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, a new family of distributions is introduced, depending on two parameters τ and θ, which encompasses Pareto-type distributions as well as Weibull tail-distributions. Estimators for θ and extreme quantiles are also proposed, but they both depend on the unknown parameter τ , making them useless in practical situations. In this paper, we propose an estimator of τ which is independent of θ. Plugging our estimator of τ in the two previous ones allows us to estimate extreme quantiles from Pareto-type and Weibull tail-distributions in an unified way. The asymptotic distributions of our three new estimators are established and their efficiency is illustrated on a small simulation study and on a real data set.

Introduction

Let X 1 , . . . , X n be a sequence of independent and identically distributed random variables with a cumulative distribution function F and let X 1,n ≤ • • • ≤ X n,n denote the order statistics associated to this sample. The Gnedenko theorem [START_REF] Gnedenko | Sur la distribution limite du terme maximum d'une série aléatoire[END_REF] insures that for a large class of cumulative distribution functions, the maximum X n,n (after proper renormalization) converges in distribution to an extreme-value distribution with shape parameter γ. Depending on its sign, three possible maximum domains of attraction for F are possible: Fréchet (γ > 0), Gumbel (γ = 0) and Weibull (γ < 0). Since distributions in the Weibull maximum domain of attraction have a finite right tail, in most applications this maximum domain of attraction is not relevant. In this paper, we focus on the Fréchet and Gumbel maximum domains of attraction.

Distributions in the Fréchet maximum domain of attraction can be characterized through their survival function F = 1 -F as F (x) = x -1/γ L(x) where γ > 0 and L is a slowly varying function at infinity i.e. L(λx)/L(x) → 1 as x → ∞ for all λ ≥ 1. F is said to be regularly varying at infinity with index -1/γ. This property is denoted by F ∈ R -1/γ , (see [START_REF] Bingham | Regular Variation[END_REF] for more details on regular variations theory) and F is called a Pareto-type distribution. To make inference on the distribution tail, most approaches consist of using the k n upper order statistics X n-kn+1,n ≤ • • • ≤ X n,n since the tail information is only contained in the extreme upper part of the sample. Here, (k n ) is an intermediate sequence of integers i.e. such that lim n→∞ k n = ∞ and lim n→∞ k n /n = 0.

A large part of the extreme-value literature is devoted to the estimation of the tail-index γ > 0, the most known estimator being the Hill estimator [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF]. It can be equivalently defined in terms of log-excesses log(X n-i+1,n /X n-kn+1,n ) or in terms of log-spacings log(X n-i+1,n /X n-i,n ):

H n (k n ) = 1 k n -1 kn-1 i=1 log X n-i+1,n X n-kn+1,n = 1 k n -1 kn-1 i=1 i log X n-i+1,n X n-i,n . (1) 
At the opposite, there is no simple representation for distributions in the Gumbel maximum domain of attraction. However, an interesting subset of the Gumbel maximum domain of attraction is the Weibull tail-distributions family. It encompasses for instance Weibull, Gaussian and Gamma distributions. Let us recall that a cumulative distribution function F has a Weibull tail if F (x) = exp (-H(x)) , where H ← (t) := inf{x, H(x) ≥ t} ∈ R β . The function H ← is the so-called generalized inverse of H. The tail of such distributions is driven by the shape parameter β > 0 called the Weibull tail-coefficient. Many papers are dedicated to the estimation of the Weibull tail-coefficient. A first family of approaches [START_REF] Beirlant | Semiparametric lower bounds for tail index estimation[END_REF][START_REF] Beirlant | The mean residual life function at great age: Applications to tail estimation[END_REF][START_REF] Broniatowski | On the estimation of the Weibull tail coefficient[END_REF][START_REF] Dierckx | A new estimation method for Weibull-type tails based on the mean excess function[END_REF] is based on the log-excesses while a second one relies on the log-spacings [START_REF] Beirlant | Practical analysis of extreme values[END_REF][START_REF] Diebolt | Bias-reduced estimators of the Weibull tail-coefficient[END_REF][START_REF] Gardes | Comparison of Weibull tail-coefficient estimators[END_REF][START_REF] Gardes | Estimation of the Weibull tail-coefficient with linear combination of upper order statistics[END_REF][START_REF] Girard | A Hill type estimate of the Weibull tail-coefficient[END_REF][START_REF] Goegebeur | Generalized kernel estimators for the Weibulltail coefficient[END_REF][START_REF] Goegebeur | Goodness-of-fit testing for Weibull-type behavior[END_REF]. All these estimators are thus similar to the Hill statistic [START_REF] Artin | The gamma function[END_REF].

In order to understand the similarity between most estimators of the Weibull tail-coefficient and the Hill estimator, a new family of distributions has been proposed in [START_REF] Gardes | Weibull tail-distributions revisited: a new look at some tail estimators[END_REF]. These distributions depend on two parameters τ ∈ [0, 1] and θ > 0. More specifically, letting K x (y) = y 1 u x-1 du where x ∈ R, the considered family of survival distribution functions is given by:

(A 1 (τ, θ)) F (x) = exp(-K ← τ (log H(x))) for x ≥ x * > 0 with τ ∈ [0, 1].
Here, H is an increasing function such that H ← ∈ R θ where θ > 0. The parameter τ allows us to represent a large panel of distribution tails ranging from Weibull-type tails (in this case τ = 0 and θ coincides with the Weibull tail-coefficient β) to distributions belonging to the Fréchet maximum domain of attraction (in this case τ = 1 and θ corresponds to the tail index γ).

In [START_REF] Gardes | Weibull tail-distributions revisited: a new look at some tail estimators[END_REF], an estimator of θ based on the Hill statistic is also introduced:

θ n,τ (k n ) = H n (k n ) µ τ (log(n/k n )) , (2) 
with, for all t > 0,

µ τ (t) = ∞ 0 (K τ (x + t) -K τ (t)) e -x dx,
and an estimator of the extreme quantile x pn = F ← (p n ) with p n → 0 as n → ∞ is derived:

x pn, b θn,τ = X n-kn+1,n exp θ n,τ (k n ) [K τ (log(1/p n )) -K τ (log(n/k n ))] . (3) 
We refer to [START_REF] Ditlevsen | Distribution Arbitrariness in Structural Reliability, Structural Safety and Reliability[END_REF][START_REF] Smith | Estimating the upper tail of flood frequency distributions[END_REF][START_REF] Embrechts | Modelling extremal events[END_REF] for applications of extreme quantiles respectively in reliability, hydrology and finance. The asymptotic distributions of θ n,τ and x pn, b θn,τ are established in [START_REF] Gardes | Weibull tail-distributions revisited: a new look at some tail estimators[END_REF]. Let us highlight that estimators (2) and (3) are only of theoretical interest since, in practical situations τ is unknown, and therefore, they cannot be used.

This paper builds on the work of [START_REF] Gardes | Weibull tail-distributions revisited: a new look at some tail estimators[END_REF]. We propose an estimator τ n of τ , independent of θ. Replacing τ by τ n in (2) and (3) yields two new estimators which can be computed in practical situations. As a result, we are able to estimate extreme quantiles from Pareto-type and Weibull tail-distributions in an unified way. The asymptotic normality of our three new estimators is also established.

The paper is organized as follows. The estimators are defined in Section 2, their asymptotic properties are established in Section 3. The behavior of the extreme quantile estimator is illustrated on simulated data in Section 4 and on a real data set in Section 5. Proofs of the main results are presented in Section 6 while proofs of auxiliary results are postponed to the Appendix.

Definition of the estimators

Let us first describe the construction of an estimator of τ . Let (k n ) and

(k n ) with k n > k n be two intermediate sequences of integers such that θ n,τ (k n ) P -→ θ and θ n,τ (k n ) P -→ θ. It straightforwardly follows that θ n,τ (k n ) θ n,τ (k n ) = H n (k n ) H n (k n ) µ τ (log(n/k n )) µ τ (log(n/k n )) P -→ 1.
Introducing for all t > t > 0 the function defined by ψ(.; t; t ) : R → (-∞, exp(t -t )) and ψ(x; t, t ) = µ x (t)/µ x (t ), it follows that

H n (k n ) H n (k n ) P ∼ ψ(τ ; log(n/k n ), log(n/k n )). (4) 
Moreover, it can be shown (see Lemma 3 in Section 6) that ψ(.;

log(n/k n ), log(n/k n )) is a bijection from R to (-∞, k n /k n ).
As a consequence, the following estimator of τ is considered:

τ n =    ψ -1 Hn(kn) Hn(k n ) ; log(n/k n ), log(n/k n ) if Hn(kn) Hn(k n ) < k n kn u if Hn(kn) Hn(k n ) ≥ k n kn , (5) 
where u is the realization of a standard uniform distribution. In practice, only the first situation has to be considered, since Lemma 5 in Section 6 shows that, for n large enough,

H n (k n )/H n (k n ) is almost surely smaller than k n /k n . It is thus possible to plug τ n in (2) to obtain a new estimator of θ: θ n,b τn (k n ) = H n (k n ) µ b τn (log(n/k n )) . (6) 
Similarly, replacing τ and θ n,τ by their estimates in (3) yields a new estimator of extreme quantiles:

x pn, b θ n, b τn = X n-kn+1,n exp θ n,b τn (k n ) [K b τn (log(1/p n )) -K b τn (log(n/k n ))] . (7) 
The asymptotic behavior of the three new estimators τ n , θ n,b τn and

x pn, b θ n, b
τn is established in the next section.

Asymptotic properties

As a first result, we establish the consistency of τ n under the following assumption:

H ← (t) = t θ (t) = c t θ exp x 1 ε(u) u du (8) 
with c a positive constant and ε(s) → 0 as s → ∞. Let us highlight that (8) amounts to supposing that H ← ∈ R θ and that the slowly varying function at infinity is normalised, see [START_REF] Bingham | Regular Variation[END_REF], page 15.

Proposition 1 Suppose that (A 1 (τ, θ)) holds with (.) a normalised slowly varying function. If

(k n ) and (k n ) are two intermediate sequences of integers such that k n /k n → 0, then τ n P -→ τ.
Let us note that the consistency of τ n is established for all θ > 0 and τ ∈ [0, 1] in an unified way.

In this sense, the asymptotic behavior of this estimator is more a consequence of the log-spacings property than a tail behavior (which can be exponential for τ = 0 as well as polynomial for τ = 1). Next, to establish the asymptotic normality of the three estimators ( 5), ( 6) and ( 7), a second-order condition on is necessary:

(A 2 (ρ)) There exist ρ < 0 and b(x) → 0 such that uniformly locally on λ ≥ λ 0 > 0 log (λx) (x) ∼ b(x)K ρ (λ), when x → ∞,
with |b| asymptotically decreasing.

It can be shown that necessarily |b| ∈ R ρ . The second order parameter ρ < 0 tunes the rate of convergence of (λx)/ (x) to 1. The closer is ρ to 0, the slower is the convergence. Condition (A 2 (ρ)) is the cornerstone in all the proofs of asymptotic normality for extreme value estimators. It is used in [START_REF] Beirlant | Tail index estimation and an exponential regression model[END_REF][START_REF] Häusler | On asymptotic normality of Hill's estimator for the exponent of regular variation[END_REF][START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF] to prove the asymptotic normality of several estimators of the extreme value index. Let log 2 (.) = log(log(.)). The first theorem establishes the asymptotic normality of τ n :

Theorem 1 Suppose that (A 1 (τ, θ)) and (A 2 (ρ)) hold. If (k n ) and (k n ) are two intermediate sequences of integers such that k n /k n → 0 and k n b(exp K τ (log n/k n )) → 0, (9) 
k n (log 2 (n/k n ) -log 2 (n/k n )) → ∞, (10) log 
(n/k n ) (log 2 (n/k n ) -log 2 (n/k n )) → ∞, (11) 
then k n (log 2 (n/k n ) -log 2 (n/k n )) ( τ n -τ ) d -→ N (0, 1).
Condition ( 9) is standard in extreme-value theory. It imposes that the bias induced by the slowly varying function is asymptotically negligible. Condition [START_REF] Diebolt | Quasi-Conjugate Bayes Estimates for GPD Parameters and Application to Heavy Tails Modeling[END_REF] forces the speed of convergence of τ n to tend to infinity. Finally, [START_REF] Diebolt | Bias-reduced estimators of the Weibull tail-coefficient[END_REF] is of the same nature as [START_REF] Diebolt | Quasi-Conjugate Bayes Estimates for GPD Parameters and Application to Heavy Tails Modeling[END_REF]: It imposes some minimal spacing between the two sequences (k n ) and (k n ). Besides, if τ = 0, conditions ( 9) and ( 10) imply that xb(x) → 0 as x → ∞. As a consequence, if τ = 0 and ρ > -1, it is not possible to choose sequences (k n ) and (k n ) satisfying the above assumptions. In such a case, only the consistency of τ n can be guaranteed.

In our next result, it is established that θ n,b τn inherits from the asymptotic normality of τ n .

Theorem 2 Suppose the assumptions of Theorem 1 hold. If, moreover,

(log 2 (n/k n ) -log 2 (n/k n )) / log 2 (n/k n ) → 0, ( 12 
)
k n (log 2 (n/k n ) -log 2 (n/k n )) / log 2 (n/k n ) → ∞, (13) 
then √ k n (log 2 (n/k n ) -log 2 (n/k n )) log 2 (n/k n ) θ n,b τn (k n ) -θ d -→ N (0, θ 2 ).
It appears that the estimation of τ has a cost in terms of rates of convergence. Condition [START_REF] Diebolt | Bias-reduced extreme quantiles estimators of Weibull tail-distributions[END_REF] implies that θ n,b τn converges slower than θ n,τ , see Lemma 7 in Section 6. As previously, ( 13) forces the speed of convergence of θ n,b τn (k n ) to tend to infinity. Note that this condition implies [START_REF] Diebolt | Quasi-Conjugate Bayes Estimates for GPD Parameters and Application to Heavy Tails Modeling[END_REF] in Theorem 1. Similarly as for Theorem 1, it can be shown that, if τ = 0, ( 9) and ( 13) imply

x log(x) b(x) → 0 as x → ∞. Thus, again no sequences (k n ) and (k n ) exist in case τ = 0 and ρ > -1. Now, if τ ∈ (0, 1] or if τ = 0 and ρ < -1, a possible choice for the two intermediate

sequences is log(k n ) = aK τ (log(n)) and log(k n ) = a K τ (log(n))
with the following restrictions on (a, a ) ∈ R:

   0 < a < a < 2ρ/(2ρ -1) if τ = 1 0 < a < a < -2ρ if 0 < τ < 1 2 < a < a < -2ρ if τ = 0. ( 14 
)
Finally, in the case where τ = 0 and ρ = -1, the existence of sequences (k n ) and (k n ) depends on the underlying distribution.

The last result is dedicated to the asymptotic distribution of the extreme quantile estimator.

Theorem 3 Suppose the assumptions of Theorem 2 hold. If, moreover,

k n (log 2 (n/k n ) -log 2 (n/k n )) /log 2 (1/p n ) → ∞, (15) 
(log(n/k n )) 1-τ [K τ (log(1/p n )) -K τ (log(n/k n ))] → ∞, (16) 
log 2 (n/k n )[K τ (log(1/p n )) -K τ (log(n/k n ))] log(1/pn) log(n/kn) log(u)u τ -1 du → 0, (17) 
then √ k n (log 2 (n/k n ) -log 2 (n/k n )) log(1/pn) log(n/kn) log(u)u τ -1 du x pn, b θ n, b τn x pn -1 d -→ N (0, θ 2 ).
A sufficient condition to verify ( 16) and ( 17)

is log 2 (1/p n )/ log 2 (n/k n ) → ∞.
This imposes an upper bound on the order p n of the extreme quantile. At the opposite, condition (15) provides a lower bound on p n . A possible choice for the order p n of the extreme quantile is given by log

2 (1/p n ) = [log 2 (n)] α for all α > 1. The finite sample performances of x pn, b θ n, b
τn are illustrated in the next section.

A small simulation study

In this section, our extreme quantile estimator is compared to the Moment estimator of Dekkers et al. [START_REF] Dekkers | A moment estimator for the index of an extreme-value distribution[END_REF] and the Peaks Over Threshold (POT), see for instance [START_REF] Davison | Models for exceedances over high thresholds[END_REF], on simulated data. The POT approach relies on the approximation of the excesses distribution, over a high threshold, by a Generalized Pareto Distribution (GPD). Among the numerous methods available for estimating the GPD parameters, we focus on the moments method which yields the best results in our simulations. Let us emphasize that the Moment and POT estimators are designed to work in any domain of attraction. Let us recall that the extreme quantile estimator [START_REF] Broniatowski | On the estimation of the Weibull tail coefficient[END_REF] requires the numerical inversion of the function ψ. This computation is achieved thanks to a dichotomy procedure since Lemma 3(i) ensures that ψ is increasing.

The comparison is achieved on twelve different distributions:

• five Pareto-type distributions (τ = 1): the absolute value of the standard Cauchy distribution (θ = 1 and ρ = -2), standard Pareto distribution (θ = 2 and ρ = -∞), the absolute value of the Student distribution with two degrees of freedom (θ = 1/2 and ρ = -2) and two Burr distributions (θ = 1/2 and ρ ∈ {-1, -1/2}) with quantile function F ← (x) = (x ρ -1) -θρ ,

x ∈ (0, 1),

• five Weibull tail-distributions (τ = 0): the absolute value of the standard Gaussian distribution (θ = 1/2 and ρ = -1), a Weibull distribution with 2 as shape parameter (θ = 2 and ρ = -∞), a Gamma distribution with 2 as shape parameter (θ = 1 and ρ = -1) and two distributions with quantile function

F ← (x) = (-log x) θ (1+ (ρ+θ)(-log x) ρ ), x ∈ (0, 1) with θ = 1/2 and ρ ∈ {-1/2, -1/4},
• two log-Weibull tail distributions (τ = 1/2), see [START_REF] Gardes | Weibull tail-distributions revisited: a new look at some tail estimators[END_REF], paragraph 2.2: the standard lognormal distribution (θ = √ 2/2 and ρ = 0) and the distribution with quantile function

F ← (x) = exp{ √ 2[(-log x) 1/2 -1]}, x ∈ (0, 1) for which θ = √ 2/2 and ρ = -∞. These distributions represent various situations (τ ∈ {0, 1/2, 1}, θ ∈ {1/2, √ 2/2, 1, 2} and ρ ∈ {-∞, -2, -1, -1/2, -1/4, 0}
) in which the asymptotic normality of our estimator is not always established. In the following, we take p n = 10 -3 and simulate N = 100 samples (X n,j ) j=1,...,N of size n = 500. For each sample X n,j , the estimator x pn, b θ n, b τn is computed for k n = 3, . . . , 500 and k n = ck n with c = 0.1. This value has been chosen on the basis of intensive Monte-Carlo simulations. With such a choice, our estimator and the Moment and POT estimators depend on only one intermediate sequence of integers (k n ). For all the considered distributions, the meansquared errors associated to the estimators are computed as functions of k n and are reported on Figures 123. It appears that our estimator outperforms the Moment and POT estimators for almost all the values of k n . Also for k n ≥ 50, the mean-squared errors associated to our estimator are almost constant as a function of k n , whatever the distribution is.

A real data set

The performance of our estimator [START_REF] Broniatowski | On the estimation of the Weibull tail coefficient[END_REF] is illustrated through the analysis of extreme events on the Nidd river data set, which is common in extreme values studies, see for instance [START_REF] Davison | Models for exceedances over high thresholds[END_REF]. It consists of 154 exceedances of the levels 65m 3 s -1 by the river Nidd (Yorkshire, England) during the period 1934-1969 (35 years). There is no general agreement on a maximum domain of attraction for this data set. In [START_REF] Diebolt | Quasi-Conjugate Bayes Estimates for GPD Parameters and Application to Heavy Tails Modeling[END_REF], a Fréchet maximum domain of attraction is assumed and heavy taileddistributions are considered as a possible model for such data. However, according to [START_REF] Hosking | Parameter and quantile estimation for the generalized Pareto distribution[END_REF], the Nidd data may reasonably be assumed to come from a distribution in the Gumbel maximum domain of attraction. This result was in accordance with [START_REF] Diebolt | Bias-reduced extreme quantiles estimators of Weibull tail-distributions[END_REF] where it has been shown that a Weibull tail-distribution could be considered for such a data. The estimation of τ is therefore of great interest. The estimated values of τ and θ are depicted on Figure 4 as functions of k n (recall that k n = 0.1k n ). It appears that the estimators become stable for k n ≥ 80 with τ n 1 and θ n,b τn (k n ) 0.3. These results indicate that the data may be assumed to come from a distribution in the Fréchet maximum domain of attraction. They are in accordance with the ones obtained by Bayesian methods [START_REF] Diebolt | Quasi-Conjugate Bayes Estimates for GPD Parameters and Application to Heavy Tails Modeling[END_REF], Figure 7 where the tail index is also estimated at 0.3.

The standard quantity of interest in environmental studies is the N -year return level, defined as the level which is exceeded on average once in N years. Here, we focus on the estimation of the 50and 100-year return levels. In Figure 4, our extreme quantile estimator is compared to the Moment and POT estimators, plotting the associated N -year return level as a function of k n for N = 50 and N = 100. It appears that our estimator and the Moment estimator yield similar curves. The POT sample path is different, but for all methods, choosing k n 60, we obtain an estimation of the 50-year return level which belongs approximately to the interval [340m 3 s -1 , 375m 3 s -1 ], and an estimation of the 100-year return in [400m 3 s -1 , 470m 3 s -1 ]. Again, these results are in accordance with the the credibility intervals obtained in [START_REF] Diebolt | Quasi-Conjugate Bayes Estimates for GPD Parameters and Application to Heavy Tails Modeling[END_REF], Table 1.

Proofs

We first give some preliminary lemmas. Their proofs are postponed to the appendix.

Preliminary lemmas

In the following, C is a compact subset such that [0, 1] ⊂ C ⊂ (-∞, 2). The first lemma is a standard result on the behavior at infinity of the Laplace transform.

Lemma 1 Let x ∈ C and h x ∈ C ∞ (R + ). Set i = min {j ∈ N/h (j) x (0) = 0}. If sup x∈C y≥0 h (i+1) x (y) < ∞, then lim t→∞ sup x∈C t i+1 h x (t) -h (i)
x (0) = 0, with h x (t) = +∞ 0 exp(-tu)h x (u)du is the Laplace transform of h x .

Lemma 1 is the key tool for establishing the uniform asymptotic expansions of µ x and ∂µ x /∂x given in Lemma 2:

Lemma 2 For all x ∈ C and t > 0, we have

(i) lim t→∞ sup x∈C µ x (t) t x-1 -1 = 0, (ii) lim t→∞ sup x∈C ∂ ∂x µ x (t) -log(t)µ x (t) t x-2 -1 = 0.
As a consequence of the above expansions, some important properties of ψ can be derived in the two next lemmas:

Lemma 3 For all t > t > 0 and x ∈ R, we have The following lemma ensures that the estimator τ n is well-defined. In [START_REF] Beirlant | Practical analysis of extreme values[END_REF], the situation where

(i) x → ψ(x; t,
H n (k n )/H n (k n ) ≥ k n /k n is eventually impossible. Lemma 5 Let (k n ) and (k n ) be two intermediate sequences of integers such that k n /k n → 0. If θ n,τ (k n )/ θ n,τ (k n ) P -→ 1 then P H n (k n ) H n (k n ) ≥ k n k n → 0 as n → ∞.
We now prove that θ n,τ (k n ) is a consistent estimator for θ when τ is known and under general assumptions.

Lemma 6 Suppose that (A 1 (τ, θ)) holds with a normalised slowly varying function (.).

If (k n ) is an intermediate sequence of integers, then θ n,τ (k n ) P -→ θ.
The asymptotic normality of θ n,τ and x pn, b θn,τ has already been established in the particular case where τ is known by [START_REF] Gardes | Weibull tail-distributions revisited: a new look at some tail estimators[END_REF]. Let us quote two results from this work.

Lemma 7 (Theorem 1, [START_REF] Gardes | Weibull tail-distributions revisited: a new look at some tail estimators[END_REF]). Suppose that (A 1 (τ, θ)) and

(A 2 (ρ)) hold. If (k n ) is an intermedi- ate sequence such that √ k n b(exp K τ (log(n/k n ))) → 0, then k n θ n,τ (k n ) θ -1 d -→ N (0, 1). ( 18 
)
Lemma 8 (Theorem 2, [START_REF] Gardes | Weibull tail-distributions revisited: a new look at some tail estimators[END_REF]). Under the assumptions of Lemma 7 and if, moreover,

(log(n/k n )) 1-τ (K τ (log(1/p n )) -K τ (log(n/k n ))) → ∞, then, √ k n K τ (log(1/p n )) -K τ (log(n/k n )) log x pn, b θn,τ x pn d -→ N (0, θ 2 ).
The next lemma establishes that θ can be replaced by θ n,τ (k n ) in [START_REF] Gardes | Weibull tail-distributions revisited: a new look at some tail estimators[END_REF] without changing the asymptotic distribution.

Lemma 9 Suppose that (A 1 (τ, θ)) and (A 2 (ρ)) hold. Let (k n ) and (k n ) be two intermediate sequences of integers such that k n b(exp K τ (log n/k n )) → 0 and k n /k n → 0. We have

k n θ n,τ (k n ) θ n,τ (k n ) -1 d -→ N (0, 1).
The last lemma quantifies the effect of estimating τ in θ n,τ (k n ).

Lemma 10 Suppose that (A 1 (τ, θ)) and (A 2 (ρ)) hold. Let (k n ) and (k n ) be two intermediate sequences of integers such that

k n /k n → 0, k n (log 2 (n/k n ) -log 2 (n/k n )) / log 2 (n/k n ) → ∞, k n b(exp K τ (log n/k n )) → 0 and log(n/k n ) (log 2 (n/k n ) -log 2 (n/k n )) → ∞.
We have

√ k n (log 2 (n/k n ) -log 2 (n/k n )) log 2 (n/k n ) θ n,b τn (k n ) θ n,τ (k n ) -1 d -→ N (0, 1).

Proofs of the main results

Proof of Proposition 1 -For all ε > 0, let us write

P (| τ n -τ | > ε) = P ( τ n > τ + ε) + P ( τ n < τ -ε)
and consider the two terms separately. Clearly, one has

P( τ n > τ + ε) = P { τ n > τ + ε} H n (k n ) H n (k n ) ≥ k n k n P H n (k n ) H n (k n ) ≥ k n k n + P { τ n > τ + ε} ∩ H n (k n ) H n (k n ) < k n k n ≤ P H n (k n ) H n (k n ) ≥ k n k n + P H n (k n ) H n (k n ) ≥ ψ(τ + ε; log(n/k n ), log(n/k n )) . ( 19 
)
Focusing on the first probability of ( 19), note that, θ n,τ (k n ) and θ n,τ (k n ) are consistent estimators for θ in probability by Lemma 6. Thus θ n,τ (k n )/ θ n,τ (k n ) P -→ 1 and Lemma 5 entail

P H n (k n ) H n (k n ) ≥ k n k n → 0.
The second probability in [START_REF] Girard | A Hill type estimate of the Weibull tail-coefficient[END_REF] tends to 0 by (4) and Lemma 3(i). Similarly, we can prove that P ( τ n < τ -ε) → 0 which achieves the proof.

Proof of Theorem 1 -Letting v n = √ k n (log 2 (n/k n ) -log 2 (n/k n ))
, our goal is to prove that P (v n ( τ n -τ ) ≤ s) → Φ(s), for all s ∈ R where Φ is the cumulative distribution function of the standard Gaussian distribution. To this aim, let us first remark that Lemma 9 yields θ n,τ (k n )/ θ n,τ (k n ) P -→ 1. Thus, introducing E n (s) = {v n ( τ n -τ ) ≤ s}, we have

P(E n (s)) = P E n (s) ∩ H n (k n ) H n (k n ) < k n k n + P E n (s) H n (k n ) H n (k n ) ≥ k n k n P H n (k n ) H n (k n ) ≥ k n k n =: T (1) n (s) + o(1),
by Lemma 5. From the definition of τ n given in [START_REF] Beirlant | Practical analysis of extreme values[END_REF] and recalling that, from Lemma 3(i), ψ(.; log(n/k n ), log(n/k n )) is an increasing function, we obtain

T (1) n (s) = P H n (k n ) H n (k n ) ≤ ψ(τ + s/v n ; log(n/k n ), log(n/k n )) ∩ H n (k n ) H n (k n ) < k n k n = P H n (k n ) H n (k n ) ≤ min ψ(τ + s/v n ; log(n/k n ), log(n/k n )), k n k n .
Lemma 3(ii) thus yields

T (1) n (s) = P H n (k n ) H n (k n ) ≤ ψ(τ + s/v n ; log(n/k n ), log(n/k n )) = P H n (k n ) H n (k n ) ≤ µ τ +s/vn (log(n/k n )) µ τ +s/vn (log(n/k n )) ,
and, from (2) and the fact that

ζ n := k n θ n,τ (k n ) θ n,τ (k n ) -1 d -→ N (0, 1),
(see Lemma 9), we have

T (1) n (s) = P ζ n ≤ k n µ τ (log(n/k n )) µ τ (log(n/k n )) µ τ +s/vn (log(n/k n )) µ τ +s/vn (log(n/k n )) -1 = P ζ n ≤ k n µ τ (log(n/k n )) µ τ (log(n/k n )) [ψ(τ + s/v n ; log(n/k n ), log(n/k n )) -ψ(τ ; log(n/k n ), log(n/k n ))] .
A first order Taylor expansion leads to

T (1) n (s) = P ζ n ≤ s (log 2 (n/k n ) -log 2 (n/k n )) µ τ (log(n/k n )) µ τ (log(n/k n )) ∂ ∂x ψ(τ 0 ; log(n/k n ), log(n/k n )) ,
where τ 0 = τ + sη 0 /v n with η 0 ∈ (0, 1). Since τ 0 → τ , for n large enough, τ 0 < 2 and Lemma 4 entails

T (1) n (s) = P ζ n ≤ s µ τ0 (log(n/k n )) µ τ0 (log(n/k n )) µ τ (log(n/k n )) µ τ (log(n/k n )) 1 + O 1 log(n/k n ) (log 2 (n/k n ) -log 2 (n/k n )) = P ζ n ≤ s µ τ0 (log(n/k n )) µ τ0 (log(n/k n )) µ τ (log(n/k n )) µ τ (log(n/k n )) (1 + o(1)) .
Besides, Lemma 2(i) entails that

s µ τ0 (log(n/k n )) µ τ0 (log(n/k n )) µ τ (log(n/k n )) µ τ (log(n/k n )) = s log(n/k n ) log(n/k n ) τ0-τ (1 + o(1)) = s exp sη 0 √ k n (1 + o(1)) -→ n→∞ s,
and thus

T (1) n (s) = P(ζ n ≤ s(1 + o(1))) ≤ Φ(s) + sup x∈R |Φ(x) -P(ζ n ≤ x)| → Φ(s)
by [START_REF] Embrechts | Modelling extremal events[END_REF], page 552. This achieves the proof of Theorem 1.

Proof of Theorem 2 -On the first hand, Lemma 7 shows that

θ n,τ (k n ) -θ = ζ n θ √ k n where ζ n d -→ N (0, 1),
and on the other hand, Lemma 10 entails

θ n,b τn (k n ) θ n,τ (k n ) -1 = δ n log 2 (n/k n ) √ k n (log 2 (n/k n ) -log 2 (n/k n )) where δ n d -→ N (0, 1). ( 20 
)
Collecting these results, it follows that

θ n,b τn (k n ) -θ = θ n,τ (k n ) θ n,b τn (k n ) θ n,τ (k n ) -1 + θ n,τ (k n ) -θ = θ n,τ (k n ) δ n log 2 (n/k n ) √ k n (log 2 (n/k n ) -log 2 (n/k n )) + ζ n θ √ k n .
Consequently, one immediately has

√ k n (log 2 (n/k n ) -log 2 (n/k n )) log 2 (n/k n ) θ n,b τn (k n ) -θ = θ n,τ (k n )δ n + ζ n θ log 2 (n/k n ) -log 2 (n/k n ) log 2 (n/k n )
and Theorem 2 follows. x pn =:

T (2) n + T (3) n .
By (3), we have

T (2) n = θ n,b τn (k n )[K b τn (log(1/p n )) -K b τn (log(n/k n ))] -θ n,τ (k n )[K τ (log(1/p n )) -K τ (log(n/k n ))] = [K τ (log(1/p n )) -K τ (log(n/k n ))] θ n,b τn (k n ) -θ n,τ (k n ) + θ n,b τn (k n ) [(K b τn (log(1/p n )) -K b τn (log(n/k n ))) -(K τ (log(1/p n )) -K τ (log(n/k n )))] =: T (2,1) n + T (2,2) n .
Focusing on the first term, (20) leads to

T (2,1) n = log 2 (n/k n )[K τ (log(1/p n )) -K τ (log(n/k n ))] √ k n (log 2 (n/k n ) -log 2 (n/k n )) θ n,τ (k n )δ n which implies that √ k n (log 2 (n/k n ) -log 2 (n/k n )) log(1/pn) log(n/kn) u τ -1 log(u)du T (2,1) n = δ n log 2 (n/k n )[K τ (log(1/p n )) -K τ (log(n/k n ))] log(1/pn) log(n/kn) u τ -1 log(u)du θ n,τ (k n ) = o P (1). 
Let us now consider T

. Theorem 1 states that

τ n = τ + ξ n √ k n (log 2 (n/k n ) -log 2 (n/k n )) =: τ + ξ n σ n where ξ n d -→ N (0, 1).

Replacing in T

(2,2) n

, we obtain

T (2,2) n = θ n,b τn (k n )[(K τ +σnξn (log(1/p n )) -K τ +σnξn (log(n/k n ))) -(K τ (log(1/p n )) -K τ (log(n/k n )))].
By definition

K τ (log(1/p n )) -K τ (log(n/k n )) = log(1/pn) log(n/kn) u τ -1 du,
and therefore it immediately follows that

T (2,2) n = θ n,b τn (k n ) log(1/pn) log(n/kn) u τ +σnξn-1 -u τ -1 du = θ n,b τn (k n ) log(1/pn) log(n/kn) u τ -1 u σnξn -1 du.
Letting ϕ(x) := exp(x) -1 -x, we deduce that 

T (2,2) n = θ n,b τn (k n )σ n ξ n log(1/pn) log(n/kn) u τ -1 log(u)du + θ n,b τn (k n ) log(1/pn) log(n/kn) u τ -1 ϕ(σ n ξ n log(u))du.
≤ cσ n ξ 2 n log(1/pn) log(n/kn) u τ -1 [log(u)] 2 du 2 log(1/pn) log(n/kn) u τ -1 log(u)du ≤ cξ 2 n log 2 (1/p n ) 2 √ k n (log 2 (n/k n ) -log 2 (n/k n )) = o P (1),
and, replacing in

T (2,2) n , we obtain √ k n (log 2 (n/k n ) -log 2 (n/k n )) log(1/pn) log(n/kn) log(u)u τ -1 du T (2,2) n = ξ n θ n,b τn (k n ) + o P (1) d -→ N (0, θ 2 ).
Finally, Lemma 8 states that

T (3) n = n [K τ (log(1/p n )) -K τ (log(n/k n ))] √ k n where n d -→ N (0, θ 2 ),
and thus, under our assumptions,

√ k n (log 2 (n/k n ) -log 2 (n/k n ))
log(1/pn) log(n/kn) u τ -1 log(u)du

T (3) n = o P (1).
Combining the above results and using the delta method, Theorem 3 follows.

Appendix: Proof of auxiliary results

Proof of Lemma 1 -A (i + 1) th order Taylor expansion leads to

h x (u) = u i i! h (i) x (0) + u i+1 (i + 1)! h (i+1)
x (ηu), with η ∈ (0, 1) and consequently,

h x (t) = ∞ 0 exp(-tu) u i i! h (i) x (0)du + ∞ 0 exp(-tu) u i+1 (i + 1)! h (i+1)
x (ηu)du =: T (1) x (t) + T (2) x (t).

It follows that

T (1) x (t) = h (i) x (0) i! ∞ 0 u i exp(-tu)du = h (i) x (0) t i+1 ,
and the change of variable v = tu yields

T (2) x (t) = 1 (i + 1)! 1 t i+2 ∞ 0 exp(-v)v i+1 h (i+1) x η v t dv.
Therefore, we have, uniformly in x ∈ C:

|T (2) x (t)| ≤ sup z∈C y≥0 h (i+1) z (y) 1 (i + 1)! 1 t i+2 ∞ 0 exp(-v)v i+1 dv = 1 t i+2 sup z∈C y≥0 h (i+1) z (y) = O 1 t i+2
and thus

h x (t) = h (i)
x (0)

t i+1 + O 1 t i+2 = 1 t i+1 h (i) x (0) + O 1 t ,
which achieves the proof.

Proof of Lemma 2 -(i) By definition, for all x ∈ R and t > 0, we have

µ x (t) = ∞ 0 (K x (u + t) -K x (t)) exp(-u)du = ∞ 0 u+t t y x-1 dy exp(-u)du.
Using Fubini's theorem, it follows

µ x (t) = ∞ t y x-1 ∞ y-t exp(-u)du dy = exp(t) ∞ t y x-1 exp(-y)dy, (21) 
and the change of variable u = y/t -1 yields

µ x (t) = t x ∞ 0 exp(-tu)(u + 1) x-1 du = t x h x (t)
with h x (t) = (t + 1) x-1 . Applying Lemma 1 with i = 0 concludes the proof of (i).

(ii) From ( 21) we obtain, for x ∈ R and t > 0,

µ x (t) = exp(t) ∞ t y x-1 exp(-y)dy = exp(t)Γ(x, t), (22) 
where Γ(x, t) is the upper incomplete gamma function. We thus have (see for instance [START_REF] Artin | The gamma function[END_REF]) The result is proved.

∂ ∂x µ x (t) = exp(t) ∞ t exp(-y) log(y)y x-1 dy, (23) 
Proof of Lemma 4 -Recall that C is a compact subset such that [0, 1] ⊂ C ⊂ (-∞, 2
Proof of Lemma 5 -Let us remark that 

P H n (k n ) H n (k n ) ≥ k n k n = P θ n,τ (k n ) θ n,τ (k n ) ≥ k n k n µ τ (log(n/k n )) µ τ (log(n/k n )) = P θ n,τ (k n ) θ n,τ (k n ) ≥ k n k n log(n/k n ) log(n/k n ) 1-τ (1 + o(1)) by Lemma 2(i). Moreover k n /k n → ∞ implies (log(n/k n )/ log(n/k n )) 1-τ ≥ 1 eventually while θ n,τ (k n )/ θ n,τ (k n ) P -→ 1 
θ n,τ (k n ) = 1 µ τ (log(n/k n )) θ 1 k n -1 kn-1 i=1 [K τ (F i + E n-kn+1,n ) -K τ (E n-kn+1,n )] + 1 k n -1 kn-1 i=1 log (exp K τ (F i + E n-kn+1,n )) (exp K τ (E n-kn+1,n )) . (25) 
Now, Lemma 2(ii) and Lemma 5 in Gardes et al. (2011) yield

1 µ τ (E n-kn+1,n ) 1 k n -1 kn-1 i=1 [K τ (F i + E n-kn+1,n ) -K τ (E n-kn+1,n )] P -→ 1. (26) 
Moreover, since the slowly varying function (.) is assumed to be normalised, it follows that log

(exp(K τ (F i + E n-kn+1,n ))) (exp(K τ (E n-kn+1,n ))) = exp(Kτ (Fi+E n-kn +1,n )) exp(Kτ (E n-kn +1,n )) ε(u) du u , with ε(s) → 0 as s → ∞. Thus for all i = 1, . . . , k n -1, we have exp(Kτ (Fi+E n-kn +1,n )) exp(Kτ (E n-kn+1,n )) ε(u) du u ≤ sup u≥exp(Kτ (E n-kn+1,n )) |ε(u)| exp(Kτ (Fi+E n-kn +1,n )) exp(Kτ (E n-kn +1,n )) du u = o P (1) [K τ (F i + E n-kn+1,n ) -K τ (E n-kn+1,n )] .
Thus, (26) entails

1 µ τ (log(n/k n )) 1 k n -1 kn-1 i=1 log (exp K τ (F i + E n-kn+1,n )) (exp K τ (E n-kn+1,n )) = o P (1). (27) 
Collecting ( 25)-( 27), Lemma 6 follows.

from Lemma 2(i). Moreover, under the event A n , using Lemma 2(i) and Theorem 1, we have

µ τ0 (log(n/k n )) µ b τn (log(n/k n )) = (log(n/k n )) τ0-b τn (1 + o P (1)) = (log(n/k n )) η(τ -b τn) (1 + o P (1)) = exp(η(τ -τ n ) log 2 (n/k n ))(1 + o P (1)) = exp - ηξ n log 2 (n/k n ) √ k n (log 2 (n/k n ) -log 2 (n/k n )) (1 + o P (1)) P -→ 1.
We thus obtain

w n θ n,b τn (k n ) θ n,τ (k n ) -1 = ξ n (1 + o P (1)),
and, replacing in T

n (s), it finally follows that

T (4) n (s) = P({ξ n ≤ s(1 + o P (1))} ∩ A n ) = P(ξ n ≤ s(1 + o P (1))) -P({ξ n ≤ s(1 + o P (1))} |A c n )P(A c n ).
Using the same arguments as in the proof of Theorem 1, it is easily seen that P(ξ n ≤ s(1+o P (1))) → Φ(s) and thus T 

Proof of Theorem 3 -

 3 Let us consider the following expansion:

Now, there existsc 2 σ 2 n ξ 2 n

 2 c > 0 such that x < log(c) implies |ϕ(x)| < c 2 x 2 . As a consequence, since σ n log 2 (1/p n ) → 0 and σ n log 2 (n/k n ) → 0, for n large enough, we have log(1/pn) log(n/kn) u τ -1 ϕ(σ n ξ n log(u))du ≤ log(1/pn) log(n/kn) u τ -1 |ϕ(σ n ξ n log(u))|du ≤ log(1/pn) log(n/kn) u τ -1 [log(u)] 2 du.Thus, log(1/pn) log(n/kn) u τ -1 ϕ(σ n ξ n log(u))du σ n log(1/pn) log(n/kn) u τ -1 log(u)du

  by assumption. The conclusion follows. Proof of Lemma 6 -According to Lemma 3 in Gardes et al. (2011), we have

( 4 )

 4 n (s) → Φ(s) since P(A c n ) → 0.Combining the above results the proof of Lemma 10 is achieved.

Figure 1 :

 1 Figure 1: Mean-squared errors as a function of k n associated to x pn, b θ n, b τn (dotted line) and to the Moment estimator of Dekkers et al. (bold line) and the POT estimator (solid line). They are computed on 100 samples of size 500. Upper left: absolute value of Cauchy distribution, upper right: absolute value of Student distribution, bottom left: Burr distribution with ρ = -1, bottom right: Burr distribution with ρ = -1/2.

Figure 2 :Figure 3 :

 23 Figure 2: Mean-squared errors as a function of k n associated to x pn, b θ n, b τn (dotted line) and to the Moment estimator of Dekkers et al. (bold line) and the POT estimator (solid line). They are computed on 100 samples of size 500. Upper left: Pareto distribution, upper right: Weibull distribution, bottom left: absolute value of Gaussian distribution, bottom right: Gamma distribution.

Figure 4 :

 4 Figure 4: Results obtained on the Nidd river data set. Top: estimation of τ (left) and θ (right) as functions of k n . Bottom: N -year return levels as functions of k n obtained with x pn, b θ n, b τn (dotted line) and the Moment estimator of Dekkers et al. (bold line) and the POT estimator (solid line) (left: N = 50, right: N = 100).
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and the change of variable u = y/t -1 yields

exp(-tu) exp(-t)t x-1 (u + 1) x-1 log(t(u + 1))tdu = t x ∞ 0 exp(-tu)(u + 1) x-1 log(u + 1)du + log(t)t x ∞ 0 exp(-tu)(u + 1) x-1 du =: t x ∞ 0 exp(-tu)g x (u)du + log(t)µ x (t), with g x (u) := (u + 1) x-1 log(u + 1). Applying Lemma 1 with i = 1, the conclusion follows.

Proof of Lemma 3 -(i) First of all, remark that ψ(x; t, t ) > 0 for all x ∈ R and t > t > 0.

Besides, routine calculations show that

=: ψ(x; t, t

where, by ( 21) and [START_REF] Häusler | On asymptotic normality of Hill's estimator for the exponent of regular variation[END_REF],

Let us remark that Q x is an increasing function on (0, ∞) since

As a consequence t > t implies ∂/∂x(ψ(x; t, t )) = ψ(x; t, t )(Q x (t) -Q x (t )) > 0 and concludes the first part of the proof.

(ii) From ( 22), we have

Besides, considering the following inequalities,

and

and thus M x (t, t ) → 0 as x → ∞. The conclusion follows.

Proof of Lemma 9 -First of all, let us note that the two conditions

). As a consequence, we have

and therefore

It concludes the proof.

Proof of Lemma 10 -A first order Taylor expansion yields

, with τ 0 = τ n + η(τ -τ n ) and η ∈ (0, 1). Let

and recall that Φ is the cumulative distribution function of the standard Gaussian distribution. Our aim is to prove that P (F n (s)) → Φ(s), for all s ∈ R. Keeping in mind that C is a compact subset such that [0, 1] ⊂ C ⊂ (-∞, 2) and A n = {τ 0 ∈ C} ∩ { τ n ∈ C}, we have

where A c n is the complementary event of A n . Let us first consider T

n (s). Theorem 1 states that

Consequently, under the assumptions of Theorem 1,

n (s) → 0. Let us focus on T