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Abstract

Self-stabilizing processes are inhomogeneous diffusions in which the
law of the process intervenes in the drift. If the external force is the gra-
dient of a convex potential, it has been proved that the process converges
toward the unique invariant probability as the time goes to infinity. How-
ever, in a previous article, we established that the diffusion may admit
several invariant probabilities, provided that the external force derives
from a non-convex potential. We here provide results about the limiting
values of the family {µt ; t ≥ 0}, µt being the law of the diffusion. More-
over, we establish the weak convergence under an additional hypothesis.
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Introduction

The aim of the work is the study about the long-time behaviour of a special
class of inhomogeneous diffusions. With potentials V and F , which hypotheses
are given further, we are interested in the weak convergence (as the time t goes
to infinity) of the so-called self-stabilizing diffusion,

{

Xt = X0 + σBt −
∫ t

0
∇V (Xs) ds−

∫ t

0
∇F ∗ µs (Xs) ds ,

µs = L (Xs) .
(I)

∗Supported by the DFG-funded CRC 701, Spectral Structures and Topological Methods

in Mathematics, at the University of Bielefeld.
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The star denotes the convolution. The drift in the previous equation does de-
pend on the own law of the diffusion. Hence, it is non-linear, in the sense of
McKean, see [McK67]. Let us notice that Xt, the diffusion at time t, and the
probability measure µt do depend on σ. Nevertheless, the parameter σ is fixed,
with the exception of a statement which holds in the small-noise limit, so we
skip this dependence in the notation for the comfort of the reading.

In this model, (Bt)t≥0 is a d-dimensional Wiener process. The diffusion coeffi-
cient σ is not assumed to be small. The function V is the so-called confining
potential. This terminology comes from the effect of V on the diffusion X . In-
deed, intuitively, it forces the diffusion to be close to the minimizers of V . F is
called the interacting potential because the term ∇F ∗ µs (Xs) corresponds to
an interaction between all the trajectories:

∇F ∗ µs (Xs(ω0)) =

∫

ω∈Ω

∇F (Xs(ω0)−Xs(ω)) dP(ω) ,

where (Ω,F ,P) is the underlying probability space. This interaction can be seen
as the hydrodynamical limit of a mean-field system. This aspect is developed
further in the introduction.
The subject of the current work is the set of the adherence values of the family
{µt ; t ≥ 0}. In a particular case, we establish the weak convergence of the self-
stabilizing diffusion (I) to an invariant probability measure.

We here make some smoothness assumptions on both potentials V and F . More
precisely, the potential F is a radial polynomial function. This hypothesis allows
us to simplify the description of the invariant probabilities. Indeed, the existence
problem of an invariant probability thus is equivalent to a fixed point problem
in finite dimension.
Let us notice that there exist some previous articles with interaction F which
does not satisfy such assumptions. In the one-dimensional case, without external
force, by taking the Heaviside step function as interacting potential F , Equation
(I) is the Burgers’ equation, that is

Xt (ω0) = σBt (ω0)−
∫ t

0

P

{

ω ∈ Ω | Xs(ω) = Xs (ω0)
}

ds ,

see [SV79]. By taking F := δ0 instead of the Heaviside step function, it is the
Oelschläger equation,

Xt (ω0) = σBt (ω0)−
∫ t

0

d

dx

∣

∣

∣

x=Xs(ω0)
P

{

ω ∈ Ω | Xs(ω) = x
}

ds ,

studied in [Oel85]. The hypotheses on V and F are given at the end of the
introduction.

The existence problem of a solution to Equation (I) has been investigated by two
different methods. The first one consists in considering the existence question
as a fixed point problem in a functional space. Indeed, to solve Equation (I) is
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equivalent to solve the system of two equations,






b(t, x) = ∇V (x) + E

[

∇F
(

x−X
(b)
t

)]

,

X
(b)
t = X0 + σBt −

∫ t

0
b
(

s,X
(b)
s

)

ds .

See [BRTV98, HIP08, Szn91] for the details. The second method consists in
looking at the law µt as the hydrodynamical limit of the empirical measure of
a mean-field interacting particle system. See for example [Mél96].

It is well known that µt, the law at time t of the unique strong solution X
to Equation (I), admits a C∞-continuous density with respect to the Lebesgue
measure, provided that t > 0, see [McK67]. Let us denote this density by ut.
Furthermore, ut satisfies the so-called granular media equation,

∂

∂t
ut = div

{

σ2

2
∇ut + ut (∇V +∇F ∗ ut)

}

. (II)

The non-linear partial differential equation (II) is a useful tool for characteriz-
ing the invariant probabilities of Diffusion (I) and its long time behaviour, see
[BRTV98, BRV98, Tam84, Tam87, Ver06].
If the confining potential V is not convex, at least in the one-dimensional case,
our previous results in [HT10a, HT10b, HT12, Tug11a] provide the exact num-
ber of the invariant probabilities and their small-noise behaviour under easily
checked assumptions. If the phase space is R

d, it has been proved in [Tug11b]
that Diffusion (I) admits several invariant probabilities when the interaction is
sufficiently strong. Consequently, the weak convergence of µt in the long-time
behaviour is more delicate than if the external force corresponds to the gradient
of a convex potential.

In the one-dimensional case, the study has been made with convex confining
potential by several technics. In [BRV98], with V identically equal to 0, the
authors focus on the semi-group associated to Equation (II). They use an ul-
tracontractivity property (from [KKR93]), a Poincaré inequality (with Bakry-
Émery criteria) and a comparison lemma for stochastic processes (from [KS91]).
With a non-convex confining potential, the results on [KKR93] still hold and
we can replace Bakry-Émery criteria by Muckenhoupt theorem in the one-
dimensional case (see [ABC+00]) or by the results in [BBCG08]. Nonetheless,
the comparison lemma requires the convexity assumption.
Another method consists in considering a diffusion X1 in a mean-field system of
N particles as an approximation of the self-stabilizing diffusion X . Under sim-
ple hypotheses, Cattiaux, Guillin and Malrieu establish in [CGM08] a uniform

propagation of chaos, that is the convergence to 0 of sup
t≥0

E

{

∣

∣

∣

∣Xt −X1
t

∣

∣

∣

∣

2
}

as

the number of particles N goes to infinity. Thus, the convergence in long-time
of the mean-field system implies the one of the non-linear process X . Neverthe-
less, the non-uniqueness of the invariant probabilities pointed out in [Tug11b]
implies that such a uniform propagation of chaos does not hold.
Still for the convex case, we also refer the reader to [Mal03, Tam84, Mal01,
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HS87, AMTU01, CMV03].

The method used in [Tug10], for the non-convex case, is based on [BCCP98].
By combining the results in [HT10a, HT10b, HT12] with the work of [BCCP98,
CMV03] about the free-energy, we have been able to prove the convergence
without assuming that the center of mass is fixed.

The technic used in this work is similar but we do not assume that the set of
the invariant probabilities is discrete. We give results on the adherence values
of the family {µt ; t ≥ 0}. To do so, we use a bijection between Sσ, the set of
the invariant probabilities, and a closed subset of Rk. The integer k here does
depend on the dimension and on the degree of the polynomial function F .
Furthermore, if the set of the invariant probabilities is discrete, the probability
measure µt converges weakly to an invariant probability µσ as the time t goes
to infinity.

As written previously, the diffusion X corresponds to the hydrodynamical limit
of a particle in a continuous mean-field system. This mean-field system asso-

ciated to the self-stabilizing process (I) is a classical diffusion in
(

R
d
)N

, that

is


































X1
t = X1

0 + σB1
t −

∫ t

0
∇V

(

X1
s

)

ds− 1
N

∑N

j=1

∫ t

0
∇F

(

X1
s −Xj

s

)

ds ,
...
X i

t = X i
0 + σBi

t −
∫ t

0
∇V

(

X i
s

)

ds− 1
N

∑N
j=1

∫ t

0
∇F

(

X i
s −Xj

s

)

ds ,
...
XN

t = XN
0 + σBN

t −
∫ t

0
∇V

(

XN
s

)

ds− 1
N

∑N
j=1

∫ t

0
∇F

(

XN
s −Xj

s

)

ds ,

the d-dimensional Wiener processes B1, · · · , BN being independent and the ran-
dom variables X i

0 being iid with common law µ0. The link between Diffusion (I)
and this particle system is called the propagation of chaos. Indeed, the larger is
N , the more independent (chaotic) are the particles. Moreover, each one tends
to behave like a self-stabilizing diffusion, see [Szn91, BRTV98, Mél96, CGM08].
Let us also give some references about the propagation of chaos with different
hypotheses about the dynamic or about the phase space: [Gra90, Gra92, Der03,
JM08].

As noticed previously, Diffusion (I) is similar to the particle X1. However, the

whole particle system can be seen as an homogeneous diffusion X in
(

R
d
)N

satisfying

Xt = X0 + σBt −N

∫ t

0

∇ΥN
0 (Xs) ds ,

where the ith coordinate of Xt (resp. Bt) is X i
t (resp. Bi

t) and

ΥN
0 (X ) :=

1

N

N
∑

j=1

V (Xj) +
1

2N2

N
∑

i=1

N
∑

j=1

F (Xi −Xj) ,
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for all X ∈
(

R
d
)N

. Taking σ equal to 0 yields

d

dt
E
{

ΥN
0 (X )

}

= −E

{

∣

∣

∣

∣∇ΥN
0 (X )

∣

∣

∣

∣

2
}

.

The equivalent of this potential ΥN
0 for the flow defined by Equation (II), that

is after taking the hydrodynamical limit (N → +∞), is the energy Υ0 defined
by

Υ0(µ) :=

∫

Rd

V (x)µ(dx) +
1

2

∫∫

Rd×Rd

F (x− y)µ(dx)µ(dy) .

Nevertheless, the diffusion coefficient σ is positive. Consequently, the energy is
not the good quantity to consider and we need to take into account the entropy
S(µ), defined as it follows. If µ is absolutely continuous with respect to the
Lebesgue measure, S(µ) is equal to −

∫

Rd u(x) log(u(x))dx if it is well defined,
u being the density of µ. Otherwise, S(µ) := −∞.
We subtract the dissipated heat, that is the temperature σ2

2 multiplied by the
entropy S(µ), to the energy. This new quantity, which corresponds to the free-
energy is denoted by Υσ(µ). If µ is not absolutely continuous with respect to
the Lebesgue measure, Υσ(µ) is equal to infinity. If µ is absolutely continuous
with respect to the Lebesgue measure, with density equal to u, we have

Υσ(µ) :=
σ2

2

∫

Rd

u(x) log(u(x))dx (III)

+

∫

Rd

V (x)u(x)dx +
1

2

∫∫

Rd×Rd

F (x− y)u(x)u(y)dxdy .

The free-energy functional Υσ plays the role of a Lyapunov function. Indeed,
the free-energy is non-increasing along the trajectories of the flow (µt)t≥0. See
[CMV03] for a proof of this statement.

We finish the introduction by giving the set of assumptions of the work, some
definitions and the three main results (Theorem A and Corollaries B and C).
Then, first section presents some previous results and some notations which are
used in the whole work. Some basic but essential results also are given. Second
section is dedicated to the keystones of the work and an example. The proof
of Theorem A is made in third section. The ones of Corollaries B and C are
provided in section four. Finally, we postpone two technical but essential propo-
sitions in the annex.

Assumption (M). We say that the confining potential V , the interacting po-
tential F and the initial law µ0 satisfy the set of assumptions (M) if

(M-1) V is a smooth function on R
d.

(M-2) there exists a compact subset K of R
d such that ∇2V (x) > 0, for all

x /∈ K. Moreover, lim
||x||→+∞

∇2V (x) = +∞.

(M-3) the gradient ∇V is slowly increasing: there exist m ∈ N
∗, C > 0 and

a function R from R
d to R

d such that ∇V (x) = C ||x||2m−2
x + R(x), for all
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x ∈ R
d. Here, the function R satisfies lim

||x||→+∞
R(x) ||x||−(2m−1) = 0.

(M-4) there exists an even polynomial function G on R such that F (x) =
G(||x||). And, deg(G) =: 2n ≥ 2.
(M-5) The function G is convex.
(M-6) The 8q2th moment of the measure µ0 is finite with q := min {m,n}.
(M-7) The measure µ0 admits a C∞-continuous density u0 with respect to the
Lebesgue measure. And, the entropy S(µ0) = −

∫

Rd u0(x) log(u0(x))dx is finite.

By Theorem 2.13 in [HIP08], we know that Equation (I) admits a unique strong
solution on R+. Moreover, there exists M0 > 0 satisfying

max
1≤j≤8q2

sup
t≥0

E

[

||Xt||j
]

≤ M0 . (IV)

We immediately deduce that the family {µt ; t ≥ 0} is tight.

Definition. By Aσ (resp. Sσ), we denote the set of the limiting values of the
family {µt ; t ≥ 0} (resp. the set of the invariant probabilities of Diffusion (I)).

Definition. We say that a set D of measures on R
d is discrete if for any ν ∈ D,

there exists a neighbourhood V of ν for the topology of the weak convergence such
that D⋂V = {ν}. In a similar way, we say that D is path-connected if it is
path-connected for the topology of the weak convergence.

We now give the three main results of the work.

Theorem A. Let us assume that the confining potential V , the interacting
potential F and the initial law µ0 satisfy the set of assumptions (M).
Thus, the set Aσ is either a single element µσ ∈ Sσ either a path-connected
subset of Sσ. Moreover, for all µ ∈ Aσ, we have Υσ(µ) = Lσ := lim

t→+∞
Υσ(µt).

From this theorem, we deduce the following statements.

Corollary B. Let us assume that the confining potential V , the interacting
potential F and the initial law µ0 satisfy the set of assumptions (M). We also
assume that the set Sσ

⋂

Υ−1
σ ({λ}) is discrete, for any λ ∈ R.

Thus, the probability measure µt converges weakly to an invariant probability
µσ ∈ Sσ, as t goes to infinity.

Corollary C. Let us assume that the confining potential V , the interacting
potential F and the initial law µ0 satisfy the set of assumptions (M). We also
admit that

• we are in the synchronized case, that is G′′(0) + ∇2V (x) > 0, for all
x ∈ R

d.

• the confining potential V is a polynomial function with degree deg(V ) =
2m > 2n = deg(F ).

By G :=
{

x ∈ R
d | ∇V (x) = 0

}

, we denote the set of the critical points of V .

Thus, the following limit holds:

lim sup
σ→0

inf
a∈G

lim sup
t→+∞

∫

Rd

||x− a||2 µt(dx) = 0 .
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1 Preliminaries

In this paragraph, we present the material and the notations that we use in the
work.

Definition 1.1. Let us assume that the confining potential V , the interacting
potential F and the initial law µ0 satisfy the set of assumptions (M).
For all t ≥ 0, we introduce the two functions

ξ(t) := Υσ (µt) and ηt(x) :=
σ2

2

∇ut(x)

ut(x)
+∇V (x) +∇F ∗ ut(x) .

With these notations, the granular media equation (II) becomes

∂

∂t
ut = div (ηtut) .

Thus, if ηt is identically equal to 0 then µt is an invariant probability of Diffusion
(I). We remind the well known entropy dissipation.

Proposition 1.2. Let us assume that the confining potential V , the interacting
potential F and the initial law µ0 satisfy the set of assumptions (M).
Thus, for all t, s ≥ 0, we have the inequality

ξ(t+ s) ≤ ξ(t) ≤ ξ(0) < +∞ .

Moreover, ξ is differentiable and it verifies

ξ′(t) ≤ −
∫

Rd

||ηt(x)||2 ut(x)dx .

See [CMV03] for a proof of this statement.

Under Assumption (M-7), the probability measure µt is absolutely continuous
with respect to the Lebesgue measure, for all t ≥ 0. Consequently, the weak
convergence of µt is equivalent to a problem of convergence in a functional space.

Definition 1.3. Let us assume that the confining potential V , the interacting
potential F and the initial law µ0 satisfy the set of assumptions (M).
We define the functional space M as the set of the functions f which satisfy the
three following hypotheses.

1. For all x ∈ R
d, f(x) > 0.

2. The integral of f on the whole space R
d is equal to 1.

3. With M0 defined in Inequality (IV), we have max
1≤j≤8q2

∫

Rd

||x||j f(x)dx ≤ M0.
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By reminding that ut is the density of the measure µt with respect to the
Lebesgue measure, we remark that ut ∈ M, for all t ≥ 0.

By proceeding like in Lemma 1.4 in [Tug10], we obtain
∫

Rd u(x) log(u(x))dx ≥
C −

∫

Rd ||x||2u(x)dx, where C is a constant. Consequently, for any measure
µ absolutely continuous with respect to the Lebesgue measure with density
u ∈ M, we have the lower-bound

Υσ(µ) =
σ2

2

∫

Rd

u(x) log(u(x))dx +

∫

Rd

V (x)u(x)dx +
1

2

∫

Rd

F ∗ u(x)u(x)dx

≥ C −M0 + inf
z∈Rd

V (z) > −∞ .

We skip the details. Due to this minoration and the monotonicity of ξ, we
obtain the next lemma.

Lemma 1.4. Let us assume that the confining potential V , the interacting po-
tential F and the initial law µ0 satisfy the set of assumptions (M).
Thus, there exists Lσ ∈ R such that Υσ(µt) converges to Lσ as the time t goes
to infinity.

We now remind Proposition 2.1 in [Tug11b].

Proposition 1.5. Let us assume that the confining potential V , the interacting
potential F and the initial law µ0 satisfy the set of assumptions (M).
Thus, there exist an invariant probability µσ and a sequence (tk)k∈N which con-
verges to infinity such that µtk converges weakly to µσ, as k goes to infinity.

The particular form of the potential F allows us to write explicitly what is
the function x 7→ F ∗ u(x) for all u ∈ M. We remind Lemma 1.1 in [Tug11b].

Lemma 1.6. Let us assume that the interacting potential F satisfy (M4)–(M5).
Let µ be a probability measure absolutely continuous with respect to the Lebesgue
measure with density u ∈ M.
Thus, the quantity F ∗ µ(x) = F ∗ u(x) is well defined and we have a simple
development,

F ∗ u(x) =
n
∑

k=1

k
∑

p1=0

k−p1
∑

p2=0

∑

τ∈J1 ; dKJ1 ;k−p1−p2K

Cτ
k,p1,p2

(µ) ||x||2p1 ντk−p1−p2
(x) ,

with Cτ
k,p1,p2

(µ) :=
G(2k)(0)

(2k)!

k!(−2)k−p1−p2

p1!p2!(k − p1 − p2)!

∫

Rd

||y||2p2 ντk−p1−p2
(y)µ(dy)

and ντl (x) :=
l

∏

i=1

xτ(i) , ∀ τ ∈ J1 ; dKJ1 ; lK .

This lemma implies that any invariant probability µ of Diffusion (I) is
parametrised by a finite number of moments, that are quantities of the form
∫

Rd x
l1
1 × · · · × xld

d µ(dx), with (l1, · · · , ld) ∈ N
d. Notations related to the mo-

ments are given subsequently. Let us first give an essential property on the
invariant probabilities.
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Lemma 1.7. Let us assume that the confining potential V and the interacting
potential F satisfy the set of assumptions (M).
Thus, an invariant probability of Diffusion (I) is uniquely determinated by its
moments. In other words, if a measure ν has the same moments than a station-
ary measure µσ, we deduce ν = µσ.

Proof. Let µσ be an invariant probability. By Lemma 2.1 in [Tug11b], it is
absolutely continuous with respect to the Lebesgue measure and its density uσ

satisfies the implicit equation,

uσ(x) =
exp

[

− 2
σ2 (V (x) + F ∗ uσ(x))

]

∫

Rd exp
[

− 2
σ2 (V (y) + F ∗ uσ(y))

]

dy
.

Consequently, for all r > 0, we have

∫

Rd

e
2

σ2 r||x||µσ(dx) =

∫

Rd exp
[

− 2
σ2 (V (x) + F ∗ uσ(x) − r||x||)

]

dx
∫

Rd exp
[

− 2
σ2 (V (x) + F ∗ uσ(x))

]

dx
.

Since F is convex and since ∇2V (x) > 0 if ||x|| is sufficiently large, we deduce
that

∫

Rd e
2

σ2 ||r||xµσ(dx) < +∞. Consequently, the serie
∑∞

k=0
νk
k! x

k, with νk :=
∫

Rd ||x||kµσ(dx), has a positive convergence radius. After applying the Fourier
criteria, the statement holds.

From now on, we use the following notations, about the moments.

Definition 1.8. 1. For all l := (l1, · · · , ld) ∈ N
d and for all x = (x1, · · · , xd) ∈

R
d, we denote

xl :=

d
∏

j=1

x
lj
j .

2. For all l ∈ N
d, we introduce the linear function λl from M (see Definition

1.3) to R, defined by

λl(u) :=

∫

Rd

xlu(x)dx .

This linear function λl corresponds to the moment with order l of the measures.
3. For all p ∈ N

∗, by ζ(p), we denote the subset of N
d which contains the

elements l := (l1, · · · , ld) ∈ N
d such that

d
∑

i=1

li ≤ 2p.

4. For all p ≥ n, by Λp, we denote the application from M to R
ζ(p) defined by

Λp (u) := (λl(u))l∈ζ(p) .

In other words, the linear function Λp corresponds to the vector of the moments
of total order less than 2p.

By rewritting Lemma 1.6 with the previous notations, we deduce the follow-
ing statement.
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Lemma 1.9. Let us assume that the confining potential V and the interacting
potential F satisfy (M1)–(M5).

Thus, there exists a unique family of linear functions {Xl ; l ∈ ζ(n)} from R
ζ(n)

to R such that
F ∗ u(x) =

∑

l∈ζ(n)

Xl (Λn(u))x
l ,

for any function u ∈ M.

The implicit equation (see Lemma 2.1 in [Tug11b]) satisfied by any invariant
probability µσ with density uσ implies

λl (u
σ) =

∫

Rd xl exp
[

− 2
σ2

(

V (x) +
∑

l′∈ζ(n) Xl′ (Λn (u
σ))xl′

)]

dx

∫

Rd exp
[

− 2
σ2

(

V (x) +
∑

l′∈ζ(n)Xl′ (Λn (uσ))xl′
)]

dx
,

for any l ∈ N
d. Consequently, any invariant probability is uniquely associated to

a vector of Rζ(n).

Definition 1.10. 1. For all p ≥ n, for all m ∈ R
ζ(p) and for all l0 ∈ ζ(n), we

use the notation
Xl0(m) := Xl0

(

(ml)l∈ζ(n)

)

.

It is the natural extension of the function Xl to the space R
ζ(p) ⊃ R

ζ(n).
2. For all p ≥ n and for all l ∈ N

d, by ϕl, we denote the function from R
ζ(p) to

R defined by

ϕl (m) :=

∫

Rd xl exp
[

− 2
σ2

(

V (x) +
∑

l′∈ζ(n) Xl′(m)xl′
)]

dx

∫

Rd exp
[

− 2
σ2

(

V (x) +
∑

l′∈ζ(n)Xl′ (m)xl′
)]

dx
−ml ,

for all m := (ml)l∈ζ(p) ∈ R
ζ(p). The definition of ϕl is consistent, due to the

first point of the definition. This is why we write ϕl instead of ϕl,p.

3. For all p ≥ n, by Φp, we denote the application from R
ζ(p) to itself defined

by
Φp (m) := (ϕl(m))l∈ζ(p) .

Consequently, a function uσ ∈ M is the density of an invariant probability
µσ if and only if it satisfies

Φn (Λn(u
σ)) = 0 .

Since the invariant probabilities are uniquely determinated by their moments
(according to Lemma 1.7), there is a bijection between Sσ and the set of points
m ∈ R

ζ(n) such that Φn(m) = 0.
To finish the preliminaries, we give a natural definition.

Definition 1.11. Let µ be a probability measure on R
d absolutely continuous

with respect to the Lebesgue measure with density u ∈ M. For all p ≥ n and for
all l ∈ N

d, we denote λl(µ) := λl(u) and Λp(µ) := Λp(u).

10



2 First results

In this paragraph, we establish the important statements which are used in next
section for proving Theorem A. We remind that Aσ is the set of the adherence
values of the family {µt ; t ≥ 0} and Sσ is the set of the invariant probabilities
of Diffusion (I).

It has already been proved that the free-energy of an adherence value is less
than the limit of the free-energy, see Proposition 2.5 in [Tug10]. We now prove
that equality holds under some additional hypotheses.

Proposition 2.1. Let us assume that the confining potential V , the interacting
potential F and the initial law µ0 satisfy the set of assumptions (M). We admit
the existence of an increasing sequence (tk)k∈N which goes to infinity such that
ξ′(tk) goes to 0 and µtk goes to µσ ∈ Aσ as k goes to infinity.
Thus, the inequality Υσ(µ

σ) = Lσ := lim
t→+∞

Υσ(µt) holds.

The proof is similar to the one of Proposition 1.8 in [Tug10].

Proof. From now on, by utk (resp. uσ), we denote the density with respect
to the Lebesgue measure of the probability measure µtk (resp. µσ). The con-
vergence from the term

∫

Rd V (x)utk(x)dx + 1
2

∫

Rd (F ∗ utk(x)) utk(x)dx toward
∫

Rd V (x)uσ(x)dx+ 1
2

∫

Rd (F ∗ uσ(x)) uσ(x)dx is implied by the convergence hy-
pothesis of µtk to µσ. Hence, we focus on the entropy term.

Step 1. We here aim to prove the existence of a constant C > 0 such that
utk(x) ≤ C for all k ∈ N

∗ and for all x ∈ R
d.

For doing so, we bound the integral of ||∇utk || on R
d. The triangular inequality

provides
∫

Rd

||∇utk(x)|| dx ≤ 2

σ2

∫

Rd

||ηtk(x)||utk(x)dx

+
2

σ2

∫

Rd

||∇V (x) +∇F ∗ utk(x)||utk(x)dx ,

where t 7→ ηt has been introduced in Definition 1.1. The growth property on
∇V and ∇F and Inequality (IV) yield
∫

Rd

||∇V (x) +∇F ∗ utk(x)||utk(x)dx ≤ C1

∫

Rd

(

1 + ||x||2q
)

utk(x)dx ≤ C2 ,

where C2 > 0 is a constant. By using Cauchy-Schwarz inequality and the
entropy dissipation, we obtain

∫

Rd

||ηtk(x)||utk(x)dx ≤
√

∫

Rd

||ηtk(x)||2 utk(x)dx ≤
√

−ξ′(tk) .

The quantity
√

−ξ′(tk) tends to 0 as k goes to infinity so it is bounded. Finally,
it leads to the existence of a positive constant C3 such that

∫

Rd

||∇utk(x)|| dx ≤ C3 .

11



Consequently, utk(x) ≤ utk(0)+C for all x ∈ R
d and for all k ∈ N. Nonetheless,

the sequence (utk(0))k∈N
converges so it is bounded. Hence, there exists a

constant C4 such that utk(x) ≤ C4 for all k ∈ N and x ∈ R
d.

Step 2. The application x 7→ utk(x) log (utk(x)) is uniformly lower-bounded
with respect to k. We can then apply the Lebesgue theorem which provides the
convergence as k goes to infinity of the integral term

∫

Rd

utk(x) log (utk(x))1{||x||≤R}dx

to
∫

Rd uσ(x) log (uσ(x))1{||x||≤R}dx for any R ≥ 0.

Step 3. The other integral is split into three terms.
Step 3.1. The first one is

I1(k) :=

∫

Rd

utk(x) log (utk(x)) 1{||x||>R ; utk
(x)≥1}dx .

Due to Step 1, Inequality (IV) and Markov inequality, we obtain

I1(k) ≤ log(C)µtk (B (0 ; R)
c
) ≤ log(C)M0

R2
.

Step 3.2. The second term is defined as

I2(k) :=

∫

Rd

utk(x) log (utk(x))1{||x||>R ; utk
(x)<1 ; utk

(x)≥e−||x||}dx < 0 .

We bound it in the following way:

|I2(k)| = −I2(k) ≤
∫

B(0 ;R)c
||x||utk(x)dx ≤ M0

R2
.

Step 3.3. We now look at the third term,

I3(k) :=

∫

Rd

utk(x) log (utk(x))1{||x||>R ; utk
(x)<1 ; utk

(x)<e−||x||}dx < 0 .

We introduce the function γ(x) :=
√
x log(x)1{x<1}. We have −C ≤ γ(x) ≤ 0

for all x ∈ R, where C is a positive constant. This provides

|I3(k)| = −I3(k) ≤ −
∫

B(0 ;R)c
γ (utk(x)) e

− 1
2
||x||dx ≤ Θ(R) ,

Θ being a decreasing function from R+ to itself such that lim
R→+∞

Θ(R) = 0.

Step 4. Let ǫ be a positive real, arbitrarily small. By taking R sufficiently
large, we have the upper-bound

sup
k∈N∗

max {I1(k) ; I2(k) ; I3(k)} <
ǫ

9
.
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Moreover, for R large enough, we have the inequality
∫

Rd

uσ(x) log (uσ(x)) 1{||x||≥R}dx <
ǫ

3
.

The two previous inequalities do not depend on k. Then, by taking k sufficiently
large, the following upper-bound holds:
∣

∣

∣

∣

∫

Rd

utk(x) log (utk(x))1{||x||≤R}dx−
∫

Rd

uσ(x) log (uσ(x))1{||x||≤R}dx

∣

∣

∣

∣

<
ǫ

3
.

This implies the inequality |Υσ (µtk)−Υσ(µ
σ)| < ǫ. In other words, the free-

energyΥσ (µtk) converges to Υσ(µ
σ). Due to the monotonicity of the free-energy

along the trajectories of Equation (II), Υσ (µt) converges to Lσ which implies
Υσ(µ

σ) = Lσ.

Let us stress that the equality Υσ(uσ) = Lσ does not a priori hold without
the hypothesis lim

k→+∞
ξ′(tk) = 0. It is used for proving the inequality I1(k) ≤

log(C)M0

R2 , see Step 3.1 and Step 1.

In the following, we show that Aσ, the set of the adherence values is included
into Sσ, the set of the invariant probabilities. The method that we use requires
the following statement. For each probability measure µ on R

d with µ /∈ Sσ,
there exist p ≥ n and an hypercube C in R

ζ(p) which contains Λp(µ) and which
has empty intersection with the set Λp (Sσ).

Proposition 2.2. Let us assume that the confining potential V , the interacting
potential F and the initial law µ0 satisfy the set of assumptions (M). Let ν be a
measure with density u ∈ M. We also assume ν /∈ Sσ.
Thus, there exist p ∈ N

∗ and ρ > 0 such that

inf
µ∈Sσ

max
l∈ζ(p)

|λl(µ)− λl(ν)| ≥ ρ .

Proof. According to Proposition A.2, for all N0 ∈ N
∗ and for all t > 0, we have

∫

Rd

||x||2N0 µt(dx) < +∞ .

Moreover, sup
t≥1

∫

Rd

||x||2N0 µt(dx) < +∞. Consequently, we can define the inte-

gral term
∫

Rd xlµt(dx), for any l ∈ ζ(p), for all p ≥ n and for all t > 0.

Let us proceed a reductio ad absurdum by assuming that for all k ≥ n, there
exists µσ

k ∈ Sσ such that

max
l∈ζ(k)

|λl (µ
σ
k )− λl(ν)| ≤

1

k
.

We deduce that the sequence (λl (µ
σ
k ))k∈N

is bounded for all l ∈ ζ(n). In other

words, the sequence (Λn (µ
σ
k))k∈N

is bounded in the space R
ζ(n). Consequently,

13



we can extract a subsequence (φ(k))k∈N
such that the sequence

(

Λn

(

µσ
φ(k)

))

k∈N

converges to a vector mσ
∞ ∈ R

ζ(n).
Since the family {µt ; t ≥ 0} is tight, Prokhorov theorem allows us to assume,
without any loss of generality, that the measure µσ

φ(k) converges weakly to a
measure µσ

∞ as k goes to infinity.

However, Φn (Λn (Sσ)) = {0}. The set Λn (Sσ) thus is closed. It implies that
Φn (m

σ
∞) = 0. Hence, the measure µσ

∞ satisfies Φn (Λn (µ
σ
∞)) = 0. Conse-

quently, µσ
∞ is an invariant probability of Diffusion (I).

Nevertheless, we have
|λl (µ

σ
∞)− λl (ν)| = 0

for all l ∈ ζ(p) and p ≥ n. In other words, the invariant probability µσ
∞ has the

same moments than ν. Since µσ
∞ is uniquely determinated by its moments, we

deduce that ν = µσ
∞ so ν is an invariant probability. This is an absurdity.

Let us point out that in the previous proof, the equality |λl (µ
σ
∞)− λl (ν)| =

0 must be verified for all l ∈ N
d and not only for the elements l in ζ(n).

We remind that we do not require Sσ to be discrete in the current work. Let
us give an example of a confining potential V and an interacting potential F
which satisfy Assumptions (M1)–(M5) such that Sσ, the set of the invariant
probabilities, is not discrete.

Proposition 2.3. Let d be an integer at least equal to 2. For all x ∈ R
d, we take

V (x) := r(x)4

4 − r(x)2

2 and F (x) := α
2 r(x)

2, with α > 0 and r(x) :=
√

∑d
i=1 x

2
i .

Thus, for σ sufficiently small, there exists a path-connected set of invariant
probabilities which is not a single element.

Proof. First of all, for any radial measure µ, we have
∫

Rd xµ(dx) = 0. Con-
sequently, for all σ > 0, there is exactly one radial invariant probability, that
is

µσ
0 (dx) :=

exp
[

− 2
σ2

(

V (x) + α
2

∑d

i=1 x
2
i

)]

exp
[

− 2
σ2

(

V (y) + α
2

∑d
i=1 y

2
i

)]

dy
dx .

By a simple computation, we can prove that Υσ (µ
σ
0 ) goes to − (max{1−α ; 0})2

4 as
σ goes to 0. Also, we can prove that the free-energy of the non-radial measure,

ν :=
exp

[

− 2
σ2

(

V (x) + α
2

∑d
i=1 x

2
i − αx1

)]

∫

Rd exp
[

− 2
σ2

(

V (y) + α
2

∑d

i=1 y
2
i − αy1

)]

dy
dx ,

goes to − 1
4 < − (max{1−α ; 0})2

4 as σ goes to 0. By considering Diffusion (I)
with µ0 := ν, we deduce, after applying the entropy dissipation (Proposition
1.2) and Proposition 1.5, that there exists an invariant probability νσ such that
Υσ(ν

σ) ≤ Υσ (ν) < Υσ(µ
σ
0 ) so νσ is not radial. We then introduce

mσ :=

∫

Rd

xνσ(dx) .
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By definition, we have

mσ =

∫

Rd x exp
[

− 2
σ2

(

V (x) + α
2

∑d

i=1 x
2
i − α 〈mσ ; x〉

)]

dx

∫

Rd exp
[

− 2
σ2

(

V (x) + α
2

∑d

i=1 x
2
i − α 〈mσ ; x〉

)]

dx
.

For all Θ = (ϑ1, · · · , ϑd−1) ∈ [0; 2π]d−1, we consider the vector mσ
Θ ∈ R

d which
ith coordinate equal to

mσ
Θ(i) := ||mσ||2

i−1
∏

j=1

sin(ϑj)× cos(ϑi) ,

with the convention ϑd := 0. Both functions F and V are radials. Consequently,
for all Θ ∈ [0; 2π]d−1, we have the equality

mσ
Θ =

∫

Rd x exp
[

− 2
σ2

(

V (x) + α
2

∑d
i=1 x

2
i − α 〈mσ

Θ ; x〉
)]

dx

∫

Rd exp
[

− 2
σ2

(

V (x) + α
2

∑d

i=1 x
2
i − α 〈mσ

Θ ; x〉
)]

dx
.

By νσΘ, we denote the invariant probability associated to this first moment,

νσΘ(dx) =
exp

[

− 2
σ2

(

V (x) + α
2

∑d

i=1 x
2
i − α 〈mσ

Θ ; x〉
)]

∫

Rd exp
[

− 2
σ2

(

V (y) + α
2

∑d

i=1 y
2
i − α 〈mσ

Θ ; x〉
)]

dy
dx .

Hence, the path-connected set
{

νσΘ ; Θ ∈ [0 ; 2π]d−1
}

is not a single element
(provided that d− 1 ≥ 1) and, by construction, it is included into Sσ.

3 Proof of Theorem A

The aim of this paragraph is to prove Theorem A. We remind that Aσ and Sσ

respectively are the set of the limiting values of the family {µt ; t ≥ 0} and the
set of the invariant probabilities of Diffusion (I).

Theorem A. Let us assume that the confining potential V , the interacting
potential F and the initial law µ0 satisfy the set of assumptions (M).
Thus, the set Aσ is either a single element µσ ∈ Sσ either a path-connected
subset of Sσ. Moreover, for all µσ ∈ Aσ, Υσ(µ

σ) = Lσ := lim
t→+∞

Υσ(µt).

3.1 Outline of the proof

We here provide the ideas of the proof. The details are postponed in next
subsections. By Proposition 1.5, we know that there exists a probability measure
µσ
0 such that

• the measure µσ
0 is in Aσ.
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• the measure µσ
0 is invariant for Diffusion (I).

• the free-energy of µσ
0 is equal to Lσ := lim

t→0
Υσ.

If Aσ = {µσ
0}, the proof is achieved. We assume from now on that #Aσ > 1.

The proof now consists in establishing that

1. the set Aσ is included into Sσ.

2. the set Aσ is path-connected.

3. the free-energy is constant on Aσ.

Step 1. We proceed a reductio ad absurdum in order to prove the first state-
ment. The details are in Subsection 3.2.
We assume the existence of ν ∈ Aσ such that ν /∈ Sσ. According to Proposition
2.2, there exists a closed set with non-empty interior H which contains ν and
which has an empty intersection with Sσ.
Since ν is an adherence value, we can prove the existence of a smooth function
with compact support φ, a constant ρ > 0 and two increasing sequences (rk)k∈N

and (sk)k∈N
such that rk < sk and for all t ∈ [rk; sk], we have

ρ =

∫

Rd

φ(x)µrk (dx) ≤
∫

Rd

φ(x)µt(dx) ≤
∫

Rd

φ(x)µsk (dx) = 2ρ .

Moreover, for all t ∈ [rk; sk], µt ∈ H. By applying Proposition A.1, we construct
an invariant probability νσ ∈ Sσ

⋂H. This is absurd.

Step 2. The details of the proof of the second statement are in Subsection 3.3.
We use the previous result: all the limiting values are invariant probabilities.
Since the function Λn is a bijection from Sσ to Λn (Sσ) ⊂ R

ζ(n), we deduce that
Λn is a bijection from Aσ to Cσ := Λn (Aσ) ⊂ R

ζ(n).
Due to the continuity of the functions t 7→

∫

Rd xlµt(dx), we deduce that Cσ
is path-connected. This implies that Aσ also is path-connected, according to
Lemma 1.9.

Step 3. The proof of the third point is made in Subsection 3.4.
We proceed a reductio ad absurdum by assuming the existence of ν ∈ Aσ ⊂ Sσ

such that Υσ (ν) 6= Lσ. We remind that Λn is a bijection from Aσ to Cσ ⊂ R
ζ(n).

Due to the continuity of Λn and Υσ, there exists a closed set Dσ ⊂ R
ζ(n) which

contains the point Λn (ν) in its interior and such that Υσ(µ) 6= Lσ for all the
probability measures µ satisfying Λn (µ) ∈ Dσ.
We now use similar arguments than the ones in Step 1. There exist a smooth
function with compact support φ, a constant ρ > 0 and two increasing sequences
(rk)k∈N

and (sk)k∈N
such that rk < sk and for all t ∈ [rk; sk], we have

ρ =

∫

Rd

φ(x)µrk (dx) ≤
∫

Rd

φ(x)µt(dx) ≤
∫

Rd

φ(x)µsk (dx) = 2ρ .

Moreover, for all t ∈ [rk; sk], Λn (µt) ∈ Dσ. By applying Proposition A.1, we
construct an invariant probability νσ ∈ Sσ with free-energy equal to Lσ :=
limt→+∞ Υσ(µt) and such that Λn (ν

σ) ∈ Dσ. By construction of the set Dσ,
this is impossible.
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3.2 The set Aσ is included into Sσ

We proceed a reductio ad absurdum by assuming the existence of a measure
ν ∈ Aσ such that ν is not an invariant probability. According to Proposition
2.2, there exist p ∈ N

∗ and ρ > 0 such that

inf
µ∈Sσ

max
l∈ζ(p)

|λl(µ)− λl(ν)| ≥ ρ .

Let us define Hp
κ ⊂ R

ζ(p) the hypercube of center Λp(ν) with radius equal to
κ > 0,

Hp
κ :=

{

X ∈ R
ζ(p)

∣

∣

∣
max
l∈ζ(p)

|Xl − λl(ν)| ≤ κ

}

.

It is a closed bounded set with non-empty interior. Let us define Hκ :=
Λ−1
p ({Hp

κ}). By construction, ν ∈ H ρ
4

and H ρ
2

⋂Sσ = ∅. Particularly, µσ
0 /∈ H ρ

2

where µσ
0 has been introduced in Subsection 3.1.

Nonetheless, µσ
0 and ν are adherence values of the family {µt ; t ≥ 0}. Conse-

quently, there exist two increasing sequences (rk)k∈N and (sk)k∈N such that for
all k ∈ N, µrk ∈ ∂H ρ

4
, µsk ∈ ∂H ρ

2
and for all rk < t < sk, we have

ρ

4
< |λl(µt)− λl(ν)| <

ρ

2
, for any l ∈ ζ(p) .

By construction of the sequences (rk)k∈N and (sk)k∈N, there exists l(k) ∈ ζ(p)
such that λl(k) (µrk) = λl(k)(ν) + ϑ1

k
ρ
4 and λl(k) (µsk) = λl(k)(ν) + ϑ2

k
ρ
2 where

ϑ1
k := ±1 and ϑ2

k ∈ [−1; 1].

Since #ζ(p) < +∞, we can extract two subsequences (we continue to write
rk and sk for the comfort of the reading) such that there exist l0 ∈ ζ(n) and
ϑ ∈ {−1 ; 1}, all independent from the index k, which satisfy

ϑλl0 (µrk) = ϑλl0 (ν) +
ρ

4
, ϑλl0 (µsk) = ϑλl0 (ν) +

ρ

2

and for all t ∈ [rk; sk], we have

ϑλl0 (ν) +
ρ

4
≤ ϑλl0 (µt) ≤ ϑλl0 (ν) +

ρ

2
.

Moreover, for all t ∈ [rk; sk], µt ∈ H ρ
2
. Without any loss of generality, we as-

sume that ϑ = 1.

We apply Proposition A.1 with a smooth function with compact support which
is equal to xl0 if ||x|| ≤ R and equal to 0 if ||x|| ≥ R+ 1.
By taking R sufficiently large, we deduce the existence of a measure νσ ∈
H ρ

2

⋂Aσ

⋂Sσ. However, Sσ

⋂H ρ
2
= ∅. This is an absurdity.

3.3 The set Aσ is path-connected

According to the previous paragraph, the set Aσ is included into Sσ, the set of
the invariant probabilities. We now consider the application Λn from the set of
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the probability measures to R
ζ(n).

By Cσ, we denote the set Λn (Aσ). Due to the continuity of the applica-
tion t 7→ Λn(µt), we deduce that the set of the limiting values of the fam-
ily {Λn (µt) ; t ≥ 0} is path-connected. In other words, the set Cσ is path-
connected.

Consequently, for all the measures µ0 and µ1 in Aσ, there exists an applica-
tion from [0; 1] to the set of the probability measures, ϑ 7→ µϑ such that for all
l ∈ ζ(n), the functions ϑ 7→ λl (µϑ) are continuous.

According to Lemma 1.9, we deduce that for all x ∈ R
d, the function ϑ 7→

V (x) +F ∗µϑ(x) is continuous. We know that for all ϑ ∈ [0; 1], the measure µϑ

is absolutely continuous with respect to the Lebesgue measure with a density
uϑ satisfying

uϑ(x) =
exp

[

− 2
σ2 (V (x) + F ∗ uϑ(x))

]

∫

Rd exp
[

− 2
σ2 (V (y) + F ∗ uϑ(y))

]

dy
.

Hence, for any smooth function with compact support φ, the application ϑ 7→
∫

Rd φ(x)µϑ(dx) is continuous. In other words, the set Aσ is path-connected.

3.4 The free-energy is constant on Aσ

We introduce Lσ := limt→+∞ Υσ(µt). By Proposition 2.5 in [Tug10] (which
can easily be adapted to the general dimensional case), we know that for any
µ ∈ Aσ, we have the inequality Υσ(µ) ≤ Lσ. In other words, the free-energy of
a limiting value is less than Lσ, the limit of the free-energy.

Let us proceed a reductio ad absurdum by assuming that there exist ν ∈ Aσ and
η > 0 satisfying Υσ (ν) = Lσ − 2η. We use similar arguments than the ones of
the previous subsections.

Due to the continuity of Λn and to Lemma 1.9, we deduce that there exists
ρ > 0 sufficiently small such that Υσ(µ) ≤ Lσ − η for all µ ∈ Sσ

⋂Hρ where Hρ

is defined like in Subsection 3.2, as the set of the probability measures µ such
that |λl(µ)− λl(ν)| ≤ ρ, for all l ∈ ζ(n).

Nevertheless, the measure µσ
0 ∈ Aσ introduced in Subsection 3.1 satisfies the

equality Υσ (µ
σ
0 ) = Lσ. Hence, µσ

0 /∈ Hρ.

We now proceed exactly like in Subsection 3.2. We obtain the existence of two
increasing sequences (rk)k∈N and (sk)k∈N, of l0 ∈ ζ(n) and ϑ ∈ {−1 ; 1}, all
independent from the index k, which satisfy

ϑλl0 (µrk) = ϑλl0 (ν) +
ρ

4
, ϑλl0 (µsk) = ϑλl0 (ν) +

ρ

2

and for all t ∈ [rk; sk], we have

ϑλl0 (ν) +
ρ

4
≤ ϑλl0 (µt) ≤ ϑλl0 (ν) +

ρ

2
.

Moreover, for all t ∈ [rk; sk], µt ∈ Hρ. Without any loss of generality, we assume
that ϑ = 1. We apply Proposition A.1 with a smooth function with compact
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support equal to xl0 if ||x|| ≤ R and equal to 0 if ||x|| ≥ R + 1. By taking R
sufficiently large, we deduce the existence of a measure νσ ∈ H ρ

2

⋂Aσ such that
Υσ (ν

σ) = Lσ. Nonetheless, by construction of H ρ
2
, we have Υσ (ν

σ) ≤ Lσ − η.
This is an absurdity.

4 Proofs of the Corollaries

We here provide the proofs of the two corollaries. We first remind Corollary B.

Corollary B. Let us assume that the confining potential V , the interacting
potential F and the initial law µ0 satisfy the set of assumptions (M). We also
assume that the set Sσ

⋂

Υ−1
σ ({λ}) is discrete, for all λ ∈ R.

Thus, the measure µt converges weakly to an invariant probability µσ ∈ Sσ as t
goes to infinity.

Proof. According to Theorem A, the set of the limiting values Aσ is a path-
connected subset of Sσ in which the free-energy is constant. Due to the hypoth-
esis of Corollary B, any path-connected subset of Sσ with constant free-energy
is a single element. This achieves the proof.

We now present a result which holds in the small-noise limit.

Corollary C. Let us assume that the confining potential V , the interacting
potential F and the initial law µ0 satisfy the set of assumptions (M). We also
admit that

• we are in the synchronized case, that is G′′(0) + ∇2V (x) > 0, for all
x ∈ R

d.

• the confining potential V is a polynomial function with degree deg(V ) =
2m > 2n = deg(F ).

By G :=
{

x ∈ R
d | ∇V (x) = 0

}

, we denote the set of the critical points of V .

Thus,

lim sup
σ→0

inf
a∈G

lim sup
t→+∞

∫

Rd

||x− a||2 µt(dx) = 0 .

Proof. Step 1. First of all, we introduce S0, the set of the probability measures
µ0 such that there exist a decreasing sequence (σk)k∈N which goes to 0 and
a sequence (µσk)k∈N

of invariant probabilities of Diffusion (I) which converges
weakly to µ0, as k goes to infinity.

Step 2. By proceeding exactly like in [Tug11b] (Proposition 3.10, Lemma 3.3,
Theorem 3.7 and Proposition 3.8 hold under the set of assumptions (M)), we
obtain that the set S0 is included into {δa ; a ∈ G}.
Step 3. We deduce that for any ρ > 0, there exists σ0 > 0 sufficiently small

such that for all σ < σ0 and for all ν ∈ Sσ, we have min
a∈G

∫

Rd

||x− a||2 ν(dx) ≤ ρ.

Step 4. Theorem A tells us that Aσ ⊂ Sσ. This achieves the proof.
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Let us remark that we do not have a priori the existence of a ∈ G such that

lim sup
σ→0

lim sup
t→+∞

∫

Rd

||x− a||2 µt(dx) = 0 .

Indeed, the basins of attraction a priori are not independent of σ > 0.

A Useful technical results

We here present the proposition which is used several times in the proof of The-
orem A for constructing elements of Sσ satisfying two contradictory hypotheses.

Proposition A.1. Let us assume that the confining potential V , the interacting
potential F and the initial law µ0 satisfy the set of assumptions (M). We also
assume the existence of two polynomial functions P and Q, a smooth function φ
from R

d to R with compact support such that |φ(x)| ≤ P (||x||) and ||∇φ(x)||2 ≤
Q (||x||), κ > 0 and two sequences (rk)k∈N and (sk)k∈N which go to infinity such
that for all rk ≤ t ≤ sk < rk+1, we have

κ =

∫

Rd

φ(x)urk(x)dx ≤
∫

Rd

φ(x)ut(x)dx ≤
∫

Rd

φ(x)usk (x)dx = 2κ .

Thus, there exists νσ ∈ Aσ

⋂Sσ which density vσ with respect to the Lebesgue
measure verifies

∫

Rd φ(x)vσ(x)dx ∈ [κ; 2κ]. Moreover, Υσ(ν
σ) = lim

t→+∞
Υσ(µt).

Proof. Outline. We proceed exactly like in the proof of Proposition 2.1 in
[Tug11b]. We just neeed to find a sequence (qk)k∈N which tends to infinity as k
goes to infinity and which verifies the two following conditions:

• ξ′(qk) converges to 0.

• rk ≤ qk ≤ sk.

For doing so, we remark that the inequality ξ′(s) ≤ 0 and the convergence
of

∫∞

t
ξ′(s)ds to 0 implies that

∑∞
p=k

∫ sp

rp
ξ′(s)ds vanishes when k is going to

infinity. However, to obtain the existence of such a sequence (qk)k∈N
, we need

to prove that lim inf
k−→+∞

(sk − rk) > 0. This is done like in the proof of Proposition

A.1 in [Tug10].

Step 1. We begin to prove that lim inf
k−→+∞

(sk − rk) > 0. We introduce the

function

Φ(t) :=

∫

Rd

φ(x)ut(x)dx .

This function is well defined since |φ(x)| is bounded by P (||x||). The derivation
of Φ, the application of Equation (II) and an integration by parts lead to

Φ′(t) = −
∫

Rd

〈

∇φ(x) ;

{

σ2

2
∇ut(x) + ut(x) (∇V (x) +∇F ∗ ut(x))

}〉

dx

= −
∫

Rd

〈∇φ(x) ; ηt(x)〉 ut(x)dx .
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The Cauchy-Schwarz inequality implies

|Φ′(t)| ≤
√

−ξ′(t)

√

∫

Rd

||∇φ(x)||2 ut(x)dx ,

by reminding that ξ(t) := Υσ (µt). The quantity ||∇φ(x)||2 is bounded by
Q (||x||) and

∫

Rd ||x||2N0 ut(x)dx is uniformly bounded with respect to t ≥ 1 for
all N0 ∈ N according to Proposition A.2. So, there exists C > 0 such that
∫

Rd ||∇φ(x)||2 ut(x)dx ≤ C2 for all t ≥ 1. We deduce

|Φ′(t)| ≤ C
√

|ξ′(t)| . (V)

By definition of the two sequences (rk)k∈N and (sk)k∈N, we have

Φ(sk)− Φ(rk) = κ .

Combining this identity with Inequality (V) and the monotonicity of ξ yields

C

∫ sk

rk

√

−ξ′(t)dt ≥ κ .

We apply the Cauchy-Schwarz inequality and we obtain

C
√
sk − rk

√

ξ(rk)− ξ(sk) ≥ κ .

Moreover, ξ(t) converges as t goes to infinity (see Lemma 1.4). It implies the
convergence of ξ(rk)− ξ(sk) to 0 when k goes to infinity. Consequently, sk − rk
converges to infinity so

lim inf
k−→+∞

sk − rk > 0 .

Step 2. By Lemma 1.4, Υσ(µt) − Lσ = −
∫∞

t
ξ′(s)ds converges to 0. As ξ′

is non-positive, we deduce that
∑∞

k=N

∫ sk

rk
ξ′(s)ds also converges to 0 when N

goes to infinity. As lim inf
k−→+∞

sk− rk > 0, we deduce the existence of an increasing

sequence qk ∈ [rk; sk] which goes to infinity and such that ξ′ (qk) converges to 0
as k goes to infinity. Furthermore,

∫

R
φ(x)uqk (x)dx ∈ [κ; 2κ], for all k ∈ N.

Step 3. By proceeding similarly as in the proof of Theorem 2.7 in [Tug11b],
we extract a subsequence of (qk)k∈N (we continue to write it qk for simplify-
ing the reading) such that µqk converges weakly to an invariant probability
νσ. Moreover, its density vσ with respect to the Lebesgue measure verifies
∫

Rd φ(x)vσ(x)dx ∈ [κ; 2κ].

Step 4. Since ξ′(qk) goes to 0 as k goes to infinity, we can apply Proposition
2.1. Thus, we deduce that Υσ(ν

σ) = Lσ := limt→+∞ Υσ(µt).

Now, we explain why all the moments of µt are finite for all t > 0. This
is essential for making the separation between an element of Sσ

⋂Aσ and any
other elements of Aσ and it also is used in the previous proposition.
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Proposition A.2. Let us assume that the confining potential V , the interacting
potential F and the initial law µ0 satisfy the set of assumptions (M).
Thus, for all t > 0, for all p ∈ N

∗, we have E [||Xt||p] < +∞. Moreover,
sup
t≥1

E [||Xt||p] < +∞

Proof. Step 1. If E [||X0||p] < +∞, then E [||Xt||p] < +∞ for all t > 0, see
Theorem 2.13 in [HIP08]. We now assume that there exists p0 ∈ N

∗ such that

E

[

||X0||2p0

]

= +∞. Let us introduce l0 := min
{

l ≥ 0 | E

[

||X0||2l
]

= +∞
}

.

We know that E

[

||Xt||2l0−2
]

< +∞ for all t ≥ 0, see [HIP08].

Step 2. Let T be a positive real. Let us prove that E

[

||XT ||2l0
]

< +∞. We

proceed a reductio ad absurdum by assuming that E

[

||XT ||2l0
]

= +∞. This

implies directly E

[

||Xt||2l0
]

= +∞ for all t ∈ [0, T ].

For all t ∈ [0, T ], the application x 7→ ∇F ∗ µt(x) is a polynomial function
and its parameters are the moments of µt with total order less than 2n. These
moments are uniformly bounded with respect to the time t by Inequality (IV),

sup
1≤j≤8q2

sup
t∈[0,T ]

E

{

||Xt||j
}

≤ M0 .

Nevertheless, the principal term of ∇F ∗ µt does not depend on the moment
and is of degree 2n− 1. We thus deduce the existence of a function Rt and a
positive constant κ2q−1 such that

∇V (x) +∇F ∗ ut(x) = κ2q−1 ||x||2q−2
x+Rt(x) ,

with |Rt(x)| ≤ Pt(x) for all x ∈ R
d, Pt being a polynomial function with degree

at most 2q − 2. Moreover, the polynomial function Pt depends in t by the
moments of µt with total order less than 2n. According to Inequality (IV),

there exists a positive constant C such that |Pt(x)| ≤ C
(

1 + ||x||2q−2
)

.

Let l be a positive integer. We denote φ(x) := ||x||2l. Simple computations lead
to

〈∇φ(x) ; ∇V (x) +∇F ∗ µt(x)〉 −
σ2

2
∆φ(x) ≥ Cl

(

||x||2l+2q−2 − 1
)

where Cl is a positive constant. Consequently, for all ω ∈ Ω, we have the
inequality

||XT (ω)||2l ≤ ||X0(ω)||2l +MT (ω) + ClT − Cl

∫ T

0

||Xt(ω)||2l+2q−2
dt ,

(Mt)t≥0 being a martingale. We choose l := l0 + 1 − q < l0. Taking the
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expectation yields

0 ≤ E

[

||XT ||2l0+2−2q
]

≤E

[

||X0||2l0+2−2q
]

+ Cl0+1−qT − Cl0+1−q

∫ T

0

E

[

||Xt||2l0
]

dt .

Nonetheless, E
[

||Xt||2l0
]

= +∞ for all 0 ≤ t ≤ T . This implies 0 ≤ −∞. This

is absurd. Consequently, for all T > 0, E
[

||XT ||2l0
]

< +∞.

Step 3. Let T be a positive real and k ∈ N such that k ≥ 0. We remind the

integer l0 := min
{

l ≥ 0 | E

[

||X0||2l
]

= +∞
}

.

We introduce ti := i
k+1T for all 1 ≤ i ≤ k + 1. We apply Step 2 to t1 and

we deduce E

[

||Xt1 ||2l0
]

< +∞. By an inductive argument, we deduce the

inequality E

[

||Xti ||2l0+2i−2
]

< +∞, for all 1 ≤ i ≤ k + 1. In particular,

E

[

∣

∣

∣

∣Xtk+1

∣

∣

∣

∣

2l0+2k
]

< +∞, that is E
[

||XT ||2l0+2k
]

< +∞. This inequality holds

for all k ≥ 0 so the probability measure µT satisfies
∫

Rd ||x||2p µT (dx) < +∞ for
all p ∈ N

∗.

Step 4. In particular, it holds with T := 1. Thank to Theorem 2.13 in [HIP08],
we obtain directly sup

t≥1
E [||Xt||p] < +∞.
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