
HAL Id: hal-00628052
https://hal.science/hal-00628052

Submitted on 29 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic code generation based on generic description
of intelligent instrument

Stéphane Perrin, Eric Benoit, Laurent Foulloy

To cite this version:
Stéphane Perrin, Eric Benoit, Laurent Foulloy. Automatic code generation based on generic description
of intelligent instrument. IEEE International Conference on Systems, Man and Cybernetics, Oct 2002,
Hammamet, Tunisia. pp.WA2Q5, �10.1109/ICSMC.2002.1175651�. �hal-00628052�

https://hal.science/hal-00628052
https://hal.archives-ouvertes.fr

Automatic Code Generation based on
Generic Description of Intelligent Instrument

Stéphane Perrin, Eric Benoit, Laurent Foulloy

LAMII-ESIA Université de Savoie

B.P. 806, F-74016 Annecy cedex, France

stephane.perin@univ-savoie.fr, eric.benoit@univ-savoie.fr, laurent.foulloy@univ-savoie.fr

IEEE Int. Conf. on Systems, Man
and Cybernetics (SMC'02), CD-
ROM WA2Q5, Hammamet,
Tunisia, October 2002
Abstract - This paper presents an automatic outputs
generation based on XML description of intelligent
instruments. This description uses the service based
approach called INOMs. The XML representation of
intelligent instruments enables three different outputs: user
informations output in html format, supervisor information
output, and source code output for selected field bus network
target. The intelligent instrument model is briefly described
and the area of interest consists in the automatic code
generation. A basic example is presented in order to illustrate
the different steps and to show the simplicity of the
operational implementation.

Keywords: Automatic Generation Code, XML, Intelligent
Instrument, Generic Description.

I INTRODUCTION

Intelligent instruments, i.e. intelligent sensors and intelligent
actuators, are now commonly used in industry. Their design is
performed both by software engineer and by physicist who not
necessary understand each other. Recent studies propose
instrument models based on a set of functionalities organized
with a general behavioural description, i.e. automation graph
or object model [1][2][3]. The idea of this paper is to propose
a solution that cuts the design process into two pieces based on
the same instrument modelling. The aim of this approach is to
simplify the activity of the software engineer and the physicist
with respect to their respective competencies.

This paper is a extension to recent works about based service
approach [4] and a dedicated tool: CAPtool [5][6], that is able,
to verify the model and now, to produce generic XML
description of intelligent instruments. Wollschlaeger discusses
about the representation of CANopen device profile in XML
language[7]. He shows that specific informations for service
and support can be extracted from a general XML based
description. Based on XML format, the intelligent instrument
representation can also be used to generate code source as well
as user information can be created in html format or supervisor
information i.e. Electronic Data Sheet (EDS) can be created in
dedicated format. In this paper we propose to extend this
approach to source code generation of the instrument into a
source file that will be used for several translation in order to
produce a source code.

II SERVICE BASED INTELLIGENT INSTRUMENT
MODELLING

A. Principle

This section presents the chosen modelling for intelligent
instrument. Recent studies propose models based on a set of
functionalities organized with a general behavioural
description, i.e. automation graph or object model [2][8][9].
The internal modelling of intelligent instruments is not
sufficient for the design of large applications. Obviously,
intelligent instruments need to inter-operate. Therefore an
external model of intelligent instrument is required.
Staroswiecki proposed to model a sensor by a set of services
[4]. Services are organized into subsets called "USer
Operating Modes" (USOM). In this model, a sensor service
can be requested, and so serviced, only if the current active
USOM includes this service. This prevents the requirement of
services when they cannot be available.

The approach discussed in [10] was proposed to model
existing instruments from the external point of view. In
particular, the external model of the instrument can be used to
build a global model for an application involving several
instruments. This kind of approach can also be used to define
the internal functional model of a sensor [11].

Instruments are considered as entities that offer some more or
less complex services. These services represent the instrument
functionalities from the user point of view. At a lower level,
each instrument service is defined as a set of internal services
Fig. 1.

Fig. 1. Service based structure of an intelligent instrument.

These levels are representative of the gap between the
instrument user point of view, the instrument designer point of
view and the software designer activity. In order to use
instrument designer capabilities for the design of intelligent

Fonction niveau i-1Fonction niveau i-1

CLIENT

Service niveau i-2Service niveau i-2Basic functions

User level

Instrument

Internal

External Service Instrument
Functions

Internal Service Software

Interface

Interface

designer
level

designer
level

instruments, instrument functionalities are described with
basic internal services. Then the designer will just have to
define each external service with a set of internal services.

B. Modelling

The software designer creates basic pieces of code, i.e. internal
services, using the usual C language. Then, he defines all
possible sequences between internal services. Finally he
creates internal modes as sets of internal services.

Fig. 2. Internal services and internal modes of the counter
example.

The Fig. 2. shows an example of the graphical model produced
by the software designer. In this example, the instrument
handle a counter. When the counter is initialised, the counter
value is set to 0, the initial value is set to 0 and the final value
is set to 10. The default mode is up. Then counter value can be
incremented while it is less than final value. When the counter
value is greater or equal than final value, the counter switch to
the down mode. Then counter value can be decremented while
it is greater than final value.

Internal service reset sets the counter value to 0 and the
final_var to 0. The show_x internal services, e.g.
show_counter, send the value of the associated variable on the
fieldbus connected to the instrument. Decrement and
increment internal services modify the counter each time they
are called. The internal data flow is included into the definition
of internal services and does not appear at the model level. The
designer have to indicate input and output variables: three
variables are used to perform this instrument: count_var
contains the current value of the counter (output), start_var
contains the start value of the counter (input/output) and
final_var contains the final value of the counter (input/output).

The instrument designer creates each external service by
defining which internal service is started, and which other
internal service is used by this external service. Then he
creates external modes as sets of external services (Fig. 3.) and
defines the authorized transitions between modes (Fig. 4.). In
this example, the instrument designer defines the external
service count that uses the show_counter internal service in
order to make the service count sending the counter value over
the network.

Fig. 3. Model of the external service count

The functional description describes the implementation of
those functional requirements. Fig. 5. represents the
generating of specific output descriptions for a device.

.:

Fig. 4. External services and external modes of the counter
example.

From the graphical modelling of the intelligent instrument a
global generic device description file is created. A graphical
user interface may be used for creating this XML description.

Fig. 5. Principle of using XML for intelligent

III XML REPRESENTATION OF THE MODEL

The produced XML file contains all information included in
the graphical modelling. The XML file of the example can be
seen in the annexe. The C format definition of internal services
is not included into the XML file and stays in this format for
convenient use. The XML representation of internal services
then includes services names and the sequence between
services. A small piece of the XML file of the example is
presented below:

<!--Internal services definitions -->

down

decrement show_counter

show_start_var

show_final_var

reset

up

increment

decrement show_counter increment

count

configuration

run

set_final_var

show_counter_var

show_bounds

count

initialize

set_start_var

graphical

Global

description

XML file

device

Electronic Data
Sheet

User information
EDS file XHTML file

Source code
(C, etc....)

dedicated language

: formatting opera-
tions with xsl file

legend

: human or specif-
ic tool operation

modelling

<iservice id="reset">
<starts>show_counter</starts>
<starts>show_start_var</starts>
<starts>show_final_var</starts>

</iservice>
<iservice id="decrement">

<starts>show_counter</starts>
</iservice>
<iservice id ="increment">

<starts>show_counter</starts>
</iservice>
<iservice id="show_start_var" />
<iservice id="show_final_var" />
<iservice id="show_counter" />

An XML based representation file can easily be transformed
into an other file (i.e. XML, or HTML, etc....). This can be
performed by a set of rules. These rules are expressed using
extensible style language for transformation (XSLT) and can
be contained into XSL files. Each XSL file appears as
conventional files that includes some transformation rules.
Indeed an XSL file dedicated to the generation of an HTML
file includes essentially HTML markers, and some
transformation rules that translate XML information into
HTML markers.

For example, if the XSL file includes:

<H1>List of services</H1>
<xsl: for-each select="instrument/iservice">
internal service: <xsl:value-of select="@id" />

</xsl:for-each>

then the translation of the XML file of the counter example by
this file will includes:

<H1>List of services</H1>
internal service: reset

internal service: decrement

internal service: increment

internal service: show_start_var

internal service: show_final_var

internal service: show_counter

This is a pure HTML file. The same approach can be used for
the generation of EDS or source code. For example, an XSL
file dedicated to the generation of C source code is essentially
a C source code with some rules that translate XML
information into C items. For example, the following XSL file
translate the XML example file into a C file.

void initializeIServices(void){
<xsl:for-each select="instrument/iservice">
start_<xsl:value-of select="@id"> = 0;</xsl:for-each>
}

This translates the XML file into:

void initializeIServices(void){

start_reset = 0;
start_decrement = 0;
start_increment = 0;
start_show_start_var = 0;
start_show_final_var = 0;
start_show_counter = 0;
}

IV FROM GRAPHICAL MODEL TO FINAL SOFTWARE

This kind of approach allows the designer to be independent of
a field bus technology. Therefore its developments can be
directly used for a dedicated field bus. Thus, from a only one
XML representation of instrument intelligent, source code
files can be generated. The specific rules, in regards to field
bus network specifications, is expressed into XSL files. So, to
obtain source code for a dedicated field bus, it is just necessary
to add corresponding transformation rules using XSLT
language. No other dedicated tools are necessary. Fig. 6.
illustrates the code generation procedure.

Fig. 6. Implemented approach for designing intelligent
instrument based on XML representation.

text file

graphical modelling

description

XML file

CAPtool

src

Model
checking

High level
descrip-
tion of
used func-
tions

XSL file

Global de-
scription

source
code

Executable
code

de
di

ca
te

d
fie

ld
bu

s
te

ch
no

lo
gy

ar
ea

.

Compiler

set of properties

In order to improve the safety of the instrument design, a set of
properties must be satisfied [12]. These properties can be
imposed during the design by limitations of the modelling.
They can also be checked after the design. Most of the
modelling steps are based on the set and graph theories. In a
first step the design is defined graphically. Then, the model
properties are translated into a text file. This translation is
presently performed manually.

The generated text file is verified by the dedicated tool
CAPtool. This one verifies all the properties that cannot be
imposed by the graphic aspects of the model. An extension of
this tool has been developed in order to perform the XML
representation of intelligent instrument. Furthermore, the same
tool is able to check properties and creates the global
description device file. The high level description of internal
services is simply extracted then added to a software library.

In the last analysis, the global description device file (XML
format) fully describes the intelligent instrument
functionalities. To obtain the corresponding source code for a
dedicated field bus technology, the designer have just to
invoke the set of rules (XSL/XSLT format) which translates
the global description into the source code according to the
dedicated field bus technology. From this global expression,
the source code for dedicated field bus technology can be
created.

For a dedicated technology i.e. CANopen, Echelon, etc...., the
executable code is created from the global description (XML
file), a set of transformation rules (XSL file) and the high level
description file, i.e. C language. Note that the XML based
description could be used any way for the last one. Actually,
high level language is preserved to simplify the internal
service description by the user.

Finally, the compiler can be solicited to obtain the executable
code. It use the generated source code, the library that includes
the code of internal services and a library dedicated to the
chosen field bus. This last library includes all software pieces
that depend from the field bus but that are independent from
the instrument behaviour.

To add a new supported field bus technology, it just necessary
to provide a set of transformation rules (XSL file) See Fig. 7.
In addition, the XLS file is easy to be developed and is
serviceable for others intelligent instruments.

Writing XSL files for the generation of source code is a
solution chosen in order to reduce the complexity of the code
generation. This approach simplifies the adaptation of the
automatic generation mechanism to a specific fieldbus.
Indeed, as the differences between field buses are very
important and concern generally the highest layer of the OSI
model, the differences in the source code are also very
important.

Fig. 7. Adding field bus technology in the designing of
intelligent instrument based on XML representation.

The solution is first to define the model of a simple example,
then to write manually the source code associated to this
example, and dedicated to the chosen fieldbus. Then each
source file that depends on one or more item of the INOM
model is used as a basis for the definition of the associated
XSL file. After all XSL files are written, they are inserted into
the automatic code generation system Fig. 7.

This approach allows the automatic generation of source code
that respects "safe programming" constraints. For example, a
source code that contains no arrays can be easily generated this
way. Naming rules for variables can also be applied. This
translation method is not reserved to the generation of C
source code. Indeed, C++, java or LonWorks files can also be
generated using the same approach. The only limitation is the
capability of the generated code to use the librarian created
with the C definition of internal services. Presently this limit
do not make possible to generate a VHDL source of the
instrument. It would be possible to suppress this limitation
with an XML definition of internal services.

text file

graphical

description

XML file

CAPtool

src

checking

High level
descrip-
tion of in-
ternal
services

XSL file

Global de-
scription

source
code

Executable
code

de
di

ca
te

d
fie

ld
b

us
te

ch
no

lo
gy

a
re

a
.

XSL file

Code
source

Executable
code

de
di

ca
te

d
fie

ld
b

us
te

ch
n

ol
o

gy
a

re
a

.

Model

CompilerCompiler

modelling

V CONCLUSIONS

The design of intelligent instruments requires more and more
multiple competencies. The design complexity of instruments
requires several specialists such as, sensor or actuator
designers, and software designer. The model approach and its
global description, proposed in this paper, allows the designer
to be independent of filed bus technology. Source code can be
automatically created for any field bus technology if a
dedicated set of rules is provided. In addition, it is easy to
implement these rules with XSL/XSLT format. The approach
chosen is compatible with the application model based on
USOMs.

ANNEXE: XML FILE

<?xml version="1.0" ?>

<instrument>
<!-- Software designer section -->
<!--Variables definition -->
<variable id="start_var" type="unsigned8" acces="io"/>
<variable id="final_var" type="unsigned8" acces="io"/>
<variable id="counter_var" type="unsigned8" acces="io"/>

<!--Internal services definitions -->
<iservice id="reset">

<starts>show_counter</starts>
<starts>show_start_var</starts>
<starts>show_final_var</starts>

</iservice>
<iservice id="decrement">

<starts>show_counter</starts>
</iservice>
<iservice id ="increment">

<starts>show_counter</starts>
</iservice>
<iservice id="show_start_var" />
<iservice id="show_final_var" />
<iservice id="show_counter" />

<!--Internal modes definition -->
<imode id="down">

<includes>reset</includes>
<includes>show_counter</includes>
<includes>show_start_var</includes>
<includes>show_final_var</includes>
<includes>decrement</includes>

</imode>
<imode id="up">

<includes>reset</includes>
<includes>show_counter</includes>
<includes>show_start_var</includes>
<includes>show_final_var</includes>
<includes>increment</includes>

</imode>

<!-- Instrument designer section -->
<!-- External services definition -->
<service id="count">

<starts>increment</starts>
<starts>decrement</starts>
<uses>show_counter</uses>

</service>
<service id="initialize">

<starts>reset</starts>
<uses>show_counter</uses>
<uses>show_start_var</uses>
<uses>show_final_var</uses>

</service>
<service id="set_start_var">

<uses>show_start_var</uses>
</service>
<service id="set_final_var">

<uses>show_final_var</uses>
</service>
<service id="show_bounds">

<starts>show_start_var</starts>
<starts>show_final_var</starts>

</service>
<service id="show_counter_var">

<starts>show_counter</starts>
</service>

<!-- External modes definition -->
<mode id="run" >

<includes>count</includes>
</mode>
<mode id="configuration" >

<includes>initialize</includes>
<includes>set_start_var</includes>
<includes>set_final_var</includes>
<includes>swow_bounds</includes>
<includes>show_counter_var</includes>

</mode>

<transition start="configuration" end="run" />
<transition start="run" end="configuration" />

</instrument>

REFERENCES

[1] Bloch G., Eugene C., Robert M., Humbert C., “Measure-
ment Evolution: from Sensors to Information Producer”,
Proc. of IMEKO TC1 TC7, (September 8-10, 1993) Lon-
don, UK, pp 335-341.

[2] J.M. Riviere, M. Bayart, J.M. Thiriet, A. Bouras, M. Ro-
bert, “Intelligent instruments: some modelling approa-
ches”, Measurement and Control, (July-August 1996)
Vol.29, pp.179-186.

[3] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, “Ob-
ject Oriented Modeling and Design”, Prentice Hall Inter-
national, 1991.

[4] M. Staroswiecki, M. Bayart, “Models and Languages for

the Interoperability of Smart Instruments”, Automatica
(1996), Vol. 32, n° 6, pp. 859-873, .

[5] Benoit E. , Foulloy L., Tailland J. “Automatic Smart Sen-
sors Generation Based on InOMs”, Proc. of the 16th
IMEKO World Congress. Vienna, Austria, Sept. 25-28
2000. Vol IX, pp. 335-340.

[6] Benoit E., Tailland J., Foulloy L., Mauris G., “A softwa-
re tool for designing intelligent sensors”, in Proc. of the
IEEE Instrumentation & Measurement technology
IMTC/2000 Conference, Baltimore, Marynland, USA,
may 1-4 2000, pp. 322-326.

[7] Wollschlaeger M, Diedrich C., Thron M., "Generation of
Role-specific information for an Entreprise integration
Framework using XML description”, in ETFA 2001,
Antibes, France, Octobre 2001, pp 237-244.

[8] Q. Yang, C. Butler, “An Object-Oriented Model of
Measurement Systems”, in Proc. of the IEEE/IMTC Ins-
trumentation and Measurement Technology Conference,
Ottawa, Canada, May 19-21, 1997.

[9] H.J.W. Spoelder, A.H. Ullings, F.C.A. Groen, “Virtual
Instrumentation: A survey of Standards and their Interre-
lation”, in Proc. of the IEEE/IMTC Instrumentation and
Measurement Technology Conference, Ottawa, Canada,
May 19-21, 1997.

[10] A. Bouras, M. Staroswiecki, “How can Intelligent Instru-
ments Interoperate in an Application Framework ? A
Mechanism for Taking into Account Operating Cons-
traints”, Proc. of Int. Conf. SICICA'97 (9-11 juin 1997)
Annecy, France.

[11] Benoit E., Foulloy L., "InOMs model: a service based ap-
proach to intelligent instrument design”, in ETFA 2001,
Antibes, France, Octobre 2001.

[12] Benoit E., Foulloy L., Tailland J., “InOMs model: a Ser-
vice Based Approach to Intelligent Instruments Design”,
Proc. of the World Conf. on Systemics, Cybernetics and
Informatics (SCI 2001), Vol. XVI, Orlando, USA, 2001,
pp 160-164.

	I INTRODUCTION
	II Service based INTELLIGENT INSTRUMENT Modelling
	A. Principle
	B. Modelling

	III XML representation of the model
	IV from graphical model to final software
	V Conclusions

