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Abstract The amount of hydrocarbon recovered can
be considerably increased by finding optimal placement
of non-conventional wells. For that purpose, the use
of optimization algorithms, where the objective func-
tion is evaluated using a reservoir simulator, is needed.
Furthermore, for complex reservoir geologies with high
heterogeneities, the optimization problem requires al-
gorithms able to cope with the non regularity of the
objective function.

In this paper, we propose an optimization methodol-
ogy for determining optimal well locations and trajecto-
ries based on the Covariance Matrix Adaptation - Evo-
lution Strategy (CMA-ES) which is recognized as one
of the most powerful derivative-free optimizers for con-
tinuous optimization. In addition, to improve the opti-
mization procedure two new techniques are proposed:

– Adaptive penalization with rejection in order to
handle well placement constraints;

– Incorporation of a meta-model, based on locally
weighted regression, into CMA-ES, using an approx-
imate stochastic ranking procedure, in order to re-
duce the number of reservoir simulations required
to evaluate the objective function.
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The approach is applied to the PUNQ-S3 case and com-
pared with a Genetic Algorithm (GA) incorporating the
Genocop III technique for handling constraints. To al-
low a fair comparison, both algorithms are used without
parameter tuning on the problem, standard settings are
used for the GA and default settings for CMA-ES. It
is shown that our new approach outperforms the ge-
netic algorithm: it leads in general to both a higher net
present value and a significant reduction in the number
of reservoir simulations needed to reach a good well con-
figuration. Moreover, coupling CMA-ES with a meta-
model leads to further improvement, which was around
20% for the synthetic case in this study.

Keywords Well placement · Field development
optimization · CMA-ES · Evolution strategies ·
Meta-models

1 Introduction

A well placement decision affects the hydrocarbon re-
covery and thus the asset value of a project. In gen-
eral, such a decision is difficult to make since optimal
placement depends on a large number of parameters
such as reservoir heterogeneities, faults and fluids in
place. Moreover, dealing with complex well configura-
tions, e.g., non-conventional wells, implies additional
challenges such as the concentration of investment and
the well intervention difficulty.

A well placement decision can be formulated as an
optimization problem: the objective function optimized
evaluates the economics of the project; the parameters
thought encode the position of the different wells. If the
number of wells to be placed and their type (injector or
producer) are fixed, the parameters encoding the well
positions (that include locations and trajectories) are
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real numbers and the objective function f maps a sub-
set of Rn where n, the number of parameters, equals the
number of parameters needed to encode a well position
times the number of wells that need to be placed.

However, the optimization task is challenging as the
objective function, e.g., the net present value (NPV)
is in general multi-modal, i.e., with multiple local op-
tima, non-convex and non-smooth. An illustration can
be found in [47] where the NPV of a single vertical well
placement is sampled to construct the objective func-
tion surface. The surface is shown to be highly non-
smooth and to contain several local optima. In this
illustration, the problem dimension equals two and it
has thus been possible to sample all the points from
a fine grid spanning regularly the search space. How-
ever, this becomes impossible for problem dimensions
larger than 3 as the number of points, to keep a fine
discretization, would need to grow exponentially in the
search space dimension (this is referred as curse of di-
mensionality) rendering the search task difficult. In ad-
dition, the problem is costly : a single function evalu-
ation requires one reservoir simulation which is often
very demanding in CPU time (several minutes to sev-
eral hours).

Furthermore, constraints are imposed to guarantee
the physical feasibility of the solution wells and avoid
either undrillable wells (e.g., very long wells) or wells
that violate common engineering practices (e.g., wells
outside the reservoir). Therefore, a constraint optimiza-
tion problem needs to be handled.

Well placement optimization is a recent area of
research that is gaining growing interest. Different
methodologies have been investigated. On the one
hand, approaches based on stochastic search algorithms
were used, where minimal assumptions on the prob-
lem are needed and that are thus more robust than
deterministic methods when dealing with rugged prob-
lems: simulated annealing (SA) [8], particle swarm op-
timization (PSO) [47], genetic algorithm (GA) [44,18,
45,13], simultaneous perturbation stochastic algorithm
(SPSA) [5,6]. On the other hand, deterministic opti-
mization methods were also used. Gradient-based algo-
rithms were mostly used, where the underlying model
of the function needs to be smooth enough and in which
adjoint methods were used for computing the gradients
[28,50,23,53,56].

Stochastic algorithms have been combined with
proxy-models –called also surrogates, meta-models or
response surface models– and deterministic approaches:
GA with a polytope algorithm and kriging [24,25], GA
with a polytope algorithm, kriging and neural networks
[26], GA with neural networks, a hill climber and a
near-well upscaling technique [55]. Results show that a

hybrid stochastic algorithm converges in general to a
reasonable solution with a reduced number of evalua-
tions compared to a pure stochastic algorithm.

The approaches in [24–26,55] build at each iteration
a proxy-model, determine its maximum and include the
location of this maximum in the population (replacing
the worse individual) if it is better than the best indi-
vidual of the current population. In [3], a GA is defined,
in which at each iteration, only a predefined percent-
age of the individuals, chosen according to a set of sce-
nario attributes, is simulated. The objective function of
the non-simulated points is estimated using a statistical
proxy based on cluster analysis.

Other approaches, called proxy-modeling or meta-
modeling in the literature, are based on replacing the
true objective function by a proxy-model and applying
the optimization techniques to the proxy, and not to
the true objective function. Proxy-models may include
least squares and kriging [48], radial basis functions
[19], quality maps [15,46]. Although proxy-modeling is
an efficient way to have an approach with a reduced
number of reservoir simulations, its application, with
increasing complexity of the solution space, is not rec-
ommended [57].

In this paper, we propose a new methodology for
well location and trajectory optimization based on the
population based stochastic search algorithm called Co-
variance Matrix Adaptation Evolution Strategy (CMA-
ES) [33]. CMA-ES is both a fast and robust local search
algorithm, exhibiting linear convergence on wide classes
of functions and a global search algorithm when play-
ing with restart and increase of population size. Inten-
sive benchmarking of several derivative free algorithms
have established that CMA-ES is one of the most effi-
cient method for dealing with difficult numerical opti-
mization problems [29]. CMA-ES has also been applied
to real-world problems [7,16,39,40]. CMA-ES, in con-
trast to most other evolutionary algorithms, is a quasi
parameter-free algorithm1.

To the best of our knowledge, only two studies have
applied CMA-ES in the petroleum industry: a charac-
terization of fracture conductivities from well tests in-
version [12] and a well placement optimization but with
respect to simple attributes (e.g., productivity indices)
[17].

In this work we apply CMA-ES to the well place-
ment problem using adaptive penalization with rejec-
tion to handle constraints. Because genetic algorithms
are quite often the method of choice in petroleum indus-
try, we first show the improvement of applying CMA-ES

1 Only the population size is suggested to be adjusted by the
user in order to account for the ruggedness of the objective func-
tion landscape.
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over a GA on the synthetic benchmark reservoir case
PUNQ-S3 [21]. In addition, because a reservoir simu-
lation and thus the objective function is expensive, we
couple CMA-ES with locally weighted quadratic meta-
models aiming at saving a number of evaluations by
building a model of the problem. We validate the ap-
proach on the PUNQ-S3 case.

This paper is structured as follows. Section 2 de-
scribes the problem formulation. Section 3 gives an
overview of the optimization algorithm CMA-ES and
presents constraint handling with adaptive penaliza-
tion and rejection. In Section 4, CMA-ES is compared
to a genetic algorithm on a synthetic reservoir case
to show the contribution of the proposed optimization
method. In Section 5, the reduction of the number of
reservoir simulations is addressed by coupling CMA-
ES with meta-models. Finally, in Section 6, the contri-
bution of the whole methodology, i.e., CMA-ES with
meta-models is demonstrated on a number of well lo-
cation and trajectory optimization problems (with uni-
lateral and multilateral wells).

2 The well placement optimization problem
formulation

In this section, we describe the well placement opti-
mization problem and explain the parameterization of
the wells.

2.1 Objective function

The objective function associated with a well placement
problem often evaluates the economic model of the deci-
sion and takes into account different costs such as prices
of oil and gas, costs of drilling and costs of injection and
production of water. Another alternative is to use the
cumulative oil production or the barrel of oil equivalent
(BOE). In this paper, the objective function considered
is the net present value NPV [55] defined by

NPV=
Y∑

n=0


 1

(1+APR)n

[
Qn,o

Qn,g

Qn,wa

]T[
Cn,o

Cn,g

Cn,wa

]
− Cd , (1)

where Qn,p is the field production of phase p in the pe-
riod n and Cn,p is the profit or loss associated to this
production. A phase p is either oil, gas or water denoted
respectively by o, g, wa. The annual percentage rate is
denoted APR. The integer Y is the number of discount
periods. The constant Cd is the drilling and completing

Table 1 Constants used to define the net present value (NPV).

Constant Value

Cn,o 60 $ / barrel
Cn,wa -4 $ / barrel
Cn,g 0 $ / barrel
APR 0.1
A 1000
dw 0.1 m
Cjun 105 $

cost for all wells approximated by the following equa-
tion

Cd =
Nw∑
w=0

(Nlat∑

k=0

[A.dw. ln(lw).lw]k,w

)
+
Njun∑
m=1

[Cjun]m , (2)

based on the approximate formula used in [55]. In Eq. 2,
k = 0 represents the mainbore, k > 0 represents the
laterals, lw is the length of the lateral (in ft), dw is the
diameter of the mainbore (in ft), Nw is the number of
wells drilled and A is a constant specific to the consid-
ered field. The constant Cjun is the cost of milling the
junction. The constants in Eqs. 1 and 2 defined for the
examples hereafter are given in Table 1.

The field productions Qn,p for phases p = o, g, wa

are obtained for a given well configuration using a reser-
voir simulator which represents the time consuming part
in the computation of the NPV objective function.

To guarantee a feasible solution, different con-
straints defining the feasible optimization domain were
implemented. The constraints are as follows:

– maximum length of wells: lw < Lmax, for each well
w to be placed;

– all wells must be inside the reservoir grid: lw =
linside, for each well w to be placed, where linside is
the length of the well w inside the reservoir grid.

2.2 Well parameterization

In our approach, we want to be able to handle different
possible configurations of multilateral wells. An illus-
trative scheme is given in Fig. 1. The terminology used
to define each part of a multilateral well follows the
terminology used in [34]. In general, a lateral can be
defined by a line connecting two points. The mainbore
is defined through the trajectory of its contiguous com-
pleted segments. Hence, we define a sequence of points
where a deviation occurs (Pd,i)0≤i≤Ns where Ns is the
number of segments. The starting point Pd,0 = P0 of
the mainbore called the heel is represented by its Carte-
sian coordinates (x0, y0, z0). Other intermediate points
(Pd,i)1≤i≤Ns−1 and the ending point Pd,Ns called the
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Pd,2 (rd,2, θd,2, ϕd,2)

rb,1

rd,1

P0 (x0, y0, z0)

Pd,1 (rd,1, θd,1, ϕd,1)

lb,1

Q1

rd,2

Pb,1 (lb,1, rb,1, θb,1, ϕb,1)

Fig. 1 An example of a single multilateral well parameterization
with two segments (Ns = 2) and one branch (Nb = 1).

toe are represented by their corresponding spherical
coordinate system (rd,i, θd,i, ϕd,i) with respect to the
basis (Pd,i−1, ur

d,i, uθ
d,i, uϕ

d,i). We use spherical coordi-
nates because they allow for straightforward control of
the well lengths by imposing a box constraint whereas
it would need to be handled by imposing a non linear
constraint with Cartesian coordinates.

The wells are parameterized in a way to handle a
number Nb of branches and/or laterals as well.

The branch or lateral j ∈ [1, · · · ,Nb] is defined by
locating its ending point Pb,j (lb,j, rb,j, θb,j, ϕb,j) where
(rb,j, θb,j, ϕb,j)1≤j≤Nb represents the spherical coordi-
nates of Pb,j with respect to the basis (Qj, ur

b,j, uθ
b,j,

uϕ
b,j), Qj is the starting point of the branch or the lat-

eral j, and lb,j is the distance along the well between
P0 and Qj.

The dimension Dw of the representation of a well
denoted by w is as follows:

Dw = 3 (1 +Nw
s ) + 4 Nw

b . (3)

Hence, the dimension D of the problem of placing Nw

wells (wk)k=1,··· ,Nw is

D =
Nw∑

k=1

Dwk
. (4)

An example of a single well parameterization is
shown in Fig. 1. In this example, Ns is equal to two
and Nb is equal to one. The mainbore is then repre-
sented by three points P0 and (Pd,i)1≤i≤2. The branch
is represented by one point Pb,1. The corresponding di-
mension of the optimization problem is 13.

3 The Covariance Matrix Adaptation -
Evolution Strategy (CMA-ES)

In this section, we introduce the CMA-ES algorithm.
The objective function to be optimized is denoted f :
Rn → R. We propose also an adaptive penalization with
rejection technique to handle constraints.

3.1 CMA-ES

CMA-ES [33,30] is an iterative stochastic optimization
algorithm where at each iteration, a population of can-
didate solutions is sampled. In contrast to the classical
presentation of population based stochastic search al-
gorithms (like genetic algorithms) where the different
steps of the algorithms are described in terms of opera-
tors acting on the population (crossover, mutation), the
natural algorithm template for CMA-ES translates the
evolution of the probability distribution used to sam-
ple points at each iteration. Indeed, the algorithm loops
over the following steps:

1. sample a population of λ candidate solutions (points
of Rn)

2. evaluate the λ candidate solutions on f

3. adapt the sampling distribution (using the feedback
from f obtained at step 2.)

We see that this general template depends on a prob-
ability distribution (sampling distribution) and on the
update of this probability distribution. The sampling
distribution in CMA-ES is a multivariate normal dis-
tribution. In the next paragraphs we will give more in-
sights on multivariate normal distributions and their
geometrical interpretation and then explain how its up-
date is performed at each iteration within CMA-ES.

Multivariate normal distributions A random vector of
Rn distributed according to a multivariate normal dis-
tribution is usually denoted by N (m,C) where m is a
vector of Rn and C an n×n symmetric positive definite
matrix corresponding to the covariance matrix of the
random vector. The set of parameters (m,C) entirely
determines the random vector. Fig. 2 gives the geomet-
ric interpretation of a random vector N (m,C) in two
dimensions. We visualize that m is the symmetry center
of the distribution and that isodensity lines are ellipsoid
centered in m with main axes corresponding to eigen-
vectors of C and lengths determined by the square roots
of the eigenvalues of C. Fig. 2 depicts also points sam-
pled according to a multivariate normal distribution. As
expected, the spread of the points follows the isodensity
lines. A useful relation is m+N (0,C) = N (m,C) that
interprets m as the displacement from the origin 0.
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Fig. 2 Geometrical representation of a 2-dimensional multivari-
ate normal distribution N (m,C) where m = (2, 2)T and the co-
variance matrix C admits 1√

2
(1, 1) and 1√

2
(−1, 1) as normalized

eigenvectors with respective eigenvalues 16 and 1. Depicted on
each plot is the mean vector m and the ellipsoid isodentity lines
defined as (x−m)T C−1(x−m) = c where the constant c equals
1 (inner line) and 3 (outer line). The main axes of the (isodensity)
ellipsoid are carried by eigenvectors of C. The half lengths of the
axes of the unit isodensity lines ((x−m)T C−1(x−m) = 1) are
the square roots of the eigenvalues of C.
Depicted on the 2nd, 3rd and 4th plots are samples among 10
(resp. 100 and 1000) samples from N (m,C) falling into the box
plot [−8, 12]× [−8, 12].

In CMA-ES, the mean vector represents the favorite
solution or best estimate of the optimum, and the co-
variance matrix C characterizing the geometric shape of
the distribution defines where new solutions are sam-
pled. Furthermore, an additional parameter is added,
which is the step-size σ used as a global scaling factor
for the covariance matrix. Overall, in step 1. for CMA-
ES, points are sampled according to

m + σN (0,C) .

The adaptation of m targets to find the best estimate of
the optimum, the adaptation of C aims at learning the
right coordinate system of the problem (rotation and
scaling of the main axes) and the adaptation of σ aims
at achieving fast convergence to an optimum and pre-
venting premature convergence. We will now describe
how the distribution is updated, that is how the pa-
rameters m, σ and C are updated in step 3. of the
template.

Update of mean vector, covariance matrix and step-
size We adopt here some time-dependent notations.

The iteration index is denoted g. Let (m(g), g ∈ N)
be the sequence of mean vectors of the multivari-
ate normal distribution generated by CMA-ES and let
(σ(g), g ∈ N) and (C(g), g ∈ N) be respectively the se-
quences of step-sizes and covariance matrices. Assume
that m(g), aσ(g),C(g) are given, the λ new points or
individuals are sampled in step 1. according to:

x(g)
i = m(g) +aσ(g)Ni(0,C(g))︸ ︷︷ ︸

=yi

, for i = 1, · · · , λ . (5)

Those λ individuals are evaluated in step 2. and ranked
according to f :

f(x(g)
1:λ) ≤ · · · ≤ f(x(g)

µ:λ) ≤ · · · ≤ f(x(g)
λ:λ) , (6)

where we use the notation x(g)
i:λ for ith best individual.

The mean m(g) is then updated by taking the
weighted mean of the best µ individuals:

m(g+1) =
µ∑

i=1

ωix
(g)
i:λ = m(g) + aσ(g)

µ∑

i=1

ωiyi:λ , (7)

where yi:λ = (x(g)
i:λ −m(g))/σ(g). In general µ = λ

2 and
(ωi)1≤i≤µ are strictly positive and normalized weights,

i.e., satisfying
µ∑

i=1

ωi = 1. This update displaces the

mean vector towards the best solutions. The incre-
ment aσ(g)

∑µ
i=1 ωiyi:λ has an interpretation in terms

of (stochastic) approximation of the gradient with re-
spect to m of a joint criterion J mapping (m, σ,C) to
R and depending on quantiles of the objective function
f [2].

A measure characterizing the recombination used is
called the variance effective selection mass and defined

by µeff =
(

µ∑
i=1

ωi
2

)−1

. The choice of the recombination

type has an important impact on the efficiency of the
algorithm [1]. The default weights are equal to:

ωi =
ln(µ + 1)− ln(i)

µ ln(µ + 1)− ln(µ!)
, for i = 1, · · · , µ . (8)

The update of the covariance matrix C(g) uses two
mechanisms. First of all the rank-one update [33] using
the so called evolution path p(g)

c ∈ Rn whose update is
given by:

p(g+1)
c =(1−cc)p(g)

c +
√

cc(2−cc)µeff
m(g+1)−m(g)

σ(g)
, (9)

where cc ∈)0, 1]. For the constant cc = 1, the evolution
path points towards the descent direction m(g+1)−m(g)

σ(g)

and for cc 6= 1, the vector p(g)
c adds the steps fol-

lowed by the mean vector over the iterations using
some normalization to dampen previous steps, so as
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not to rely too much on old information. The vector
p(g+1)

c gives a direction where we expect to see good
solutions. From the evolution path, the rank-one ma-

trix p(g+1)
c p(g+1)

c

T
is built and added to the covari-

ance matrix (see Eq. (10)). Geometrically it deforms
the ellipsoid-density in the direction p(g+1)

c , i.e., the
rank-one update increases the probability to sample in
the next iteration in the direction p(g+1)

c .
The second mechanism is the rank-mu update [31]

where the rank-mu matrix
µ∑

i=1

ωiyi:λyT
i:λ is added to

the covariance matrix. This rank-mu matrix is also the
stochastic approximation of the gradient of the joint
criterion J with respect to C [2]. The update of the
covariance matrix combines rank-one and rank-mu up-
date and reads:

C(g+1) = (1− ccov)C(g) +
ccov

µcov
p(g+1)

c p(g+1)
c

T

︸ ︷︷ ︸
rank-one update

+ ccov

(
1− 1

µcov

)
×

µ∑

i=1

ωiyi:λyT
i:λ

︸ ︷︷ ︸
rank-mu update

.
(10)

The initial evolution path p(0)
c , cc, ccov and µcov are pa-

rameters of the algorithm. Default values can be found
in [30].

In addition to the covariance matrix adaptation,
the step-size aσ(g) is controlled after every iteration.
To perform the adaptation, a conjugate evolution path
p(g)

σ ∈ Rn at generation g is updated according to:

p(g+1)
σ = (1− cσ)p(g)

σ

+
√

cσ(2− cσ)µeffC(g)− 1
2 m(g+1)−m(g)

σ(g) .
(11)

The step-size is adapted according to:

σ(g+1) = σ(g)exp

(
cσ

dσ

(
‖p(g+1)

σ ‖
E‖N (0, I)‖ − 1

))
, (12)

where p(0)
σ , cσ and dσ are parameters of the algorithm

with default values defined in [30]. This update rule
implements to increase the step-size when the length of
the conjugate evolution path is larger than the length
it would have if selection would be random (this length
will then be equal to ‖N (0, I)‖) and decrease it other-
wise.

All the updates rely on the ranking determined by
Eq. 6 only and not on the exact value of the objective
functions making the algorithm invariant to monotonic
transformations of the objective functions that preserve
the ranking of solutions.

On the class of functions x 7→ gM ◦ fcq(x) where
fcq is a convex quadratic function and gM : R → R a

monotonically increasing function, the covariance ma-
trix sequence C(g) becomes proportional to the inverse
Hessian of the function fcq(x), i.e., the algorithm is
able to learn second order information without using
any derivatives.

Step-size adaptation is important to achieve fast
convergence corresponding to linear convergence with
rates close to optimal rates that can be achieved by
evolution strategies algorithms. In combination with co-
variance matrix adaptation, step-size adaptation allows
to achieve linear convergence on a wide range of func-
tions including ill-conditioned problems.

3.2 Handling constraints with CMA-ES

Several methods are used, in the literature, to han-
dle constraints in stochastic optimization algorithms.
In general, unfeasible individuals can be rejected, pe-
nalized or repaired. In the following, we briefly discuss
these alternatives. A more detailed study and compar-
ison can be found in [42].

– Rejection of unfeasible individuals: Besides its sim-
plicity and ease of implementation, rejecting the un-
feasible individuals, also called “death penalty” does
not require any parameter to be tuned. However,
ignoring unfeasible individuals can prevent the al-
gorithm from finding the region containing the op-
timum solution if it is close to the feasible domain
boundaries [41];

– Penalizing unfeasible individuals: Penalization is
the most widespread approach used to handle con-
straints. This method corresponds to a transforma-
tion of the optimization problem:
{

min f(x)

s.t. hi(x) ≤ di ∀i = 1, · · · ,m
⇒ min f(x) +

m∑
i=1

g(hi(x)− di) ,

(13)

where m is the number of constraints and g(.) is
the penalty function which is non-negative, equal to
zero in R− and increasing in R+. In general, g(.) con-
tains parameters to be tuned. These parameters de-
pend on the problem to be optimized. A solution to
avoid the difficulty of tuning those parameters con-
sists in using an adaptive penalization which does
not require any user specified constant. However, pe-
nalizing all unfeasible individuals implies evaluating
all unfeasible individuals which can be costly;

– Repairing unfeasible individuals: Another popular
solution to handle constraints is to repair each un-
feasible individual before evaluating it. An impor-
tant parameter to be specified is the probability of
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replacement of the unfeasible individual by the re-
paired new feasible individual. Moreover, repairing
introduces a new individual in the population which
may not obey to the adapted distribution, and hence
may hold up the optimization process of CMA-ES.

Knowing the limitations of each of the constraint-
handling approaches, the approach used in the present
paper is a mixture between two approaches: adap-
tive penalization of the marginally unfeasible individ-
uals and rejection of only the unfeasible individuals far
from the boundaries of the feasible domain. Using this
approach, rejecting only individuals far from the feasi-
ble domain does not prevent the algorithm from find-
ing a solution near the feasible domain boundaries, and
by using adaptive penalization, the critical penalization
coefficients are adapted automatically during the course
of the search2.

A box constraint handling is presented in [32] in
which the feasible space is a hypercube defined by lower
and upper boundary values for each parameter. In the
present paper, this approach is generalized in order
to handle feasible spaces defined by lower and upper
boundary values for a sum of some of the parameters
(e.g., to constrain the length of multilateral wells).

Given an optimization problem with a dimension n,
let us suppose we have m ∈ N constraints denoted by
Sj , ∀j = 1, · · · ,m. For each constraint Sj , we define
Pj ⊂ {1, · · · , n} such that a vector x = (xi)1≤i≤n is
feasible with respect to the constraint Sj if:

v(j,−) < qj =
∑

p∈Pj

xp < v(j,+) , (14)

where v(j,−) and v(j,+) are the lower and upper bound-
aries defining Sj . Constraints are then handled as fol-
lows, when evaluating an individual x:
- Initializing weights: In the first generation, boundary
weights γj are initialized to γj = 0, ∀j = 1, · · · ,m ;
- Setting weights: From the second generation upwards,
if the distribution mean is unfeasible and weights are
not set yet

γj ←− 2δfit

σ2 1
n

n∑
i=1

Cii

, ∀j = 1, · · · ,m , (15)

where δfit is the median from the last 20+3n
λ generations

of the interquartile range of the unpenalized objective
function evaluations and Cii is the ith diagonal element
of the covariance matrix ;

2 The penalization method depends in general on other param-
eters which are on the other hand much less critical and which
are tuned beforehand to be suitable for a wide range of problems
[32].

- Increasing weights: For each constraint Sj , if the dis-
tribution mean Mj , i.e., the mean of qj for the λ in-
dividuals of the current generation, is out-of-bounds
and the distance from Mj to the feasible domain, i.e.,
max(0,Mj −v(j,+))+max(0, v(j,−)−Mj) is larger than

σ ×
√

1
card(Pj)

∑
p∈Pj

Cpp ×max(1,
√

n
µeff

) then

γj ←− γj × 1.1max(1,
µeff
10n ), ∀j = 1, · · · ,m , (16)

where card(Pj) denotes the cardinality of the set Pj ;
- Evaluating the individual :

f(x)←− f(x) +
1
m

m∑

j=1

γj

(qfeas
j − qj)2

ξj
, (17)

where qfeas
j is the projection of qj on the feasible domain

and ξj = exp

(
0.9

(
1

card(Pj)

∑
p∈Pj

log(Cpp)− 1
n×

n∑
i=1

log(Cii)
))

.

An individual x, in the following, will be rejected
and resampled if |qfeas

j −qj | > p%×|v(j,+)−v(j,−)|, where
p% is a parameter to be chosen. In all runs presented
in this paper, p% is chosen to be equal to 20%.

4 CMA-ES and a real-coded GA for the well
placement problem

The choice of a stochastic optimization method was mo-
tivated by the ability of this type of algorithms to deal
with non-smooth, non-convex and multi-modal func-
tions. In addition, stochastic optimization does not re-
quire any gradients and can be easily parallelized. So
far, the most popular stochastic approaches for tackling
well placement have been genetic algorithms encoding
the real parameters to be optimized as bit-strings. How-
ever, it is know in the stochastic algorithm community,
that representing real vectors as bit strings leads to
poor performance [52]. Recently, a comparison between
binary and real representations on a well placement
problem in a channelized synthetic reservoir model has
been made, showing that the continuous variant out-
performs the binary one [13].

This section compares a real-coded GA with CMA-
ES on a well placement problem. To allow a fair com-
parison, both algorithms are used without parameter
tuning. Indeed, tuning an algorithm requires some ex-
tra objective function evaluations that would need to
be taken into account otherwise. Default parameters
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are used for the CMA-ES algorithm3 and typical pa-
rameter value for the GA.

4.1 Well placement using CMA-ES

The initial population is normally drawn using a mean
vector uniformly drawn in the reservoir. Parameters
were defined according to default settings [30].

The population size λ is an important parameter of
CMA-ES [30]. The default population size value equals
4 + b3× ln(D)c, where D is the dimension of the prob-
lem. Independent restarts with increasing population
size are suggested in [4]. In this paper, the optimal tun-
ing of the population size was not addressed. However,
due to the difficulty of the problem at hand, we use a
population size greater than the default value.

4.2 Well placement using GA

Genetic algorithms [35,36] are stochastic search algo-
rithms that borrow some concepts from nature. Similar
to CMA-ES, GAs are based on an initial population
of individuals. Each individual represents a possible so-
lution to the problem at hand. Starting with an initial
population of points called individuals or chromosomes,
and at each iteration, candidate solutions evolve by se-
lection, mutation and recombination until reaching the
stopping criteria with a satisfactory solution. The cor-
respondence between a solution and its representation
needs to be defined. In general, simple forms like an
array or a matrix of integer or bit elements are used.
In this paper, individuals are parameterized as defined
for CMA-ES (see Section 2.2). Hence, well coordinates
are defined using a real encoding. Elitism is used to
make sure that the best chromosome would survive to
the next generation. The used operators are defined as
follows:

– The crossover starts with two parent chromosomes
causing them to unite in points to create two new
elements. The greater chromosome fitness’ rank, the
higher probability it will be selected. After selecting
the two parents, crossover is applied with a proba-
bility denoted crossprob. To apply the crossover, we
randomly draw an index i between 1 and D and a
number c between 0 and 1. Let us denote the two
parents by (x1,j)1≤j≤D and (x2,j)1≤j≤D, then x1,i

← c × x1,i + (1 − c) × x2,i and x2,i ← c × x2,i +
(1− c)× x1,i.

3 At the exception of the population size where the default
setting is known to be good for non-rugged landscapes but needs
to be increased otherwise [30]

Table 2 GA parameters: the probabilities to apply GA opera-
tors, i.e., crossover and mutation.

Constant Value

crossprob 0.7
mutprob 0.1

– The mutation, instead, starts with one individual
and randomly changes some of its components. Mu-
tation is applied to all chromosomes, except the
one with the best fitness value, with a probabil-
ity of mutation denoted mutprob. In this case, we
randomly draw an index i. Let us denote the se-
lected chromosome by (xj)1≤j≤D, then xi← mini +
c×(maxi−mini), where mini and maxi are the min-
imum and the maximum values that can be taken
by the ith coordinate of the chromosome and c is a
number randomly drawn between 0 and 1.

The mutation and crossover probabilities are set to
typical values (see Table 2)4.

To handle the constraints, the genetic algorithm
is combined with the Genocop III technique (Genetic
Algorithm for Numerical Optimization of Constrained
Problems) [18]. This procedure maintains two separate
populations. The first population called the search pop-
ulation contains individuals which can be unfeasible.
The second population, the reference population, con-
sists of individuals satisfying all constraints (linear and
non-linear), called reference individuals. Feasible search
individuals and reference individuals are evaluated di-
rectly using the objective function. However, unfeasible
individuals are repaired before being evaluated. More
details about Genocop III can be found in [43].

4.3 Well placement performance

All tests performed in the present work are conducted
on the PUNQ-S3 test case [21]. PUNQ-S3 is a case
taken from a reservoir engineering study on a real field.
The model contains 19 × 28 × 5 grid blocks. We sup-
pose that the field does not contain any production or
injection well initially. The elevation of the field and its
geometry is shown in Fig. 3. We plan to drill two wells:
one unilateral injector and one unilateral producer. The
dimension of the problem is then equal to 12(= 6× 2).

To compare results obtained by both CMA-ES and
the genetic algorithm, 14 runs were performed for each
algorithm. A streamline simulator is used during the

4 A good choice of the crossover probability is said to be in
between 0.4 and 0.9 [54,14], 0.6 and 0.8 [27], 0.6 and 0.95 [20,
22], 0.6 and 0.8 [51]. A good choice of the mutation probability
is said to be in between 0.001 and 0.1 [14,20,22], 0.005 and 0.05
[51], 0.05 and 0.1 [54].
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Fig. 3 Elevation (in meters) and geometry of the PUNQ-S3 test case.
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Fig. 4 The mean value of NPV (in US dollars) and its corresponding standard deviation for well placement optimization using CMA-
ES (solid line) and GA (dashed line). Fourteen runs are performed for each algorithm. Constraints are handled using an adaptive
penalization with rejection technique for CMA-ES and using Genocop III for GA.
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Fig. 5 The mean number of unfeasible individuals per generation and its corresponding standard deviation using CMA-ES with
an adaptive penalization with rejection technique. Here, we consider only unfeasible individuals far from the feasible domain, i.e.,
resampled individuals.
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optimization. In this comparison, a bottomhole pres-
sure imposed on the producer is fixed to 80 bar, and a
bottomhole pressure imposed on the injector is fixed to
6.000 bar which is too high. This unrealistic value was
used only for the sake of comparison between the two
optimization methods.

The population size is set to 40 for both algorithms.
The stopping criterion is also the same for both of the
methods: a maximum number of iterations equal to 100.
The size of the reference population for Genocop III is
set to 60. Well lengths are constrained with a maximum
well length Lmax = 1000 meters.

Fig. 4 shows the average performance and its stan-
dard deviation of the well placement optimization using
both algorithms measured by the overall best objective
function value. It is clear that CMA-ES outperforms
the GA: the genetic algorithm adds only 40% to the
best NPV obtained by a randomly sampled configura-
tion, i.e., in the first generation of the optimization.
However, CMA-ES adds 80%.

Fig. 5 shows that CMA-ES handles the used con-
straints successfully. The number of well configura-
tions resampled, i.e., far from the feasible domain, ap-
proaches to 0 at the end of the optimization. Fig. 5
shows that after a number of iterations, the majority
of the well configurations generated by CMA-ES are
either feasible or close to the feasible domain.

Fig. 6 shows the positions of “optimum” wells ob-
tained from 14 runs using CMA-ES. CMA-ES succeeds
in defining in 11 runs of the 14 performed the same
potential zone to place the producer and the injector.
This region gives an NPV between $1.99 × 1010 and
$2.05 × 1010. In the other three runs, CMA-ES finds
each time a different local optimum with NPV values
equal to: $1.83 × 1010, $1.95 × 1010 and $2.05 × 1010.
Despite the large number of local optima, CMA-ES suc-
ceeds in providing satisfactory results on 93 % of the
runs, if we consider that a run is satisfactory if it gives
an NPV greater or equal to $1.95× 1010.

For the genetic algorithm, 14 runs were performed
to trace different “optimum” well configurations in Fig. 7.
Well configurations are not concentrated in some well-
defined regions and have an NPV mean value equal to
$1.68× 1010 with a standard deviation equal to 1.06×
109. The GA leads to well configurations dispersed over
a large zone. The maximum value of NPV obtained by
the GA is equal to $1.86× 1010 and it corresponds to a
well configuration close to a well configuration obtained
by CMA-ES with an NPV $2.05× 1010.

Results confirm that CMA-ES is able to find in the
majority of the runs a solution in the same potential
region. In 93% of the runs on the considered test case,
CMA-ES finds a well configuration with a satisfactory
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Fig. 6 The positions of solution wells found by 14 runs of CMA-
ES projected on the top face of the reservoir. Injectors are rep-
resented by (dashed line). Producers are represented by (solid
line).

NPV value. However, the GA has difficulties to define
this potential region and seems to prematurely converge
in different regions. Premature convergence in the GA
is most certainly due to the lack of mechanisms that
(1) would play the role of the step-size mechanism in
CMA-ES which is able to increase the step-size in linear
environments and (2) would play the role of the covari-
ance matrix adaptation mechanism allowing to adapt
the main search directions (elongate / shrink certain di-
rections and learn the principal axis of the problem) to
solve efficiently ill-conditioned problems. Without this
latter mechanism on ill-conditioned problems, it is com-
mon to observe premature convergence.

5 Meta-models for CMA-ES

The CMA-ES algorithm makes minimal assumptions on
the objective function by exploiting solely the ranking
of solutions. However, it can be reasonable to assume
that locally, the objective function can be approximated
by its second order approximation and to try to exploit
this within the algorithm to reduce the number of (ex-
pensive) reservoir simulations. The use of local meta-
models instead of a global one is motivated by the fact
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Fig. 7 The positions of solution wells found by 14 runs of the
GA projected on the top face of the reservoir. Injectors are rep-
resented by (dashed line). Producers are represented by (solid
line).

that we want the algorithm to be able to handle multi-
modal functions or unimodal functions where a global
quadratic model would model poorly the function. We
thus propose now to combine CMA-ES with local meta-
models where for each individual in the population, an
approximate convex quadratic model is built using true
objective function evaluations collected during the op-
timization process [37].

5.1 Locally weighted regression

To build an approximate model of the objective func-
tion f , denoted by f̂ , we use a locally weighted re-
gression. During the optimization process, a database,
i.e., a training set is built by storing, after every eval-
uation on the true objective function, points together
with their objective function values (x, y = f(x)). As-
suming that the training set contains a sufficient num-
ber m of couples (x, f(x)), let us consider an individ-
ual denoted q ∈ Rn to be evaluated with the approxi-
mate model, where n is the dimension of the problem.
We begin by selecting the k nearest points (xj)1≤j≤k

from the training set. The distance used for this pur-
pose exploits the natural metric defined by the co-

variance matrix of CMA, namely the Mahalanobis dis-
tance with respect to the current covariance matrix C
defined for two given points z1 ∈ Rn and z2 ∈ Rn

by dC (z1, z2) =
√

(z1 − z2)
T C−1 (z1 − z2). We build

with locally weighted regression an approximate objec-
tive function using (true) evaluations (yj)1≤j≤k corre-
sponding to the k selected nearest points to q.

The use of a full quadratic meta-model is suggested
in [38]. Hence, using a vector β ∈ Rn(n+3)

2 +1, we define
f̂ as follows:

f̂ (x, β) = βT
(
x2

1, · · · , x2
n, · · · , x1x2, · · · ,

xn−1xn, x1, · · · , xn, 1)T
.

(18)

The full quadratic meta-model is built based on mini-
mizing the following criterion with respect to the vector
of parameters β of the meta-model at q:

A(q) =
k∑

j=1

[(
f̂ (xj , β)− yj

)2

K

(
dC (xj ,q)

h

)]
. (19)

The kernel weighting function K (.) is defined by
K(ζ) = (1 − ζ2)2, and h is the bandwidth defined by
the distance of the kth nearest neighbor data point to
q where k must be greater or equal to n(n+3)

2 + 1 for a
full quadratic meta-model.

5.2 Approximate ranking procedure

To incorporate the approximate model built using the
locally weighted regression, we use the approximate
ranking procedure [49]. This procedure decides whether
the quality of the model is good enough in order to con-
tinue exploiting this model or new simulations should
be performed. The resulting method is called the local-
meta-model CMA-ES (lmm-CMA) [38]. A new vari-
ant called the new-local-meta-model CMA-ES (nlmm-
CMA) was proposed in [9] improving over lmm-CMA
on most benchmark test functions.

In this paper, we use the variant nlmm-CMA2 de-
fined in [9]. For a given generation, let us denote individ-
uals of the current population of CMA-ES by (xi)1≤i≤λ,
where λ is the population size. The following procedure
is then performed:

1. build f̂ (xi) for all individuals of the current popu-
lation (xi)1≤i≤λ.

2. rank individuals according to their approximated
value f̂ (xi) and determine the µ best individuals
set and the best individual.

3. evaluate the best individual with the true objective
function and add its evaluation to the training set.

4. for nic from 1 to (λ− 1), we:
(a) build f̂ (xi)1≤i≤λ.
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(b) rank individuals according to their approxi-
mated value f̂ (xi)5 and determine the µ best
individuals set and the best individual.

(c) if less than one fourth of the population is eval-
uated, the meta-model is accepted if it succeeds
in keeping both the best individual and the
ensemble of µ best individuals unchanged.

(d) if more than one fourth of the population is eval-
uated, the meta-model is accepted if it succeeds
in keeping the best individual unchanged.

(e) if the meta-model is accepted, we break. If not,
we evaluate the best unevaluated individual with
the true objective function, add its evaluation to
the training set, and loop to step 4, until reaching
the acceptance criterion of the meta-model.

Hence, (1+nic) individuals are evaluated for a given
generation where nic is the number of iteration cycles
needed to satisfy the meta-model acceptance criterion.

6 Application of CMA-ES with meta-models on
the PUNQ-S3 case

The proposed CMA-ES with meta-models is able to
handle different possible well configurations as defined
in Section 2.2. In the following, the performance of the
approach is demonstrated only on two cases.

6.1 Placement of one unilateral producer and one
unilateral injector

In this application, we consider a placement problem of
one unilateral injector and one unilateral producer on
the PUNQ-S3 case. Parameters of the problem are the
same as for the example in Section 4.3, except for the
following differences:

– a commercial reservoir simulator is used to evalu-
ate field productions of each phase instead of the
streamline simulator;

– the bottomhole pressure imposed on the producer is
fixed to 150 bar;

– the bottomhole pressure imposed on the injector is
fixed to 320 bar.

To define the parameters of the meta-model, we choose
k, the number of individuals used to evaluate the meta-
model, equal to 100. Meta-models are used when the
training set contains at least 160 couples of points with
their evaluations. For each method, i.e., CMA-ES and
CMA-ES with local meta-models (lmm-CMA), 10 runs

5 Or true objective function if the individuals have been eval-
uated on it.
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Fig. 8 The mean value of NPV (in US dollars) and its corre-
sponding standard deviation for well placement optimization us-
ing CMA-ES with meta-models (solid line) and CMA-ES (dashed
line). Ten runs are performed for each algorithm. Constraints are
handled using an adaptive penalization with rejection technique.
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Fig. 9 The mean number of reservoir simulations needed to
reach a given NPV value using CMA-ES with meta-models (solid
line) and CMA-ES (dashed line). Ten runs are performed for each
algorithm.

were performed. The evolution of the NPV mean value
in term of the mean number of reservoir simulations is
represented in Fig. 8.

Fig. 8 shows that, for the same number of reservoir
simulations, combining CMA-ES with meta-models al-
lows to reach higher NPV values compared to CMA-
ES, given a restricted budget of reservoir simulations.
A better representation is to show the mean number of
reservoir simulations needed to reach a certain value of
NPV for CMA-ES and for CMA-ES with meta-models
(Fig. 9). To reach an NPV value of $9×109, lmm-CMA
requires only 659 reservoir simulations, while CMA-ES
requires 880 reservoir simulations. If we consider that
an NPV equal to $9 × 109 is satisfactory, using meta-
models reduces the number of reservoir simulations by
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Fig. 10 The SoPhiH Map, with solution well configuration ob-
tained using CMA-ES with meta-models (PROD-O, INJ-O) and
two engineer’s proposed well configurations (PROD-1, INJ-1 and
PROD-2, INJ-2).

25%. For an NPV value equal to $9.6 × 109, the use
of meta-models reduces the number of reservoir simula-
tions by 19%. Figs. 8 and 9 highlight the contribution of
meta-models in reducing the number of reservoir sim-
ulations. Results show also that, in addition to reduc-
ing the number of objective function evaluations, the
method still succeeds in reaching high NPV values and
results are similar to those obtained by CMA-ES. As
for the example in Section 4.3, the well placement op-
timization still succeeds in identifying in the majority
of the runs the same potential region to contain opti-
mum wells. In this paper, we present detailed results
obtained only by one of the solution well configurations
proposed by lmm-CMA. The selected solution well con-
figuration is denoted optimized config in the sequel. Op-
timized config is then compared to two configurations
designed after some trials in a way to represent the de-
cision of a reservoir engineer (denoted config.1 and con-
fig.2 ). The locations and trajectories of the considered
well configurations are shown in Fig. 10.

The engineer’s proposed configurations were defined
according to the SoPhiH map (Fig. 10) which represents
the distribution of the hydrocarbon pore volume over

the nlayers layers defined by
nlayers∑
k=1

(Hk × φ× So), where

Hk is the gross thickness of the layer k, So is the oil sat-
uration and φ is the porosity. PROD-c and INJ-c denote
respectively the producer and the injector correspond-
ing to the well configuration c. The well configuration
is either config.1, config.2 or optimized config denoted
respectively 1, 2, O. Engineer’s proposed wells are hori-
zontal wells where producers (PROD-1 = PROD-2) are
placed in the top layer (k = 1) and injectors in the bot-
tom layer (k = 5). However, producers and injectors in
optimized config are inclined wells placed in the layer
(k = 3). The engineer’s proposed producer is placed in
the region with the highest SoPhiH value.

Fig. 11 shows the production curves of the consid-
ered well configurations. The cumulative oil produc-
tion for optimized config, during the 11 simulated years
equals 205 MMbbl. However, config.1 offers only 119
MMbbl and config.2 offers 102 MMbbl. Therefore, the
optimization methodology adds 72% to the best consid-
ered engineer’s proposed well configuration. Optimized
config offers also the smallest water cut (0.45 for opti-
mized config, 0.57 for config.1 and 0.69 for config.2 ).

6.2 Placement of one multi-segment producer

In this application, we consider a placement problem of
one multi-segment well on the PUNQ-S3 case. We sup-
pose that an injector is already placed in the reservoir.
It corresponds to the well denoted INJ-O in Fig. 10. We
plan to drill a multi-segment well with two completed
segments. The dimension of the problem is then equal
to 9(= 6 + 3). The different parameters of the problem
are the same as in the example in Section 6.1, except
for the population size which is equal to 30. Ten runs
were performed with a maximum number of iterations
equal to 100.

Fig. 12 shows the evolution of the average perfor-
mance of the well placement, i.e., NPV mean values
and the corresponding standard deviation. Optimizing
the placement of one multi-segment producer offers an
NPV equal to $1.10×109±4.37×107. To reach an NPV
mean value of $1.10× 109, the optimization process re-
quires only 504 reservoir simulations.

The positions of solution wells are shown in Figs. 13
and 14. In this application, the used methodology suc-
ceeds in reaching NPV values greater than $1.09× 109

and in defining an “optimum” well configuration in the
same potential region for all the performed runs. There-
fore, performing only one run can be conclusive and can
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Fig. 11 Production curves for an optimized solution using CMA-ES with meta-models (optimized config.) and two engineer’s proposed
configurations (config.1 and config.2 ).
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Fig. 12 The mean value of NPV (in US dollars) and its cor-
responding standard deviation for well placement optimization
using CMA-ES with meta-models of one multi-segment well. Ten
runs are performed.

ensure converging to a solution well with a satisfactory
NPV.

7 Conclusions

In this paper, the stochastic optimization method
CMA-ES was applied on a well placement problem. A
technique based on adaptive penalization with rejec-
tion was developed to handle well placement constraints
with CMA-ES. Results showed that this technique en-
sures that after a number of iterations, the majority
of well configurations generated by CMA-ES are either
feasible or close to the feasible domain. The optimiza-
tion with CMA-ES was compared to a GA which is the
most popular method used in well placement optimiza-
tion in the literature. Both algorithms were used with-
out parameter tuning allowing for a direct fair compar-
ison of the results. Indeed parameter tuning requires
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Fig. 13 The positions of solution multi-segment producers found
by 10 runs of CMA-ES with meta-models. A zoom on the region
containing the solution wells is performed.

extra function evaluations that should be taken into
account when presenting comparison results. In addi-
tion, we think that parameter tuning should be done
by the designer of the algorithm and not the user as
it is unrealistic to waste expensive function evaluations
for correcting the weakness of the design phase. The
CMA-ES example shows that providing parameter-free
algorithms with robust setting is possible to achieve.
CMA-ES was shown to outperform the genetic algo-
rithm on the PUNQ-S3 case by leading to a higher net
present value (NPV). Moreover, CMA-ES was shown to
be able to define potential regions containing optimal
well configurations. On the other hand, the genetic algo-
rithm converged to solutions located in different regions
for every performed run. In addition those solutions are
associated to much smaller NPV values than the solu-
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Fig. 14 The positions of solution multi-segment producers found
by 10 runs of CMA-ES with meta-models projected on the top
face of the reservoir. A zoom on the region containing the solution
wells is performed.

tions found by CMA-ES. On the PUNQ-S3 case, the
mean NPV value found by GA is 1.68×1010$. However,
the mean NPV value found by CMA-ES is 2.01×1010$.
The ability of CMA-ES to find much higher NPV val-
ues and to converge to the same region of the search
space, has been explained by its advanced adaptation
mechanism that allows the algorithm, on ill-conditioned
non-separable problems, to adapt in an efficient way its
sampling probability distribution.

To tackle the computational issue related to the
number of reservoir simulations performed during the
optimization, the proposed methodology was coupled
with local-meta-models, and then demonstrated on the
PUNQ-S3 case. The use of meta-models was shown to
offer similar results (solution well configurations and
the corresponding NPV values) as CMA-ES without
meta-models and moreover to reduce the number of
simulations by 19-25% to reach a satisfactory NPV.
The comparison of the obtained results with some en-
gineer’s proposed well configurations showed that the
proposed optimization methodology is able to provide
better well configurations in regions that might be dif-
ficult to determine by reservoir engineers. Though the
gain brought by coupling meta-models to CMA-ES can
seem rather small, we think that it is mainly due to the
fact that CMA-ES is almost optimal [29] and thus hard
to improve by an important factor. We believe how-
ever that performance over CMA-ES could be more
significantly improved by exploiting, within the algo-
rithm, knowledge and relevant information about the
optimization problem at hand, such as the problem

structure. Some first steps in that direction have been
conduced in [10,11] where the fact that the objective
function can be split into local components referring to
each of the wells where each depends on a smaller num-
ber of parameters (i.e., partial separability of the objec-
tive function) is exploited. An other approach could be
to exploit some a priori information such as well alloca-
tion factors and connectivity using the work developed
in [15].

This work is rather preliminary in terms of type
of meta-models tested as we have only focused on local
quadratic approximation. However other types of meta-
models could be used like kriging and radial basis func-
tions as we have no a priori that quadratic meta-models
are the best models to use for practical purposes. This
work has demonstrated the potential huge benefit of ap-
plying the CMA-ES methodology over more established
stochastic techniques for reservoir applications. We be-
lieve that many optimization problems in Geosciences
could as well be successfully handled with CMA-ES.
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