# Object-based Layered Depth Images for improved virtual view synthesis in rate-constrained context

Vincent Jantet <sup>1</sup>, Christine Guillemot <sup>2</sup>, Luce Morin <sup>3</sup>

 $^{1}$  ENS Cachan, Antenne de Bretagne, Campus de Ker Lann, 35170 Bruz – France

<sup>2</sup> INRIA Rennes, Bretagne Atlantique, Campus de Beaulieu, 35042 Rennes – France

<sup>3</sup> IETR - INSA Rennes, 20 avenue des Buttes de Coësmes, 35043 Rennes – France

**ICIP 2011** 





### Context of multi-view videos

#### Functionalities:

3DTV: Depth feeling by stereo-vision simulation.

FVV: Live viewpoint selection.

Require a virtual view synthesis method.



Fig: 3D rendering



#### Table on contents

- Introduction
- Object-based classification
- Rendering results
- 4 Compression results

#### Outline

- Introduction
- Object-based classification
- Rendering results
- 4 Compression results

# Depth Image-Based Rendering (DIBR)



# Warping algorithm

Input: View and associated depth map Output: New viewpoint (texture & depth)

#### **Disocclusions**

Obstructed scene information from reference viewpoint

They appear along depth discontinuities Solution: Add additional informations (LDI)



Fig. Disacclusion

# Layered Depth Image (LDI) [SGHS98]

A set of layers, containing depth pixels from a single viewpoint



#### From a reference viewpoint

1<sup>st</sup> layer ⇒ Reference view Visible texture and depth 2<sup>nd</sup> layer ⇒ Residual data Hidden texture and depth

# Layered Depth Image (LDI) [SGHS98]

A set of layers, containing depth pixels from a single viewpoint



#### From a reference viewpoint

1<sup>st</sup> layer ⇒ Reference view Visible texture and depth 2<sup>nd</sup> layer ⇒ Residual data Hidden texture and depth



1st layer

# Layered Depth Image (LDI) [SGHS98]

A set of layers, containing depth pixels from a single viewpoint



#### From a reference viewpoint

 $1^{st}$  layer  $\Rightarrow$  Reference view Visible texture and depth  $2^{nd}$  layer  $\Rightarrow$  Residual data Hidden texture and depth







2<sup>nd</sup> layer

# LDI from real multi-view plus depth sequence [JMG09]





Compressed depth map



Synthesized virtual view

Fig: Rendering impact of depth

map compression

#### Limitations

- Redundant boundaries in both layers
- Moving elements in both layers
- Layers contain large depth discontinuities (Discontinuities are hard to compress)

#### Outline

- Introduction
- Object-based classification
- Rendering results
- 4 Compression results

# Object-based LDI representation

This representation organizes pixels into layers to enhance depth continuity



# Method based on a growing-region algorithm

Region R initialized with pixels where  $Z_{FG}$  and  $Z_{BG}$  are already defined.

For each pixel q outside R:

- Extrapolate  $Z_{FG}$  and  $Z_{BG}$ .
- Classify q.

# Object-based LDI representation

This representation organizes pixels into layers to enhance depth continuity



# Method based on a growing-region algorithm

Region R initialized with pixels where  $Z_{FG}$  and  $Z_{BG}$  are already defined. For each pixel g outside R:

- Extrapolate  $Z_{FG}$  and  $Z_{BG}$ .
- Classify q.

# Classification: Initializing



# Classification: Results





Foreground





Background

# Background inpainting [CPT03]

#### Advantages

- Remove unnecessary boundaries
- Inpainting processed once, before encoding stage
- No need of inpainting method at rendering stage





Fig: Background inpainting

# Outline

- Introduction
- Object-based classification
- Rendering results
- 4 Compression results

# Rendering results







Classical LDI rendering Virtual view inpainting O-LDI rendering

# Fast mesh-based rendering



Fig: Object-based LDI



Fig: Meshes rendering

Continuous layers can be rendered as meshes.

Foreground mesh is partially transparent.

#### Outline

- Introduction
- Object-based classification
- Rendering results
- 4 Compression results

# LDI and MVD compression schemes





#### Rate-distortion curve



# Conclusions on Object-Based LDI

#### Advantages

- Remove unnecessary boundaries ⇒ Improve compression
- Static background along time
- Compatible with fast mesh-based rendering
- Depth continuity improves rendering quality

#### Limit

- No backward compatibility with 2D decoding scheme

Questions?

- [CPT03] A. Criminisi, P. Pérez, and K. Toyama.

  Object removal by exemplar-based inpainting.

  In Computer Vision and Pattern Recognition (CVPR), IEEE

  Computer Society Conference on, volume 2, pages 721–728,

  June 2003.
- [JMG09] Vincent Jantet, Luce Morin, and Christine Guillemot. Incremental-Idi for multi-view coding. In 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, pages 1–4, Potsdam, Germany, May 2009.
- [SGHS98] Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski.

Layered depth images.

In SIGGRAPH '98: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pages 231–242, New York, NY, USA, July 1998. ACM.