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Abstract

In [18], a new family of distributions is introduced, depending on two parameters τ and θ,
which encompasses Pareto-type distributions as well as Weibull tail-distributions. Estimators
for θ and extreme quantiles are also proposed, but they both depend on the unknown param-
eter τ , making them useless in practical situations. In this paper, we propose an estimator of
τ which is independent of θ. Plugging our estimator of τ in the two previous ones allows us to
estimate extreme quantiles from Pareto-type and Weibull tail-distributions in an unified way.
The asymptotic distributions of our three new estimators are established and their efficiency
is illustrated on a small simulation study and on a real data set.
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1 Introduction

Let X1, . . . , Xn be a sequence of independent and identically distributed random variables with
a cumulative distribution function F and let X1,n ≤ · · · ≤ Xn,n denote the order statistics as-
sociated to this sample. The Gnedenko theorem [20] insures that for a large class of cumulative
distribution functions, the maximum Xn,n (after proper renormalization) converges in distribution
to an extreme-value distribution with shape parameter γ. Depending on its sign, three possible
maximum domains of attraction for F are possible: Fréchet (γ > 0), Gumbel (γ = 0) and Weibull
(γ < 0). Since distributions in the Weibull maximum domain of attraction have a finite right tail,
in most applications this maximum domain of attraction is not relevant. In this paper, we focus
on the Fréchet and Gumbel maximum domains of attraction.

Distributions in the Fréchet maximum domain of attraction can be characterized through their
survival function F = 1− F as F (x) = x−1/γL(x) where γ > 0 and L is a slowly varying function
at infinity i.e. L(λx)/L(x)→ 1 as x→∞ for all λ ≥ 1. F is said to be regularly varying at infinity
with index −1/γ. This property is denoted by F ∈ R−1/γ , (see [6] for more details on regular
variations theory) and F is called a Pareto-type distribution. To make inference on the distribution
tail, most approaches consist of using the kn upper order statistics Xn−kn+1,n ≤ · · · ≤ Xn,n since
the tail information is only contained in the extreme upper part of the sample. Here, (kn) is an
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intermediate sequence of integers i.e. such that

lim
n→∞

kn =∞ and lim
n→∞

kn/n = 0.

A large part of the extreme-value literature is devoted to the estimation of the tail-index γ > 0,
the most known estimator being the Hill estimator [24]. It can be equivalently defined in terms of
log-excesses log(Xn−i+1,n/Xn−kn+1,n) or in terms of log-spacings log(Xn−i+1,n/Xn−i,n):

Hn(kn) =
1

kn − 1

kn−1∑
i=1

log
(
Xn−i+1,n

Xn−kn+1,n

)
=

1
kn − 1

kn−1∑
i=1

i log
(
Xn−i+1,n

Xn−i,n

)
. (1)

At the opposite, there is no simple representation for distributions in the Gumbel maximum
domain of attraction. However, an interesting subset of the Gumbel maximum domain of attrac-
tion is the Weibull tail-distributions family. It encompasses for instance Weibull, Gaussian and
Gamma distributions. Let us recall that a cumulative distribution function F has a Weibull tail if
F (x) = exp (−H(x)) , where H←(t) := inf{x, H(x) ≥ t} ∈ Rβ . The function H← is the so-called
generalized inverse of H. The tail of such distributions is driven by the shape parameter β > 0
called the Weibull tail-coefficient. Many papers are dedicated to the estimation of the Weibull
tail-coefficient. A first family of approaches [2, 3, 7, 13] is based on the log-excesses while a second
one relies on the log-spacings [5, 11, 16, 17, 19, 21, 22]. All these estimators are thus similar to the
Hill statistic (1).

In order to understand the similarity between most estimators of the Weibull tail-coefficient
and the Hill estimator, a new family of distributions has been proposed in [18]. These distributions
depend on two parameters τ ∈ [0, 1] and θ > 0. More specifically, letting Kx(y) =

∫ y
1
ux−1du where

x ∈ R, the considered family of survival distribution functions is given by:

(A1(τ, θ)) F (x) = exp(−K←τ (logH(x))) for x ≥ x∗ > 0 with τ ∈ [0, 1].

Here, H is an increasing function such that H← ∈ Rθ where θ > 0. The parameter τ allows us to
represent a large panel of distribution tails ranging from Weibull-type tails (in this case τ = 0 and
θ coincides with the Weibull tail-coefficient β) to distributions belonging to the Fréchet maximum
domain of attraction (in this case τ = 1 and θ corresponds to the tail index γ).

In [18], an estimator of θ based on the Hill statistic is also introduced:

θ̂n,τ (kn) =
Hn(kn)

µτ (log(n/kn))
, (2)

with, for all t > 0,

µτ (t) =
∫ ∞

0

(Kτ (x+ t)−Kτ (t)) e−xdx,

and an estimator of the extreme quantile xpn = F
←

(pn) with pn → 0 as n→∞ is derived:

x̂pn,bθn,τ = Xn−kn+1,n exp
(
θ̂n,τ (kn) [Kτ (log(1/pn))−Kτ (log(n/kn))]

)
. (3)

We refer to [14, 26, 15] for applications of extreme quantiles respectively in reliability, hydrology
and finance. The asymptotic distributions of θ̂n,τ and x̂pn,bθn,τ are established in [18]. Let us
highlight that estimators (2) and (3) are only of theoretical interest since, in practical situations τ
is unknown, and therefore, they cannot be used.

This paper builds on the work of [18]. We propose an estimator τ̂n of τ , independent of θ.
Replacing τ by τ̂n in (2) and (3) yields two new estimators which can be computed in practical
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situations. As a result, we are able to estimate extreme quantiles from Pareto-type and Weibull
tail-distributions in an unified way. The asymptotic normality of our three new estimators is also
established.

The paper is organized as follows. The estimators are defined in Section 2, their asymptotic
properties are established in Section 3. The behavior of the extreme quantile estimator is illustrated
on simulated data in Section 4 and on a real data set in Section 5. Proofs of the main results are
presented in Section 6 while proofs of auxiliary results are postponed to the Appendix.

2 Definition of the estimators

Let us first describe the construction of an estimator of τ . Let (kn) and (k′n) with k′n > kn be two
intermediate sequences of integers such that θ̂n,τ (kn) P−→ θ and θ̂n,τ (k′n) P−→ θ. It straightforwardly
follows that

θ̂n,τ (kn)

θ̂n,τ (k′n)
=
Hn(kn)
Hn(k′n)

µτ (log(n/k′n))
µτ (log(n/kn))

P−→ 1.

Introducing for all t > t′ > 0 the function defined by ψ(.; t; t′) : R → (−∞, exp(t− t′)) and
ψ(x; t, t′) = µx(t)/µx(t′), it follows that

Hn(kn)
Hn(k′n)

P∼ ψ(τ ; log(n/kn), log(n/k′n)). (4)

Moreover, it can be shown (see Lemma 3 in Section 6) that ψ(.; log(n/kn), log(n/k′n)) is a bijection
from R to (−∞, k′n/kn). As a consequence, the following estimator of τ is considered:

τ̂n =

 ψ−1
(
Hn(kn)
Hn(k′n) ; log(n/kn), log(n/k′n)

)
if Hn(kn)

Hn(k′n) <
k′n
kn

u if Hn(kn)
Hn(k′n) ≥

k′n
kn
,

(5)

where u is the realization of a standard uniform distribution. In practice, only the first situation
has to be considered, since Lemma 5 in Section 6 shows that, for n large enough, Hn(kn)/Hn(k′n)
is almost surely smaller than k′n/kn. It is thus possible to plug τ̂n in (2) to obtain a new estimator
of θ:

θ̂n,bτn(kn) =
Hn(kn)

µbτn(log(n/kn))
. (6)

Similarly, replacing τ and θ̂n,τ by their estimates in (3) yields a new estimator of extreme quantiles:

x̂pn,bθn,bτn = Xn−kn+1,n exp
(
θ̂n,bτn(kn) [Kbτn(log(1/pn))−Kbτn(log(n/kn))]

)
. (7)

The asymptotic behavior of the three new estimators τ̂n, θ̂n,bτn and x̂pn,bθn,bτn is established in the
next section.

3 Asymptotic properties

As a first result, we establish the consistency of τ̂n under the following assumption:

H←(t) = tθ`(t) = c tθ exp
(∫ x

1

ε(u)
u

du

)
(8)

with c a positive constant and ε(s)→ 0 as s→∞. Let us highlight that (8) amounts to supposing
that H← ∈ Rθ and that the slowly varying function at infinity ` is normalised, see [6], page 15.
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Proposition 1 Suppose that (A1(τ, θ)) holds with `(.) a normalised slowly varying function. If
(kn) and (k′n) are two intermediate sequences of integers such that kn/k′n → 0, then τ̂n

P−→ τ.

Let us note that the consistency of τ̂n is established for all θ > 0 and τ ∈ [0, 1] in an unified way.
In this sense, the asymptotic behavior of this estimator is more a consequence of the log-spacings
property than a tail behavior (which can be exponential for τ = 0 as well as polynomial for τ = 1).
Next, to establish the asymptotic normality of the three estimators (5), (6) and (7), a second-order
condition on ` is necessary:

(A2(ρ)) There exist ρ < 0 and b(x)→ 0 such that uniformly locally on λ ≥ λ0 > 0

log
(
`(λx)
`(x)

)
∼ b(x)Kρ(λ), when x→∞,

with |b| asymptotically decreasing.

It can be shown that necessarily |b| ∈ Rρ. The second order parameter ρ < 0 tunes the rate of
convergence of `(λx)/`(x) to 1. The closer is ρ to 0, the slower is the convergence. Condition
(A2(ρ)) is the cornerstone in all the proofs of asymptotic normality for extreme value estimators.
It is used in [4, 23, 24] to prove the asymptotic normality of several estimators of the extreme value
index. Let log2(.) = log(log(.)). The first theorem establishes the asymptotic normality of τ̂n:

Theorem 1 Suppose that (A1(τ, θ)) and (A2(ρ)) hold. If (kn) and (k′n) are two intermediate
sequences of integers such that kn/k′n → 0 and√

k′nb(expKτ (log n/k′n))→ 0, (9)√
kn (log2(n/kn)− log2(n/k′n))→∞, (10)

log(n/k′n) (log2(n/kn)− log2(n/k′n))→∞, (11)

then √
kn (log2(n/kn)− log2(n/k′n)) (τ̂n − τ) d−→ N (0, 1).

Condition (9) is standard in extreme-value theory. It imposes that the bias induced by the slowly
varying function is asymptotically negligible. Condition (10) forces the speed of convergence of τ̂n
to tend to infinity. Finally, (11) is of the same nature as (10): It imposes some minimal spacing
between the two sequences (kn) and (k′n). Besides, if τ = 0, conditions (9) and (10) imply that
xb(x)→ 0 as x→∞. As a consequence, if τ = 0 and ρ > −1, it is not possible to choose sequences
(kn) and (k′n) satisfying the above assumptions. In such a case, only the consistency of τ̂n can be
guaranteed.
In our next result, it is established that θ̂n,bτn inherits from the asymptotic normality of τ̂n.

Theorem 2 Suppose the assumptions of Theorem 1 hold. If, moreover,

(log2(n/kn)− log2(n/k′n)) / log2(n/kn)→ 0, (12)√
kn (log2(n/kn)− log2(n/k′n)) / log2(n/kn)→∞, (13)

then √
kn (log2(n/kn)− log2(n/k′n))

log2(n/kn)

(
θ̂n,bτn(kn)− θ

)
d−→ N (0, θ2).
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It appears that the estimation of τ has a cost in terms of rates of convergence. Condition (12)
implies that θ̂n,bτn converges slower than θ̂n,τ , see Lemma 7 in Section 6. As previously, (13) forces
the speed of convergence of θ̂n,bτn(kn) to tend to infinity. Note that this condition implies (10)
in Theorem 1. Similarly as for Theorem 1, it can be shown that, if τ = 0, (9) and (13) imply
x log(x) b(x) → 0 as x → ∞. Thus, again no sequences (kn) and (k′n) exist in case τ = 0 and
ρ > −1. Now, if τ ∈ (0, 1] or if τ = 0 and ρ < −1, a possible choice for the two intermediate
sequences is log(kn) = aKτ (log(n)) and log(k′n) = a′Kτ (log(n)) with the following restrictions on
(a, a′) ∈ R:  0 < a < a′ < 2ρ/(2ρ− 1) if τ = 1

0 < a < a′ < −2ρ if 0 < τ < 1
2 < a < a′ < −2ρ if τ = 0.

(14)

Finally, in the case where τ = 0 and ρ = −1, the existence of sequences (kn) and (k′n) depends on
the underlying distribution.
The last result is dedicated to the asymptotic distribution of the extreme quantile estimator.

Theorem 3 Suppose the assumptions of Theorem 2 hold. If, moreover,√
kn(log2(n/kn)− log2(n/k′n)) /log2(1/pn) →∞, (15)

(log(n/kn))1−τ [Kτ (log(1/pn))−Kτ (log(n/kn))]→∞, (16)

log2(n/kn)[Kτ (log(1/pn))−Kτ (log(n/kn))]

/∫ log(1/pn)

log(n/kn)

log(u)uτ−1du → 0, (17)

then √
kn (log2(n/kn)− log2(n/k′n))∫ log(1/pn)

log(n/kn)
log(u)uτ−1du

(
x̂pn,bθn,bτn
xpn

− 1

)
d−→ N (0, θ2).

A sufficient condition to verify (16) and (17) is log2(1/pn)/ log2(n/kn) → ∞. This imposes an
upper bound on the order pn of the extreme quantile. At the opposite, condition (15) provides
a lower bound on pn. A possible choice for the order pn of the extreme quantile is given by
log2(1/pn) = [log2(n)]α for all α > 1. The finite sample performances of x̂pn,bθn,bτn are illustrated
in the next section.

4 A small simulation study

In this section, our extreme quantile estimator is compared to the Moment estimator of Dekkers
et al. [9] and the Peaks Over Threshold (POT), see for instance [8], on simulated data. The
POT approach relies on the approximation of the excesses distribution, over a high threshold, by a
Generalized Pareto Distribution (GPD). Among the numerous methods available for estimating the
GPD parameters, we focus on the moments method which yields the best results in our simulations.
Let us emphasize that the Moment and POT estimators are designed to work in any domain of
attraction. Let us recall that the extreme quantile estimator (7) requires the numerical inversion of
the function ψ. This computation is achieved thanks to a dichotomy procedure since Lemma 3(i)
ensures that ψ is increasing.
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The comparison is achieved on twelve different distributions:

• five Pareto-type distributions (τ = 1): the absolute value of the standard Cauchy distribution
(θ = 1 and ρ = −2), standard Pareto distribution (θ = 2 and ρ = −∞), the absolute value
of the Student distribution with two degrees of freedom (θ = 1/2 and ρ = −2) and two Burr
distributions (θ = 1/2 and ρ ∈ {−1,−1/2}) with quantile function F

←
(x) = (xρ − 1)−θρ,

x ∈ (0, 1),

• five Weibull tail-distributions (τ = 0): the absolute value of the standard Gaussian distribu-
tion (θ = 1/2 and ρ = −1), a Weibull distribution with 2 as shape parameter (θ = 2 and
ρ = −∞), a Gamma distribution with 2 as shape parameter (θ = 1 and ρ = −1) and two
distributions with quantile function F

←
(x) = (− log x)θ(1+(ρ+θ)(− log x)ρ), x ∈ (0, 1) with

θ = 1/2 and ρ ∈ {−1/2,−1/4},

• two log-Weibull tail distributions (τ = 1/2), see [18], paragraph 2.2: the standard lognormal
distribution (θ =

√
2/2 and ρ = 0) and the distribution with quantile function F

←
(x) =

exp{
√

2[(− log x)1/2 − 1]}, x ∈ (0, 1) for which θ =
√

2/2 and ρ = −∞.

These distributions represent various situations (τ ∈ {0, 1/2, 1}, θ ∈ {1/2,
√

2/2, 1, 2} and ρ ∈
{−∞,−2,−1,−1/2,−1/4, 0}) in which the asymptotic normality of our estimator is not always
established. In the following, we take pn = 10−3 and simulate N = 100 samples (Xn,j)j=1,...,N

of size n = 500. For each sample Xn,j , the estimator x̂pn,bθn,bτn is computed for k′n = 3, . . . , 500
and kn = bck′nc with c = 0.1. This value has been chosen on the basis of intensive Monte-Carlo
simulations. With such a choice, our estimator and the Moment and POT estimators depend on
only one intermediate sequence of integers (k′n). For all the considered distributions, the mean-
squared errors associated to the estimators are computed as functions of k′n and are reported on
Figures 1–3. It appears that our estimator outperforms the Moment and POT estimators for
almost all the values of k′n. Also for k′n ≥ 50, the mean-squared errors associated to our estimator
are almost constant as a function of k′n, whatever the distribution is.

5 A real data set

The performance of our estimator (7) is illustrated through the analysis of extreme events on the
Nidd river data set, which is common in extreme values studies, see for instance [8]. It consists of
154 exceedances of the levels 65m3s−1 by the river Nidd (Yorkshire, England) during the period
1934-1969 (35 years). There is no general agreement on a maximum domain of attraction for
this data set. In [10], a Fréchet maximum domain of attraction is assumed and heavy tailed-
distributions are considered as a possible model for such data. However, according to [25], the
Nidd data may reasonably be assumed to come from a distribution in the Gumbel maximum
domain of attraction. This result was in accordance with [12] where it has been shown that a
Weibull tail-distribution could be considered for such a data. The estimation of τ is therefore of
great interest. The estimated values of τ and θ are depicted on Figure 4 as functions of k′n (recall
that kn = b0.1k′nc). It appears that the estimators become stable for k′n ≥ 80 with τ̂n ' 1 and
θ̂n,bτn(kn) ' 0.3. These results indicate that the data may be assumed to come from a distribution
in the Fréchet maximum domain of attraction. They are in accordance with the ones obtained by
Bayesian methods [10], Figure 7 where the tail index is also estimated at 0.3.

The standard quantity of interest in environmental studies is the N -year return level, defined as
the level which is exceeded on average once in N years. Here, we focus on the estimation of the 50-
and 100- year return levels. In Figure 4, our extreme quantile estimator is compared to the Moment
and POT estimators, plotting the associated N -year return level as a function of k′n for N = 50
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and N = 100. It appears that our estimator and the Moment estimator yield similar curves. The
POT sample path is different, but for all methods, choosing k′n ' 60, we obtain an estimation of
the 50-year return level which belongs approximately to the interval [340m3s−1, 375m3s−1], and an
estimation of the 100-year return in [400m3s−1, 470m3s−1]. Again, these results are in accordance
with the the credibility intervals obtained in [10], Table 1.

6 Proofs

We first give some preliminary lemmas. Their proofs are postponed to the appendix.

6.1 Preliminary lemmas

In the following, C is a compact subset such that [0, 1] ⊂ C ⊂ (−∞, 2). The first lemma is a
standard result on the behavior at infinity of the Laplace transform.

Lemma 1 Let x ∈ C and hx ∈ C∞(R+). Set i = min {j ∈ N/h(j)
x (0) 6= 0}. If

sup
x∈C
y≥0

∣∣∣h(i+1)
x (y)

∣∣∣ <∞,
then

lim
t→∞

sup
x∈C

∣∣∣ti+1h̃x(t)− h(i)
x (0)

∣∣∣ = 0,

with h̃x(t) =
∫ +∞
0

exp(−tu)hx(u)du is the Laplace transform of hx.

Lemma 1 is the key tool for establishing the uniform asymptotic expansions of µx and ∂µx/∂x
given in Lemma 2:

Lemma 2 For all x ∈ C and t > 0, we have

(i) lim
t→∞

sup
x∈C

∣∣∣∣µx(t)
tx−1

− 1
∣∣∣∣ = 0,

(ii) lim
t→∞

sup
x∈C

∣∣∣∣∣ ∂∂xµx(t)− log(t)µx(t)
tx−2

− 1

∣∣∣∣∣ = 0.

As a consequence of the above expansions, some important properties of ψ can be derived in the
two next lemmas:

Lemma 3 For all t > t′ > 0 and x ∈ R, we have

(i) x→ ψ(x; t, t′) is an increasing function,

(ii) lim
x→∞

ψ(x; t, t′) = exp(t− t′).

Lemma 4 For all x ∈ C and t > t′ > 0, we have

∂

∂x
ψ(x; t, t′) = log(t/t′)ψ(x; t, t′)

(
1 +O

(
1

t′ log(t/t′)

))
, as t′ →∞.

The following lemma ensures that the estimator τ̂n is well-defined. In (5), the situation where
Hn(kn)/Hn(k′n) ≥ k′n/kn is eventually impossible.
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Lemma 5 Let (kn) and (k′n) be two intermediate sequences of integers such that kn/k′n → 0. If
θ̂n,τ (kn)/θ̂n,τ (k′n) P−→ 1 then

P
(
Hn(kn)
Hn(k′n)

≥ k′n
kn

)
→ 0 as n→∞.

We now prove that θ̂n,τ (kn) is a consistent estimator for θ when τ is known and under general
assumptions.

Lemma 6 Suppose that (A1(τ, θ)) holds with a normalised slowly varying function `(.). If (kn)
is an intermediate sequence of integers, then θ̂n,τ (kn) P−→ θ.

The asymptotic normality of θ̂n,τ and x̂pn,bθn,τ has already been established in the particular case
where τ is known by [18]. Let us quote two results from this work.

Lemma 7 (Theorem 1, [18]). Suppose that (A1(τ, θ)) and (A2(ρ)) hold. If (kn) is an intermedi-
ate sequence such that

√
kn b(expKτ (log(n/kn)))→ 0, then

√
kn

(
θ̂n,τ (kn)

θ
− 1

)
d−→ N (0, 1). (18)

Lemma 8 (Theorem 2, [18]). Under the assumptions of Lemma 7 and if, moreover,

(log(n/kn))1−τ (Kτ (log(1/pn))−Kτ (log(n/kn)))→∞,

then, √
kn

Kτ (log(1/pn))−Kτ (log(n/kn))
log

(
x̂pn,bθn,τ
xpn

)
d−→ N (0, θ2).

The next lemma establishes that θ can be replaced by θ̂n,τ (k′n) in (18) without changing the
asymptotic distribution.

Lemma 9 Suppose that (A1(τ, θ)) and (A2(ρ)) hold. Let (kn) and (k′n) be two intermediate
sequences of integers such that

√
k′nb(expKτ (log n/k′n))→ 0 and kn/k′n → 0. We have

√
kn

(
θ̂n,τ (kn)

θ̂n,τ (k′n)
− 1

)
d−→ N (0, 1).

The last lemma quantifies the effect of estimating τ in θ̂n,τ (kn).

Lemma 10 Suppose that (A1(τ, θ)) and (A2(ρ)) hold. Let (kn) and (k′n) be two intermediate
sequences of integers such that

kn/k
′
n → 0,

√
kn (log2(n/kn)− log2(n/k′n)) / log2(n/kn)→∞,√

k′nb(expKτ (log n/k′n))→ 0 and log(n/k′n) (log2(n/kn)− log2(n/k′n))→∞.

We have √
kn(log2(n/kn)− log2(n/k′n))

log2(n/kn)

(
θ̂n,bτn(kn)

θ̂n,τ (kn)
− 1

)
d−→ N (0, 1).
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6.2 Proofs of the main results

Proof of Proposition 1 − For all ε > 0, let us write

P (|τ̂n − τ | > ε) = P (τ̂n > τ + ε) + P (τ̂n < τ − ε)

and consider the two terms separately. Clearly, one has

P(τ̂n > τ + ε) = P
(
{τ̂n > τ + ε}

∣∣∣∣{Hn(kn)
Hn(k′n)

≥ k′n
kn

})
P
(
Hn(kn)
Hn(k′n)

≥ k′n
kn

)
+ P

(
{τ̂n > τ + ε} ∩

{
Hn(kn)
Hn(k′n)

<
k′n
kn

})
≤ P

(
Hn(kn)
Hn(k′n)

≥ k′n
kn

)
+ P

(
Hn(kn)
Hn(k′n)

≥ ψ(τ + ε; log(n/kn), log(n/k′n))
)
. (19)

Focusing on the first probability of (19), note that, θ̂n,τ (kn) and θ̂n,τ (k′n) are consistent estimators

for θ in probability by Lemma 6. Thus θ̂n,τ (kn)/θ̂n,τ (k′n) P−→ 1 and Lemma 5 entail

P
(
Hn(kn)
Hn(k′n)

≥ k′n
kn

)
→ 0.

The second probability in (19) tends to 0 by (4) and Lemma 3(i). Similarly, we can prove that
P (τ̂n < τ − ε)→ 0 which achieves the proof.

Proof of Theorem 1 − Letting vn =
√
kn (log2(n/kn)− log2(n/k′n)), our goal is to prove

that P (vn(τ̂n − τ) ≤ s) → Φ(s), for all s ∈ R where Φ is the cumulative distribution function
of the standard Gaussian distribution. To this aim, let us first remark that Lemma 9 yields
θ̂n,τ (kn)/θ̂n,τ (k′n) P−→ 1. Thus, introducing En(s) = {vn(τ̂n − τ) ≤ s}, we have

P(En(s)) = P
(
En(s) ∩

{
Hn(kn)
Hn(k′n)

<
k′n
kn

})
+ P

(
En(s)

∣∣∣∣{Hn(kn)
Hn(k′n)

≥ k′n
kn

})
P
(
Hn(kn)
Hn(k′n)

≥ k′n
kn

)
=: T (1)

n (s) + o(1),

by Lemma 5. From the definition of τ̂n given in (5) and recalling that, from Lemma 3(i),
ψ(.; log(n/kn), log(n/k′n)) is an increasing function, we obtain

T (1)
n (s) = P

({
Hn(kn)
Hn(k′n)

≤ ψ(τ + s/vn; log(n/kn), log(n/k′n))
}
∩
{
Hn(kn)
Hn(k′n)

<
k′n
kn

})
= P

(
Hn(kn)
Hn(k′n)

≤ min
(
ψ(τ + s/vn; log(n/kn), log(n/k′n)),

k′n
kn

))
.

Lemma 3(ii) thus yields

T (1)
n (s) = P

(
Hn(kn)
Hn(k′n)

≤ ψ(τ + s/vn; log(n/kn), log(n/k′n))
)

= P
(
Hn(kn)
Hn(k′n)

≤
µτ+s/vn(log(n/kn))
µτ+s/vn(log(n/k′n))

)
,

and, from (2) and the fact that

ζn :=
√
kn

(
θ̂n,τ (kn)

θ̂n,τ (k′n)
− 1

)
d−→ N (0, 1),

9



(see Lemma 9), we have

T (1)
n (s) = P

(
ζn ≤

√
kn

(
µτ (log(n/k′n))
µτ (log(n/kn))

µτ+s/vn(log(n/kn))
µτ+s/vn(log(n/k′n))

− 1
))

= P
(
ζn ≤

√
kn
µτ (log(n/k′n))
µτ (log(n/kn))

[ψ(τ + s/vn; log(n/kn), log(n/k′n))− ψ(τ ; log(n/kn), log(n/k′n))]
)
.

A first order Taylor expansion leads to

T (1)
n (s) = P

(
ζn ≤

s

(log2(n/kn)− log2(n/k′n))
µτ (log(n/k′n))
µτ (log(n/kn))

∂

∂x
ψ(τ0; log(n/kn), log(n/k′n))

)
,

where τ0 = τ + sη0/vn with η0 ∈ (0, 1). Since τ0 → τ , for n large enough, τ0 < 2 and Lemma 4
entails

T (1)
n (s) = P

(
ζn ≤ s

µτ0(log(n/kn))
µτ0(log(n/k′n))

µτ (log(n/k′n))
µτ (log(n/kn))

(
1 +O

(
1

log(n/k′n) (log2(n/kn)− log2(n/k′n))

)))
= P

(
ζn ≤ s

µτ0(log(n/kn))
µτ0(log(n/k′n))

µτ (log(n/k′n))
µτ (log(n/kn))

(1 + o(1))
)
.

Besides, Lemma 2(i) entails that

s
µτ0(log(n/kn))
µτ0(log(n/k′n))

µτ (log(n/k′n))
µτ (log(n/kn))

= s

(
log(n/kn)
log(n/k′n)

)τ0−τ
(1 + o(1)) = s exp

(
sη0√
kn

)
(1 + o(1)) −→

n→∞
s,

and thus
T (1)
n (s) = P(ζn ≤ s(1 + o(1))) ≤ Φ(s) + sup

x∈R
|Φ(x)− P(ζn ≤ x)| → Φ(s)

by [15], page 552. This achieves the proof of Theorem 1.

Proof of Theorem 2 − On the first hand, Lemma 7 shows that

θ̂n,τ (kn)− θ =
ζnθ√
kn

where ζn
d−→ N (0, 1),

and on the other hand, Lemma 10 entails

θ̂n,bτn(kn)

θ̂n,τ (kn)
− 1 =

δn log2(n/kn)√
kn(log2(n/kn)− log2(n/k′n))

where δn
d−→ N (0, 1). (20)

Collecting these results, it follows that

θ̂n,bτn(kn)− θ = θ̂n,τ (kn)

(
θ̂n,bτn(kn)

θ̂n,τ (kn)
− 1

)
+
(
θ̂n,τ (kn)− θ

)
= θ̂n,τ (kn)

δn log2(n/kn)√
kn(log2(n/kn)− log2(n/k′n))

+
ζnθ√
kn
.

Consequently, one immediately has
√
kn(log2(n/kn)− log2(n/k′n))

log2(n/kn)

(
θ̂n,bτn(kn)− θ

)
= θ̂n,τ (kn)δn + ζnθ

log2(n/kn)− log2(n/k′n)
log2(n/kn)

and Theorem 2 follows.
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Proof of Theorem 3 − Let us consider the following expansion:

log

(
x̂pn,bθn,bτn
xpn

)
= log

(
x̂pn,bθn,bτn
x̂pn,bθn,τ

)
+ log

(
x̂pn,bθn,τ
xpn

)
=: T (2)

n + T (3)
n .

By (3), we have

T (2)
n = θ̂n,bτn(kn)[Kbτn(log(1/pn))−Kbτn(log(n/kn))]− θ̂n,τ (kn)[Kτ (log(1/pn))−Kτ (log(n/kn))]

= [Kτ (log(1/pn))−Kτ (log(n/kn))]
(
θ̂n,bτn(kn)− θ̂n,τ (kn)

)
+θ̂n,bτn(kn) [(Kbτn(log(1/pn))−Kbτn(log(n/kn)))− (Kτ (log(1/pn))−Kτ (log(n/kn)))]

=: T (2,1)
n + T (2,2)

n .

Focusing on the first term, (20) leads to

T (2,1)
n =

log2(n/kn)[Kτ (log(1/pn))−Kτ (log(n/kn))]√
kn (log2(n/kn)− log2(n/k′n))

θ̂n,τ (kn)δn

which implies that
√
kn(log2(n/kn)− log2(n/k′n))∫ log(1/pn)

log(n/kn)
uτ−1 log(u)du

T (2,1)
n =

δn log2(n/kn)[Kτ (log(1/pn))−Kτ (log(n/kn))]∫ log(1/pn)

log(n/kn)
uτ−1 log(u)du

θ̂n,τ (kn) = oP(1).

Let us now consider T (2,2)
n . Theorem 1 states that

τ̂n = τ +
ξn√

kn (log2(n/kn)− log2(n/k′n))
=: τ + ξnσn where ξn

d−→ N (0, 1).

Replacing in T
(2,2)
n , we obtain

T (2,2)
n = θ̂n,bτn(kn)[(Kτ+σnξn(log(1/pn))−Kτ+σnξn(log(n/kn)))− (Kτ (log(1/pn))−Kτ (log(n/kn)))].

By definition

Kτ (log(1/pn))−Kτ (log(n/kn)) =
∫ log(1/pn)

log(n/kn)

uτ−1du,

and therefore it immediately follows that

T (2,2)
n = θ̂n,bτn(kn)

∫ log(1/pn)

log(n/kn)

(
uτ+σnξn−1 − uτ−1

)
du = θ̂n,bτn(kn)

∫ log(1/pn)

log(n/kn)

uτ−1
(
uσnξn − 1

)
du.

Letting ϕ(x) := exp(x)− 1− x, we deduce that

T (2,2)
n = θ̂n,bτn(kn)σnξn

∫ log(1/pn)

log(n/kn)

uτ−1 log(u)du+ θ̂n,bτn(kn)
∫ log(1/pn)

log(n/kn)

uτ−1ϕ(σnξn log(u))du.

Now, there exists c > 0 such that x < log(c) implies |ϕ(x)| < c
2x

2. As a consequence, since
σn log2(1/pn)→ 0 and σn log2(n/kn)→ 0, for n large enough, we have∣∣∣∣∣

∫ log(1/pn)

log(n/kn)

uτ−1ϕ(σnξn log(u))du

∣∣∣∣∣ ≤
∫ log(1/pn)

log(n/kn)

uτ−1|ϕ(σnξn log(u))|du

≤ c

2
σ2
nξ

2
n

∫ log(1/pn)

log(n/kn)

uτ−1[log(u)]2du.

11



Thus, ∣∣∣∫ log(1/pn)

log(n/kn)
uτ−1ϕ(σnξn log(u))du

∣∣∣
σn
∫ log(1/pn)

log(n/kn)
uτ−1 log(u)du

≤
cσnξ

2
n

∫ log(1/pn)

log(n/kn)
uτ−1[log(u)]2du

2
∫ log(1/pn)

log(n/kn)
uτ−1 log(u)du

≤ cξ2n log2(1/pn)
2
√
kn(log2(n/kn)− log2(n/k′n))

= oP(1),

and, replacing in T
(2,2)
n , we obtain

√
kn (log2(n/kn)− log2(n/k′n))∫ log(1/pn)

log(n/kn)
log(u)uτ−1du

T (2,2)
n = ξnθ̂n,bτn(kn) + oP(1) d−→ N (0, θ2).

Finally, Lemma 8 states that

T (3)
n =

%n[Kτ (log(1/pn))−Kτ (log(n/kn))]√
kn

where %n
d−→ N (0, θ2),

and thus, under our assumptions,
√
kn(log2(n/kn)− log2(n/k′n))∫ log(1/pn)

log(n/kn)
uτ−1 log(u)du

T (3)
n = oP(1).

Combining the above results and using the delta method, Theorem 3 follows.
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[15] Embrechts, P., Klüppelberg, C., Mikosch, T., (1997), Modelling extremal events, Springer.

[16] Gardes, L., Girard, S., (2006), Comparison of Weibull tail-coefficient estimators, REVSTAT
- Statistical Journal, 4, 163–188.

[17] Gardes, L., Girard, S., (2008), Estimation of the Weibull tail-coefficient with linear combina-
tion of upper order statistics, Journal of Statistical Planning and Inference, 138, 1416–1427.

[18] Gardes, L., Girard, S., Guillou, A., (2011), Weibull tail-distributions revisited: a new look at
some tail estimators, Journal of Statistical Planning and Inference, 141, 429–444.

[19] Girard, S., (2004), A Hill type estimate of the Weibull tail-coefficient, Communication in
Statistics - Theory and Methods, 33(2), 205–234.

[20] Gnedenko, B.V., (1943), Sur la distribution limite du terme maximum d’une série aléatoire,
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Appendix: Proof of auxiliary results

Proof of Lemma 1 − A (i+ 1)th order Taylor expansion leads to

hx(u) =
ui

i!
h(i)
x (0) +

ui+1

(i+ 1)!
h(i+1)
x (ηu),

with η ∈ (0, 1) and consequently,

h̃x(t) =
∫ ∞

0

exp(−tu)
ui

i!
h(i)
x (0)du+

∫ ∞
0

exp(−tu)
ui+1

(i+ 1)!
h(i+1)
x (ηu)du =: T (1)

x (t) + T (2)
x (t).

It follows that

T (1)
x (t) =

h
(i)
x (0)
i!

∫ ∞
0

ui exp(−tu)du =
h

(i)
x (0)
ti+1

,

and the change of variable v = tu yields

T (2)
x (t) =

1
(i+ 1)!

1
ti+2

∫ ∞
0

exp(−v)vi+1h(i+1)
x

(
η
v

t

)
dv.

Therefore, we have, uniformly in x ∈ C:

|T (2)
x (t)| ≤ sup

z∈C
y≥0

∣∣∣h(i+1)
z (y)

∣∣∣ 1
(i+ 1)!

1
ti+2

∫ ∞
0

exp(−v)vi+1dv =
1
ti+2

sup
z∈C
y≥0

∣∣∣h(i+1)
z (y)

∣∣∣ = O

(
1
ti+2

)

and thus

h̃x(t) =
h

(i)
x (0)
ti+1

+O

(
1
ti+2

)
=

1
ti+1

(
h(i)
x (0) +O

(
1
t

))
,

which achieves the proof.

Proof of Lemma 2 − (i) By definition, for all x ∈ R and t > 0, we have

µx(t) =
∫ ∞

0

(Kx(u+ t)−Kx(t)) exp(−u)du =
∫ ∞

0

(∫ u+t

t

yx−1dy

)
exp(−u)du.

Using Fubini’s theorem, it follows

µx(t) =
∫ ∞
t

yx−1

(∫ ∞
y−t

exp(−u)du
)
dy = exp(t)

∫ ∞
t

yx−1 exp(−y)dy, (21)

and the change of variable u = y/t− 1 yields

µx(t) = tx
∫ ∞

0

exp(−tu)(u+ 1)x−1du = txh̃x(t)

with hx(t) = (t+ 1)x−1. Applying Lemma 1 with i = 0 concludes the proof of (i).
(ii) From (21) we obtain, for x ∈ R and t > 0,

µx(t) = exp(t)
∫ ∞
t

yx−1 exp(−y)dy = exp(t)Γ(x, t), (22)

where Γ(x, t) is the upper incomplete gamma function. We thus have (see for instance [1])

∂

∂x
µx(t) = exp(t)

∫ ∞
t

exp(−y) log(y)yx−1dy, (23)
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and the change of variable u = y/t− 1 yields

∂

∂x
µx(t) = exp(t)

∫ ∞
0

exp(−tu) exp(−t)tx−1(u+ 1)x−1 log(t(u+ 1))tdu

= tx
∫ ∞

0

exp(−tu)(u+ 1)x−1 log(u+ 1)du+ log(t)tx
∫ ∞

0

exp(−tu)(u+ 1)x−1du

=: tx
∫ ∞

0

exp(−tu)gx(u)du+ log(t)µx(t),

with gx(u) := (u+ 1)x−1 log(u+ 1). Applying Lemma 1 with i = 1, the conclusion follows.

Proof of Lemma 3 − (i) First of all, remark that ψ(x; t, t′) > 0 for all x ∈ R and t > t′ > 0.
Besides, routine calculations show that

∂

∂x
ψ(x; t, t′) = ψ(x; t, t′)

(
∂/∂x(µx(t))

µx(t)
− ∂/∂x(µx(t′))

µx(t′)

)
(24)

=: ψ(x; t, t′) (Qx(t)−Qx(t′)) ,

where, by (21) and (23),

Qx(z) =

∫∞
z

log(y)yx−1 exp(−y)dy∫∞
z
yx−1 exp(−y)dy

.

Let us remark that Qx is an increasing function on (0,∞) since

Q′x(z) =
zx−1 exp(−z)

∫∞
z
yx−1 exp(−y) log(y/z)dy(∫∞

z
yx−1 exp(−y)dy

)2 > 0.

As a consequence t > t′ implies ∂/∂x(ψ(x; t, t′)) = ψ(x; t, t′)(Qx(t) − Qx(t′)) > 0 and concludes
the first part of the proof.
(ii) From (22), we have

1
ψ(x; t, t′)

exp(−t′)
exp(−t)

− 1 =
µx(t′) exp(−t′)
µx(t) exp(−t)

− 1 =

∫ t
t′
yx−1 exp(−y)dy∫∞

t
yx−1 exp(−y)dy

=: Mx(t, t′).

Besides, considering the following inequalities,

0 <
∫ t

t′
yx−1 exp(−y)dy < tx−1 (exp(−t′)− exp(−t)) ,

and ∫ ∞
t

yx−1 exp(−y)dy >
∫ ∞

2t

yx−1 exp(−y)dy > (2t)x−1 exp(−2t),

it follows that

Mx(t, t′) < 21−x exp(−t′)− exp(−t)
exp(−2t)

,

and thus Mx(t, t′)→ 0 as x→∞. The conclusion follows.
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Proof of Lemma 4− Recall that C is a compact subset such that [0, 1] ⊂ C ⊂ (−∞, 2). From (24)
and Lemma 2(ii), we have

∂

∂x
ψ(x; t, t′) = log(t/t′)ψ(x; t, t′)

(
1 +

1
log(t/t′)

tx−2

µx(t)
(1 + o(1))− 1

log(t/t′)
t′x−2

µx(t′)
(1 + o(1))

)
,

for all x ∈ C as t′ → ∞. Moreover, a direct application of Lemma 2(i) implies tx−2/µx(t) =
(1/t)(1 + o(1)). Replacing in the previous expression and recalling that t > t′, it follows

∂

∂x
ψ(x; t, t′) = log(t/t′)ψ(x; t, t′)

(
1 +O

(
1

t′ log(t/t′)

))
.

The result is proved.

Proof of Lemma 5 − Let us remark that

P
(
Hn(kn)
Hn(k′n)

≥ k′n
kn

)
= P

(
θ̂n,τ (kn)

θ̂n,τ (k′n)
≥ k′n
kn

µτ (log(n/k′n))
µτ (log(n/kn))

)

= P

(
θ̂n,τ (kn)

θ̂n,τ (k′n)
≥ k′n
kn

(
log(n/kn)
log(n/k′n)

)1−τ

(1 + o(1))

)

by Lemma 2(i). Moreover k′n/kn → ∞ implies (log(n/kn)/ log(n/k′n))1−τ ≥ 1 eventually while
θ̂n,τ (kn)/θ̂n,τ (k′n) P−→ 1 by assumption. The conclusion follows.

Proof of Lemma 6 − According to Lemma 3 in Gardes et al. (2011), we have

θ̂n,τ (kn) =
1

µτ (log(n/kn))

{
θ

1
kn − 1

kn−1∑
i=1

[Kτ (Fi + En−kn+1,n)−Kτ (En−kn+1,n)]

+
1

kn − 1

kn−1∑
i=1

log
`(expKτ (Fi + En−kn+1,n))
`(expKτ (En−kn+1,n))

}
. (25)

Now, Lemma 2(ii) and Lemma 5 in Gardes et al. (2011) yield

1
µτ (En−kn+1,n)

1
kn − 1

kn−1∑
i=1

[Kτ (Fi + En−kn+1,n)−Kτ (En−kn+1,n)] P−→ 1. (26)

Moreover, since the slowly varying function `(.) is assumed to be normalised, it follows that

log
`(exp(Kτ (Fi + En−kn+1,n)))
`(exp(Kτ (En−kn+1,n)))

=
∫ exp(Kτ (Fi+En−kn+1,n))

exp(Kτ (En−kn+1,n))

ε(u)
du

u
,

with ε(s)→ 0 as s→∞. Thus for all i = 1, . . . , kn − 1, we have∣∣∣∣∣
∫ exp(Kτ (Fi+En−kn+1,n))

exp(Kτ (En−kn+1,n))

ε(u)
du

u

∣∣∣∣∣ ≤ sup
u≥exp(Kτ (En−kn+1,n))

|ε(u)|
∫ exp(Kτ (Fi+En−kn+1,n))

exp(Kτ (En−kn+1,n))

du

u

= oP(1) [Kτ (Fi + En−kn+1,n)−Kτ (En−kn+1,n)] .

Thus, (26) entails

1
µτ (log(n/kn))

1
kn − 1

kn−1∑
i=1

log
`(expKτ (Fi + En−kn+1,n))
`(expKτ (En−kn+1,n))

= oP(1). (27)

Collecting (25)-(27), Lemma 6 follows.
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Proof of Lemma 9 − First of all, let us note that the two conditions
√
k′nb(expKτ (log n/k′n))→ 0

and kn/k′n → 0 imply
√
knb(expKτ (log n/kn))→ 0 since |b| is asymptotically decreasing. Lemma 7

states that θ̂n,τ (kn) = θ + θζn/
√
kn where ζn

d−→ N (0, 1) and θ̂n,τ (k′n) = θ + θζ ′n/
√
k′n where

ζ ′n
d−→ N (0, 1). As a consequence, we have

θ̂n,τ (kn)

θ̂n,τ (k′n)
=

1 + ζn/
√
kn

1 + ζ ′n/
√
k′n

=
(

1 +
ζn√
kn

)(
1− ζ ′n√

k′n
+ oP

(
1√
k′n

))

= 1 +
ζn√
kn

+ oP

(
1√
kn

)
,

and therefore √
kn

(
θ̂n,τ (kn)

θ̂n,τ (k′n)
− 1

)
= ζn + oP (1) .

It concludes the proof.

Proof of Lemma 10 − A first order Taylor expansion yields

θ̂n,bτn(kn)

θ̂n,τ (kn)
− 1 =

µτ (log(n/kn))
µbτn(log(n/kn))

− 1 = (τ − τ̂n)
∂/∂x(µx(log(n/kn)))

∣∣
x=τ0

µbτn(log(n/kn))
,

with τ0 = τ̂n + η(τ − τ̂n) and η ∈ (0, 1). Let

wn :=
√
kn (log2(n/kn)− log2(n/k′n))

log2(n/kn)
, Fn(s) :=

{
wn

(
θ̂n,bτn(kn)

θ̂n,τ (kn)
− 1

)
≤ s

}

and recall that Φ is the cumulative distribution function of the standard Gaussian distribution.
Our aim is to prove that P (Fn(s)) → Φ(s), for all s ∈ R. Keeping in mind that C is a compact
subset such that [0, 1] ⊂ C ⊂ (−∞, 2) and An = {τ0 ∈ C} ∩ {τ̂n ∈ C}, we have

P(Fn(s)) = P(Fn(s) ∩An) + P (Fn(s) |Acn ) P (Acn) =: T (4)
n (s) + T (5)

n (s),

where Acn is the complementary event of An. Let us first consider T (5)
n (s). Theorem 1 states that√

kn (log2(n/kn)− log2(n/k′n)) (τ̂n − τ) = ξn
d−→ N (0, 1).

Consequently, under the assumptions of Theorem 1, τ̂n
P−→ τ ∈ [0, 1] and τ0

P−→ τ ∈ [0, 1]. Thus,
P(Acn) → 0 which implies T (5)

n (s) → 0. Let us focus on T
(4)
n (s). Under the event An, combining

Lemma 2(ii) with Theorem 1, it follows

wn

(
θ̂n,bτn(kn)

θ̂n,τ (kn)
− 1

)
= wn(τ − τ̂n)

(
∂/∂x(µx(log(n/kn)))

∣∣
x=τ0

µbτn(log(n/kn))

)

= ξn
log2(n/kn)µτ0(log(n/kn)) + log(n/kn)τ0−2(1 + oP(1))

log2(n/kn)µbτn(log(n/kn))

= ξn
µτ0(log(n/kn))
µbτn(log(n/kn))

(
1 +

1 + oP(1)
log(n/kn) log2(n/kn)

)
,

17



from Lemma 2(i). Moreover, under the event An, using Lemma 2(i) and Theorem 1, we have

µτ0(log(n/kn))
µbτn(log(n/kn))

= (log(n/kn))τ0−bτn(1 + oP(1)) = (log(n/kn))η(τ−bτn)(1 + oP(1))

= exp(η(τ − τ̂n) log2(n/kn))(1 + oP(1))

= exp
(
− ηξn log2(n/kn)√

kn(log2(n/kn)− log2(n/k′n))

)
(1 + oP(1))

P−→ 1.

We thus obtain

wn

(
θ̂n,bτn(kn)

θ̂n,τ (kn)
− 1

)
= ξn(1 + oP(1)),

and, replacing in T
(4)
n (s), it finally follows that

T (4)
n (s) = P({ξn ≤ s(1 + oP(1))} ∩An)

= P(ξn ≤ s(1 + oP(1)))− P({ξn ≤ s(1 + oP(1))} |Acn )P(Acn).

Using the same arguments as in the proof of Theorem 1, it is easily seen that P(ξn ≤ s(1+oP(1)))→
Φ(s) and thus T (4)

n (s)→ Φ(s) since P(Acn)→ 0. Combining the above results the proof of Lemma 10
is achieved.
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Figure 1: Mean-squared errors as a function of k′n associated to x̂pn,bθn,bτn (dotted line) and to the
Moment estimator of Dekkers et al. (bold line) and the POT estimator (solid line). They are
computed on 100 samples of size 500. Upper left: absolute value of Cauchy distribution, upper
right: absolute value of Student distribution, bottom left: Burr distribution with ρ = −1, bottom
right: Burr distribution with ρ = −1/2.
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Figure 2: Mean-squared errors as a function of k′n associated to x̂pn,bθn,bτn (dotted line) and to the
Moment estimator of Dekkers et al. (bold line) and the POT estimator (solid line). They are
computed on 100 samples of size 500. Upper left: Pareto distribution, upper right: Weibull distri-
bution, bottom left: absolute value of Gaussian distribution, bottom right: Gamma distribution.
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Figure 3: Mean-squared errors as a function of k′n associated to x̂pn,bθn,bτn (dotted line) and to the
Moment estimator of Dekkers et al. (bold line) and the POT estimator (solid line). They are
computed on 100 samples of size 500. Upper left: Weibull-tail distribution with ρ = −1/2, upper
right: Weibull-tail distribution with ρ = −1/4, bottom left: lognormal distribution, bottom right:
log-Weibull distribution.
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Figure 4: Results obtained on the Nidd river data set. Top: estimation of τ (left) and θ (right) as
functions of k′n. Bottom: N -year return levels as functions of k′n obtained with x̂pn,bθn,bτn (dotted
line) and the Moment estimator of Dekkers et al. (bold line) and the POT estimator (solid line)
(left: N = 50, right: N = 100).
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