains only synchro-
nizing words. O

Proof. [of Theorem 3.6] Let S be a ¢-invariant sofic shift with cap(S) >
log(k). We can also assume that ¢ is not the identity map. By Lemma 3.7
there is an essential deterministic follower-separated automaton recognizing
S such that there is synchronizing word x, non constant by ¢, whose orbit

21

contains only synchronizing words. Let m be the length of . As in the proof
of Lemma 3.4, we do input state splittings to get a deterministic automaton
A recognizing S, such that for each state g of A, P;" is reduced to one word.
The word x and all its orbit are synchronizing words of A. Let F' be the
set of states focused to by the orbit O of x. The states of F' are (m,0)-
strongly synchronizing and ¢ permutes the states of F' with a permutation,
still denoted by 7, and defined as follows. Let ¢ € F, if ¢ is the state
focused to by u € O, then m(q) is the state focused to by m(u). Note that,
since S is not of finite type, the automaton A is not local and some states
may not be strongly synchronizing. The states of F' are thus both strongly
synchronizing and sharp.

Let z be a finite path, we denote by [(z) its length. We recall the
definition of the notion of principal states introduced by Franaszek in [16].
Let M be a positive integer. The set of principal states, relatively to k and
M, is the maximal subset P of () such that the following condition, called
the capacity condition, is satisfied. For any state ¢ in P there exist a prefix-
free set Z, of paths of length bounded by M, starting at ¢, terminating in
P, and whose length distribution satisfies the Kraft equality for the integer
k,1i. e. Zzezq k=12 = 1. A set of paths Z4 that satisfies these conditions is
called admissible. An algorithm to compute P is given in [16]. It has been
shown that if cap(S) > log(k), then there is a positive integer M such that
P is non empty. We define here a set of principal states, relatively to & and
M, as the maximal subset P of the set F' such that the capacity condition
holds for P. It can be shown like in [8] that P is still non empty and can be
computed with the same algorithm. If p is a principal state, P contains the
whole orbit of p by 7. We choose a representative state in each orbit of P.

For each representative state p, let Z, be an admissible set of paths and z
a path in Z, labeled by u from p to another principal state ¢. Since p, ¢, 7(p),
m(q) are strongly synchronizing states, there is at least one path labeled by
¢(u) going from m(p) to 7(q). Since the automaton A is deterministic, and
thus unambiguous, there it at most one path labeled by ¢(u) going from 7 (p)
to m(¢g). We denote this path by m(z). Thus the sets 7"(Z,), where n > 0
and 7(Zy) = {n"(2) | z € Z,}, are admissible. For any n > 0 we define the
set Zrn(p) = 7" (Zp). We moreover choose an admissible set Z,, that satisfies
an optimization condition of the kind described in [8] like minimizing, among
all possible admissibles sets, the sum of the lengths of the words of the set.
The computation of such a set Z, and other possible optimization conditions
are described in [8]. In order to decrease the complexity of the final coding
transducer, it is better to have as many principal states as possible.

Now a transducer 7, that we shall use to encode and decode, is con-
structed as follows. Let p be a representive state of an orbit of P and Z,
be an admissible set of paths which satisfies an optimization condition. We
choose a prefix-free set of words X, on the k-letter alphabet A which has the

22

same length distribution as Z,. This is possible since this length distribution
satisfies the Kraft equality for the integer k. We choose a length-preserving
bijection p, from Z), to X,. We define then, for any n > 0, the set X, () by
Xon(p) = Xp, and the length-preserving bijection prn () from Zr) to Xz
by prnpy(2) = p(77"(2)). Note that this is possible only since 7(p) # p.

For any principal state p we defined a state p of T, called a pole. For
any principal state p and each path z in Z,, going from p to a principal state
q, one defines a path 2 in T of length [(z) from p to ¢ with [(z) — 1 dummy
states of T strung along the path Z. The input label p(z) is assigned to 2
while its output label is the label of the path z in A.

It is proved in [8] that the optimization condition on the sets Z, guarantee
that the above constructed transducer has a local output automaton. It
recognizes a shift of finite type T C 5. Since the sets X, are prefix-free
codes that satisfy the Kraft equality for the integer k, the input automaton
of T is deterministic with a finite delay and recognizes A%. Finally, by
construction, the decoding is ¢-invariant. The sliding block decoding map
d is thus an onto right closing map from T to A% such that do¢ = d. A
standard transformation of the transducer allows us to get a transducer with
the same property and with a deterministic input [21]. O

We briefly discuss some possible extensions of Theorems 3.3 and 3.6.
Since in [20], Theorem 3.2 has been extended to the class of almost of finite
type shifts, we conjecture that Theorem 3.3 can be extended to this case.
Another open question is the extension of Theorem 3.3 to all sofic shifts, in
the case of equality of capacities between the source and the channel, with a
decoding map which is not a sliding block map but does not propagate errors
(see [20]), and is invariant by ¢. Beside these possible extensions, it should
be remarked that the hypothesis on the conjugacy ¢ of being permutative
is very strong. It seems nevertheless difficult to weaken this hypothesis to
obtain similar results for more general conjugacies. Finally, it has been
proved by Ashley in [3] (see also [2]) that sliding block decoders with a
linear window size can be constructed for constrained channels. The same
theoretical complexity problem can be considered for ¢-invariant decoders.

REFERENCES

[1] R. L. ADLER, D. COPPERSMITH, AND M. HASSNER, Algorithms for sliding block
codes, IEEE Trans. Inform. Theory, IT-29 (1983), pp. 5-22.

[2] J. J. AsSHLEY, A linear bound for sliding block decoder window size, IEEE Trans.
Inform. Theory, 34 (1988), pp. 389-399.

[83] ——, A linear bound for sliding block decoder window size (II), IEEE Trans. Inform.
Theory, 42 (1996), pp. 1913-1924.

[4] J.J. AsHLEY AND M.-P. BEAL, A note on the method of poles for code construction,
IEEE Trans. Inform. Theory, 40 (1994), pp. 512-517.

23

[6] M.-P. BEAL, Codes circulaires, automates locauz et entropie, Theoret. Comput. Sci.,
57 (1988), pp. 288-302.

[6] ———, The method of poles : a coding method for constrained channels, IEEE Trans.
Inform. Theory, 36 (1990), pp. 763-772.

7] M.-P. BEAL, Codage Symbolique, Masson, 1993.

8] M.-P. BEAL, Extensions of the method of poles for code construction, Tech. Rep.
9726, I.G.M., Université de Marne-la-Vallée, 1997.

[9] M.-P. BEAL AND D. PERRIN, Symbolic dynamics and finite automata, in Handbook
of Formal Languages, G. Rozenberg and A. Salomaa, eds., vol. 2, Springer-
Verlag, 1997, ch. 10.

[10] S. BENEDETTO, R. GARELLO, M. MONDIN, AND M. D. TrROTT, Rotational invari-
ance of trellis codes. part II: Group codes and decoders, IEEE Trans. Inform.
Theory, 42 (1996), pp. 766-778.

[11] M. BoyLE, B. P. KITCHENS, AND B. H. MARcus, A note on minimal covers for
sofic systems, Proc. AMS, 95 (1985), pp. 403—411.

[12] A. R. CALDERBANK, The differential encoding of coset codes by algebraic methods, in
Coding Theory and Design Theory, Part I: Coding Theory, D. Ray-Chaudhuri,
ed., New York: Springer-Verlag, 1990, pp. 16-34.

[13] H. J. CHIZECK AND M. D. TROTT, Algebraic systems, trellis codes, and rotational
invariance, in Advances in Electronics and Electron Physics, vol. 79, New York:
Academic Press, 1990, pp. 1-71.

[14] G. D. FORNEY JR., Coset codes-Part I: Introduction and geometrical classification,
IEEE Trans. Inform. Theory, 34 (1988), pp. 1123-1151.

[15] G. D. FOrRNEY JR., B. H. MaArcus, N. T. SINDHUSHAYANA, AND M. D. TrOTT,
Multilingual dictionary: System theory, coding theory, symbolic dynamics and
automata theory, in Different Aspects of Coding Theory, R. Calderbank, ed.,
vol. 50, AMS Proc. Symp. Appl. Math, 1995, pp. 109-138.

[16] P. A. FRANASZEK, On synchronous variable length coding for discrete noiseless chan-
nels, Inform. Control, 1-J (1969), pp. 155-164.

[17] ———, A general method for channel coding, IBM J. Res. Dev., 24 (1980), pp. 638—
641.

[18] ——, Coding for constrained channel: a comparison of two approaches, IBM J. Res.
Dev., 33 (1989), pp. 602—608.

[19] K. A. S. IMMINK, P. H. SIEGEL, AND J. K. WoLF, Codes for digital recorders, IEEE
Trans. Inform. Theory, IT-44 (1998), pp. 2260-2299.

[20] R. KARABED AND B. H. MARcus, Sliding block coding for input-restricted channels,
IEEE Trans. Inform. Theory, 34 (1988), pp. 2-26.

[21] B. P. KITCHENS, Continuity properties of factor maps in ergodic theory, Ph.D. thesis,
University of North Carolina, Chapel Hill, 1981.

[22] ——, Symbolic Dynamics: one-sided, two-sided and countable state Markouv shifts,
Springer-Verlag, 1997.

[23] D. A. LiND AND B. H. MARcuUS, An Introduction to Symbolic Dynamics and Coding,
Cambridge, 1995.

[24] B. H. MARcUS, Sofic systems and encoding data, IEEE Trans. Inform. Theory, IT-31
(1985), pp. 366-377.

24

[25] B. H. MaRrcus, R. M. RoTH, AND P. H. SIEGEL, Constrained systems and coding for
recording channels, in Handbook of Coding Theory, V. Pless and W. Huffman,
eds., vol. IT, North Holland, 1998, ch. 20, pp. 1635-1764.

[26] B. H. Marcus, P. H. SIEGEL, AND J. K. WOLF, Finite-state modulation codes for
date storage, IEEE J. Sel. Areas Commun., 10 (1992), pp. 5-37.

[27] M. OERDER, Rotationally invariant trellis codes for m-PSK modulation, IEEE Int.
Conf. on Communications. Conf. Rec., (1985), pp. 552-556.

[28] J. G. PrROAKIS, Digital Communications, Mac Graw Hill, 1995.

[29] D. TaNG AND L. BaHL, Block codes for a class of constrained noiseless channels,
Inform. Contr., 17 (1970), pp. 436—461.

[30] M. D. TROTT, S. BENEDETTO, R. GARELLO, AND M. MONDIN, Rotational invari-
ance of trellis codes. part I: Encoders and precoders, IEEE Trans. Inform. Theory,
42 (1996), pp. 751-765.

[31] L. F. WEI, Rotationally invariant convolutional channel coding with expanded signal
space. part I: 180°, IEEE J. Sel. Areas Commun., SAC-2 (1984), pp. 659-671.

[32] ——, Rotationally invariant convolutional channel coding with erpanded signal
space. part II: Nonlinear codes, IEEE J. Sel. Areas Commun., SAC-2 (1984),
pp- 672-686.

25

