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WEAK SOLUTIONS TO A THIN FILM MODEL WITH CAPILLARY EFFECTS AND INSOLUBLE SURFACTANT

The paper focuses on a model describing the spreading of an insoluble surfactant on a thin viscous film with capillary effects taken into account. The governing equation for the film height is degenerate parabolic of fourth order and coupled to a second order parabolic equation for the surfactant concentration. It is shown that nonnegative weak solutions exist under natural assumptions on the surface tension coefficient.

Introduction

The modeling of the spreading of an insoluble surfactant on a thin viscous film leads to a coupled system of degenerate parabolic equations describing the space and time evolution of the height h ≥ 0 of the film and the surface concentration Γ ≥ 0 of surfactant. Assuming the film thickness to be small enough so that lubrication theory is applicable, taking into account capillary effects but neglecting gravitational and intermolecular (van der Waals) forces, the following system is obtained [START_REF] De Wit | Nonlinear evolution equations for thin liquid films with insoluble surfactant[END_REF][START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF][START_REF] Jensen | Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture[END_REF]]

∂ t h + ∂ x 1 3 h 3 ∂ 3 x h + 1 2 h 2 ∂ x σ(Γ) = 0 , (t, x) ∈ (0, ∞) × (0, 1) , (1) 
∂ t Γ + ∂ x 1 2 h 2 Γ ∂ 3 x h + h Γ ∂ x σ(Γ) = D ∂ 2 x Γ , (t, x) ∈ (0, ∞) × (0, 1) , (2) 
with homogeneous Neumann boundary conditions

∂ x h(t, x) = ∂ 3 x h(t, x) = ∂ x Γ(t, x) = 0 , (t, x) ∈ (0, ∞) × {0, 1} , (3) 
and initial conditions (h, Γ)(0) = (h 0 , Γ 0 ) , x ∈ (0, 1) . (4) Here, σ(Γ) denotes the surface tension which depends on the local concentration of surfactant, and D > 0 stands for the surface diffusivity of the surfactant. Since σ is defined up to a constant, we may assume without loss of generality that σ(1) = 0 as a normalization condition. As the presence of surfactant reduces surface tension, σ is a non-increasing function of Γ; for instance, σ β (s) := (β + 1) 1 -s + β + 1

β 1/3 s -3 -β , s ≥ 0 , (5) 
with β ∈ (0, ∞) and its limit as β → ∞ (which is often assumed in applications)

σ ∞ (s) := 1 -s , s ≥ 0 . (6) 
The system (1)-( 4) is a fully coupled nonlinear system of parabolic equations featuring a degeneracy where h vanishes, a fact which cannot be excluded a priori. Thus, classical solutions are unlikely to exist for all times in general and only local existence of smooth solutions to (1)-( 2) in the absence of capillarity have been shown in [START_REF] Renardy | On an equation describing the spreading of surfactants on thin films[END_REF][START_REF] Renardy | A degenerate parabolic-hyperbolic system modeling the spreading of surfactants[END_REF]. The alternative is to study the Cauchy problem in a framework of weak solutions (see Section 2 for a precise definition) and this
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1 approach has been successfully employed to establish the existence of weak solutions to systems similar to (1)-( 2), for instance when the capillarity effect are neglected but the gravitational ones are accounted for [START_REF] Escher | Global weak solutions for a degenerate parabolic system modeling the spreading of insoluble surfactant[END_REF] or when Γ is replaced by λ(Γ) = max {0, 1 -Γ} + 1 in (2) [START_REF] Barrett | Finite element approximation of surfactant spreading on a thin film[END_REF][START_REF] Barrett | Convergence of a finite element approximation of surfactant spreading on a thin film in the presence of van der Waals forces[END_REF], a finite element numerical scheme being also developed in these two papers.

To our knowledge, existence of weak solutions has only been tackled in [START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF] where this is proved under further technical assumptions on the surface tension σ. Namely, given a surface tension σ ∈ C 2,1 loc (R), defining the free energy g σ by

g σ (1) = g ′ σ (1) = 0, g ′′ σ (s) = - σ ′ (s) s for s ∈ R, (7) 
the authors assume the following: (A4) The function g σ lies in C 2,1 loc (R). (A5) There exists c g > 0 such that g ′′ σ (s) ≥ c g for all s ∈ R. (A6) There exist C g and some r ∈ (0, 2) for which g ′′ σ (s) ≤ C g (|s| r + 1) for all s ∈ R. The need in [START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF] to define σ and g σ in R instead of the physically relevant range [0, ∞) for surfactant concentration stems from the fact that the weak solution (h, Γ) to ( 1)- [START_REF] Barrett | Convergence of a finite element approximation of surfactant spreading on a thin film in the presence of van der Waals forces[END_REF] constructed in [START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF] might not satisfy Γ ≥ 0. The extension of σ and g σ to negative values then induces several limiting conditions. Namely, the convexity (A5) of g σ in R requires not only that σ ′ (s) < 0 for s > 0 as expected but also σ ′ (s) > 0 for s < 0, which implies σ ′ (0) = 0 and thus excludes surface tensions σ like σ β in (5) and σ ∞ in [START_REF] Escher | Global weak solutions for a degenerate parabolic system modeling the spreading of insoluble surfactant[END_REF]. In addition, assumption (A5) yields σ ′ (s) ≤ -c g s for s ∈ R so that σ necessarily has a quadratic decay at infinity. This again excludes the previous examples σ β in (5) and σ ∞ in [START_REF] Escher | Global weak solutions for a degenerate parabolic system modeling the spreading of insoluble surfactant[END_REF].

The aim of the present paper is to construct a weak solution to (1)-( 2) under weaker assumptions on the surface tension σ (satisfied in particular by σ ∞ ) and such that both h and Γ are nonnegative throughout time evolution. More precisely, we assume that the surface tension σ satisfies:

(H1) σ ∈ C 1 ((0, ∞)) ∩ C([0, ∞)) with σ(1) = 0.
(H2) There exist σ 0 , σ 1 ∈ (0, ∞) and θ ∈ [0, 1) for which:

-σ 0 < σ ′ (s) ≤ - σ 1 1 + s θ for s ≥ 1, -σ 0 < σ ′ (s) < 0 for s ∈ (0, 1). (8) 
The assumptions (H1)-(H2) include physically relevant surface tensions σ, which may slowly decrease at infinity. In particular, σ ∞ is included (but not σ β for β ∈ (0, ∞)).

In the next section, we introduce the definition of weak solutions and give precise statements for our existence result. To prove this result, we first construct nonnegative solutions in the framework of [START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF] under assumptions (A4)-(A6). This improves the results of [START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF] in that the surfactant concentration Γ stays nonnegative through time evolution. This is the content of Section 3. Then we extend the construction to a surface tension σ merely satisfying (H1)-(H2) by approximating σ with surface tensions σ k satisfying (A4)-(A6) and studying compactness properties of their associated weak solutions. The construction of σ k and the compactness argument are presented in Section 4.

Weak solutions and main results

To introduce the definition of weak solutions, we first derive energy estimates satisfied by smooth nonnegative solutions to (1)- [START_REF] Barrett | Convergence of a finite element approximation of surfactant spreading on a thin film in the presence of van der Waals forces[END_REF]. So, let us consider a non-increasing and smooth surface tension σ and a smooth solution (h, Γ) to (1)-( 3) in (0, T ) × (0, 1) for some T > 0, both functions being uniformly bounded from below by a positive constant. First, we note that by (1)-( 3) there holds d dt

1 0 h dx = 0, d dt 1 0 Γ dx = 0. ( 9 
)
Setting

g σ (1) = g ′ σ (1) = 0, g ′′ σ (s) = - σ ′ (s) s for s ∈ (0, ∞), (10) 
it follows from (1)-(3) that d dt

1 0 |∂ x h| 2 2 + g σ (Γ) dx = 1 0 ∂ 2 x h ∂ x h 3 3 ∂ 3 x h + h 2 2 ∂ x σ(Γ) dx + 1 0 g ′′ σ (Γ) ∂ x Γ h 2 2 Γ ∂ 3 x h + h Γ ∂ x σ(Γ) -D ∂ x Γ dx = - 1 0 h 3 3 |∂ 3 x h| 2 + h 2 ∂ x σ(Γ) ∂ 3 x h + h|∂ x σ(Γ)| 2 -D σ ′ (Γ) Γ |∂ x Γ| 2 dx.
We abbreviate product terms by introducing J 2 s and J 2 f , where

J f = J f [h, Γ] := h 3/2 3 ∂ 3 x h + h 1/2 2 ∂ x σ(Γ), (11) 
J s = J s [h, Γ] := h 3/2 2 ∂ 3 x h + h 1/2 ∂ x σ(Γ). (12) 
This yields d dt

1 0 |∂ x h| 2 2 + g σ (Γ) dx = - 1 0 3 2 |J f [h, Γ]| 2 + 1 2 |J s [h, Γ]| 2 + 1 24 h 3 |∂ 3 x h| 2 + 1 8 h|∂ x σ(Γ)| 2 dx + D 1 0 σ ′ (Γ) Γ |∂ x Γ| 2 dx . (13) 
Consequently, we infer that, regardless the qualitative properties of σ, (h, Γ) should satisfy

h ∈ L ∞ (0, T ; H 1 (0, 1)), Γ ∈ L ∞ (0, T ; L 1 (0, 1)) (14) 
together with

h 3/2 ∂ 3 x h ∈ L 2 ((0, T ) × (0, 1)), h 1/2 ∂ x σ(Γ) ∈ L 2 ((0, T ) × (0, 1)).
(15) Since D > 0, the energy estimate (13) provides an additional estimate which depends strongly on the properties of σ, namely -σ ′ (Γ)/Γ ∂ x Γ ∈ L 2 ((0, T ) × (0, 1)). We will actually prove that, under assumption (8) on σ, this additional estimate guarantees that the solutions we construct satisfy the further regularity Γ ∈ L 2 ((0, T ) × (0, 1)) and σ(Γ) ∈ L 4/3 (0, T ; W 1 4/3 (0, 1)), (16) see Lemma 9. Let us point out here that [START_REF] Jensen | Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture[END_REF] implies that σ ′ does not decay too fast towards -∞ at infinity. Hence, assuming ( 14) and (15) to hold true, we realize that J f [h, Γ], J s [h, Γ] ∈ L 2 ((0, T ) × (0, 1)). Since an alternative formulation of (1)-(2) reads,

∂ t h + ∂ x h 3/2 J f [h, Γ] = 0 in (0, ∞) × (0, 1) , (17) 
∂ t Γ + ∂ x h 1/2 Γ J s [h, Γ] = D ∂ 2 x Γ in (0, ∞) × (0, 1) , (18) 
we infer from ( 14)-( 16) and the embedding of

H 1 (0, 1) in L ∞ (0, 1) that h 3/2 J f [h, Γ] and h 1/2 Γ J s [h, Γ] both belong to L 1 ((0, T ) × (0, 1 
)) and we can give a meaning to (1)-( 2) at least in the following weak sense: Definition 1. Let T > 0 and σ be a surface tension such that either

• σ ∈ C 1 (0, ∞) ∩ C([0, ∞)), σ (1) 
= 0, and (8) holds true, or

• σ ∈ C 1,1 (R) is such that σ(1) = 0 and g σ , defined in [START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF], satisfies (A4)-(A6).

Then, given an initial condition (h 0 , Γ 0 ) ∈ H 1 (0, 1) × L 2 (0, 1) with h 0 ≥ 0 and Γ 0 ≥ 0 we say that (h, Γ) is a weak solution in (0, T ) to (1)-( 4) with surface tension σ and initial condition (h 0 , Γ 0 ), if

• h ≥ 0 and Γ ≥ 0 satisfy h ∈ L ∞ (0, T ; H 1 (0, 1)) ∩ C([0, T ] × [0, 1]), Γ ∈ L ∞ (0, T ; L 1 (0, 1)) ∩ L 2 ((0, T ) × (0, 1)), ∂ 3 x h ∈ L 2 (P h (δ)) for all δ > 0, σ(Γ) ∈ L 1 (0, T ; W 1 1 (0, 1)), h 3/2 ∂ 3 x h ∈ L 2 (P h ), h 1/2 ∂ x σ(Γ) ∈ L 2 ((0, T ) × (0, 1)), ( 19 
)
where P h (δ) := {(t, x) ∈ (0, T )×(0, 1) : h(t, x) > δ} for δ > 0 and P h := {(t, x) ∈ (0, T )×(0, 1) :

h(t, x) > 0}. • for any ζ ∈ C ∞ ([0, T ] × [0, 1]) such that ζ(T, x) = 0 for all x ∈ [0, 1] and ∂ x ζ(t, x) = 0 for all (t, x) ∈ [0, T ] × {0, 1}
, there holds:

T 0 1 0 h ∂ t ζ + 1 3 h 3 1 (0,∞) (h) ∂ 3 x h + 1 2 h 2 ∂ x σ(Γ) ∂ x ζ dxds = - 1 0 h 0 (x)ζ(0, x)dx , (20) 
and

T 0 1 0 Γ ∂ t ζ + 1 2 h 2 1 (0,∞) (h) Γ ∂ 3 x h + h Γ ∂ x σ(Γ) ∂ x ζ + DΓ∂ 2 x ζ dxds = - 1 0 Γ 0 (x)ζ(0, x)dx . (21) 
With these conventions, our main result reads: [START_REF] Jensen | Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture[END_REF]. Then, given an initial condition (h 0 , Γ 0 ) ∈ H 1 (0, 1) × L 2 (0, 1) with h 0 ≥ 0, Γ 0 ≥ 0 and any T > 0, there exists at least one weak solution (h, Γ) in (0, T ) to (1)-( 4) with surface tension σ and initial condition (h 0 , Γ 0 ) in the sense of Definition 1.

Theorem 2. Let the surface tension σ ∈ C 1 (0, ∞) ∩ C([0, ∞)) satisfy σ(1) = 0 and
As mentioned in the Introduction, we split the proof of Theorem 2 into two parts. First, we focus on the nonnegativity issue of solutions to (1)- [START_REF] Barrett | Convergence of a finite element approximation of surfactant spreading on a thin film in the presence of van der Waals forces[END_REF]. In this respect, we go back to the framework considered in [START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF] and we prove: Theorem 3. Let the surface tension σ ∈ C 2 (R) be such that σ(1) = 0 and the free energy g σ defined by [START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF] satisfies (A4)-(A6). Then, given an initial condition (h 0 , Γ 0 ) ∈ H 1 ((0, 1)) × L 2 ((0, 1)) with h 0 ≥ 0, Γ 0 ≥ 0, and any T > 0, there exists at least one weak solution (h, Γ) in (0, T ) to (1)-( 2) with surface tension σ and initial condition (h 0 , Γ 0 ) in the sense of Definition 1. Moreover, the solution satisfies the further regularity

Γ ∈ L ∞ (0, T ; L 2 (0, 1)) ∩ L 2 (0, T ; H 1 (0, 1)) (22)
and the energy estimate

sup t∈[0,T ] 1 0 |∂ x h(t, x)| 2 2 + g σ (Γ(t, x)) dx + D[h, Γ] ≤ 1 0 |∂ x h 0 (x)| 2 2 + g σ (Γ 0 (x)) dx , (23) 
where

D[h, Γ] := T 0 1 0 (h 3 1 (0,∞) (h(τ, x))) 2 1|∂ 3 x h(τ, x)| 2 + h(τ, x) 8 |∂ x σ(Γ(τ, x))| 2 dxdτ -D T 0 1 0 σ ′ (Γ(τ, x)) Γ(τ, x) |∂ x Γ(τ, x)| 2 dxdτ .
With the regularity (22), any weak solution constructed in [START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF] is a weak solution in our sense (see the proof of Theorem 3 for further details). The major novelty in this result is that we obtain nonnegativity of the surfactant concentration Γ. For the proof of Theorem 2, we consider a surface tension σ ∈ C([0, ∞)) ∩ C 1 (0, ∞) and introduce a family of approximate surface tensions (σ k ) k∈N satisfying the assumptions of Theorem 3. We achieve our result by studying the compactness properties of the family of associated weak solutions. A fundamental argument will be that, owing to assumption [START_REF] Jensen | Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture[END_REF] and equation ( 13), the dissipation of energy is measured by

T 0 1 0 |∂ x Γ| 2 Γ(1 + Γ) θ dxdτ . ( 24 
)
When θ ∈ [0, 1), this quantity enables us to control √ Γ in some Hölder space (see Lemma 9). This, in turn, yields compactness on the concentration for any bounded family of solutions in L 2 ((0, T ) × (0, 1)).

Existence of nonnegative solutions for decaying surface tensions

In this section, we assume σ ∈ C 2 (R) is such that σ(1) = 0 and the free energy g σ , as defined in [START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF], satisfies (A4)-(A6) and we construct nonnegative weak solutions to (1)-( 2). In [START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF]Sect.3.4], the authors remark that, for proving nonnegativity of the surfactant concentration of weak solutions to (1)-( 4), a difficulty arises when multiplying equation ( 2) by Γ -= -min {0, Γ}. Indeed, under assumptions (A4)-(A6), the very low regularity of Γ implies only that

∂ t Γ ∈ L 3/2 (0, T ; (W 1 3 (0, 1)) * ) and Γ -∈ L 2 (0, T ; H 1 (0, 1)
). This regularity does not allow to define the duality bracket ∂ t Γ, Γ -. To construct weak solutions with nonnegative surfactant concentrations, we go back to the strategy applied in [START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF]: construction of solutions to a regularized problem via a Galerkin method, followed by a compactness argument when the regularization parameter goes to 0. We introduce a supplementary truncation operator in the regularized problem in order to guarantee that the solutions to the regularized problems have nonnegative surfactant concentrations.

Throughout this section, we fix a nonnegative initial condition (h 0 , Γ 0 ) ∈ H 1 (0, 1) × L 2 (0, 1). We also introduce a Lipschitz continuous truncation function T such that

T (s) =    s if s ∈ (0, 1), 2 -s if s ∈ [1, 2], 0 if s ≥ 2, T (-s) = -T (s) if s < 0, (25) 
and put T k := kT (•/k) for k ≥ 1. Then, we set

σ k (s) := s 1 T k (σ ′ (r))dr for s ∈ R. ( 26 
)
We emphasize that this construction ensures that σ k ∈ C 1,1 (R) has bounded first and second derivatives. Associated to this truncation of σ, we introduce a truncation of the identity

τ k (s) := s σ ′ k (s) σ ′ (s) for s ∈ R. (27) 
We note that the construction above is well-defined because

0 ≥ σ ′ k (s) ≥ σ ′ (s) for all s ∈ R. ( 28 
)
With these conventions, our regularized problem reads

∂ t h + ∂ x [a 3 (h) + 1/k] ∂ 3 x h + a 2 (h) ∂ x σ k (Γ) = 0 , (t, x) ∈ (0, ∞) × (0, 1) , (29) 
∂ t Γ + ∂ x a 2 (h) τ k (Γ) ∂ 3 x h + a 1 (h) Γ ∂ x σ k (Γ) = D ∂ 2 x Γ , (t, x) ∈ (0, ∞) × (0, 1) , (30) 
subject to (3)-( 4), where k is a positive integer. The notation a i (h) stands for (max {0, h}) i /i for i = 1, 2, 3. This is the same convention as in [START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF] so that conditions (A1)-(A8) therein are satisfied.

Existence for (29)-(30).

To begin with, we fix k ≥ 1 and prove:

Lemma 4. Consider an initial condition (h 0 , Γ 0 ) ∈ H 1 ((0, 1)) × L 2 ((0, 1)) with h 0 ≥ 0 and Γ 0 ≥ 0. For any k ≥ 1 and T > 0, there exists at least a couple of functions (h, Γ) having the regularity

h ∈ L ∞ (0, T ; H 1 (0, 1)) ∩ L 2 (0, T ; H 3 (0, 1)) , Γ ∈ L ∞ (0, T ; L 2 (0, 1)) ∩ L 2 (0, T ; H 1 (0, 1)), (31) 
∂ t h ∈ L 2 (0, T ; (H 1 (0, 1)) * ) , ∂ t Γ ∈ L 3/2 (0, T ; (W 1 3 (0, 1)) * ), ( 32 
)
and satisfying,

T 0 ∂ t h, ζ ds - T 0 1 0 a 2 (h)∂ x σ k (Γ) + [a 3 (h) + 1/k] ∂ 3 x h ∂ x ζ dxds = 0, ( 33 
)
for all ζ ∈ L 2 (0, T ; H 1 (0, 1)), together with T 0 ∂ t Γ, ζ ds - T 0 1 0 a 1 (h) Γ ∂ x σ k (Γ) + a 2 (h) τ k (Γ) ∂ 3 x h -D ∂ x Γ ∂ x ζ dxds = 0, ( 34 
)
for all ζ ∈ L 3 (0, T ; W 1 3 (0, 1)) and (h(0, •), Γ(0, •)) = (h 0 , Γ 0 ) , ( 35 
)
the latter being meaningful as h ∈ C([0, T ]; (H 1 (0, 1)) * ) and Γ ∈ C([0, T ]; (W 1 3 (0, 1)) * ) by (31) and (32). Moreover, there holds the energy inequality

sup t∈[0,T ] 1 0 |∂ x h(t, x)| 2 2 + g σ (Γ(t, x)) dx + Dk [h, Γ] ≤ 1 0 |∂ x h 0 (x)| 2 2 + g σ (Γ 0 (x)) dx, ( 36 
)
where

Dk [h, Γ] := T 0 1 0 1 k + a 3 (h) 7 |∂ 3 x h| 2 -D σ ′ (Γ) Γ |∂ x Γ| 2 + a 1 (h) 8 |∂ x σ k (Γ)| 2 dxds.
Remark 5. Note that, in (36), σ k only appears in the last term of Dk [h, Γ].

Proof. We follow here the Galerkin method from [7, Section 3]. The system (29)-( 30) is actually almost identical to the regularized system used in [7, Section 3] except that the truncation function τ k is replaced by the identity there. Since τ k is a bounded and Lipschitz continuous function, the analysis performed in [7, Section 3] carries over to (29)-(30) with only slight changes, the main one arising in the derivation of the energy inequality. We will thus only give a sketch of the proof and refer to [7, Section 3] for details. The first step is an alternative formulation of (29)-(30) in therms of h and the new unknown function v := g ′ σ (Γ), the latter being well-defined thanks to the convexity (A5) of g σ . Denoting the inverse function of g ′ σ by W , we have

∂ t h + ∂ x [a 3 (h) + 1/k] ∂ 3 x h -a 2 (h)τ k (W (v))∂ x v = 0 , (37) 
∂ t W (v) + ∂ x a 2 (h) τ k (W (v)) ∂ 3 x h -a 1 (h) W (v)τ k (W (v))∂ x v = D ∂ 2 x W (v) , (38) 
in (0, ∞) × (0, 1). As already mentioned, (37)-( 38) is the same as the system studied in [7, Section 3] 

|∂ x h| 2 2 + g σ (Γ) dx + 1 0 1 k + a 3 (h) |∂ 3 x h| 2 -D σ ′ (Γ) Γ |∂ x Γ| 2 + a 1 (h)(σ ′ (Γ)σ ′ k (Γ))|∂ x Γ| 2 dx = I,
where (see [START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF] and ( 27))

I := - 1 0 a 2 (h) ∂ x Γ ∂ 3 x h σ ′ k (Γ) + σ ′ (Γ) τ k (Γ) Γ dx = - 1 0 2a 2 (h) ∂ x σ k (Γ) ∂ 3 x h dx. Since σ ′ k ≤ 0, it follows from (28) that (σ ′ k ) 2 ≤ σ ′ σ ′ k while Young's inequality ensures that |2a 2 (h) ∂ x σ k (Γ) ∂ 3 x h| ≤ 7a 1 (h) 8 |∂ x σ k (Γ)| 2 + 6a 3 (h) 7 |∂ 3 x h| 2 ,
so that we finally obtain d dt

1 0 |∂ x h| 2 2 + g σ (Γ) dx + 1 0 1 k + a 3 (h) |∂ 3 x h| 2 -D σ ′ (Γ) Γ |∂ x Γ| 2 + a 1 (h)|∂ x σ k (Γ)| 2 dx ≤ 1 0 7a 1 (h) 8 |∂ x σ k (Γ)| 2 + 6a 3 (h) 7 |∂ 3 x h| 2 dx .
This yields d dt At this point, we show that the idea to introduce truncation functions τ k and σ k yields the nonnegativity of Γ. This relies on a gain of regularity for ∂ t Γ. Lemma 6. Consider an initial condition (h 0 , Γ 0 ) ∈ H 1 ((0, 1)) × L 2 ((0, 1)) with h 0 ≥ 0 and Γ 0 ≥ 0. Given k ≥ 1 and T > 0, any solution (h, Γ) to (31)-( 36) and (3)-( 4) in the sense of Lemma 4 satisfies ∂ t Γ ∈ L 2 (0, T ; (H 1 (0, 1)) * ) and Γ ≥ 0 a.e. in (0, T ) × (0, 1).

1 0 |∂ x h| 2 2 + g σ (Γ) dx + 1 0 1 k + a 3 (h) 7 |∂ 3 x h| 2 -D σ ′ (Γ) Γ |∂ x Γ| 2 + a 1 (h) 8 |∂ x σ k (Γ)| 2 dx ≤ 0 , whence ( 
Proof. Owing to (31), the embedding of H 1 (0, 1) in L ∞ (0, 1), and the compactness of the supports of σ ′ k and τ k (which follows from (A5) and the properties of T ), there holds

a 1 (h) Γ ∂ x σ k (Γ) + a 2 (h) τ k (Γ) ∂ 3 x h = a 1 (h)Γσ ′ k (Γ)∂ x Γ + a 2 (h) τ k (Γ) ∂ 3 x h ∈ L 2 ((0, T ) × (0, 1 
)), and D∂ x Γ ∈ L 2 ((0, T ) × (0, 1)). As a consequence (34) also holds true for all ζ ∈ L 2 (0, T ; H 1 (0, 1)) and

∂ t Γ ∈ L 2 (0, T ; (H 1 (0, 1)) * ). Then, if β ∈ C 2 (R) is such that β ′ is Lipschitz continuous, we have β ′ (Γ) ∈ L 2 (0, T ; H 1 (0, 1)) and d dt 1 0 β(Γ) dx = ∂ t Γ, β ′ (Γ) .
Assuming furthermore that β is convex, i.e. β ′′ ≥ 0, there holds, for any t ∈ (0, T ),

1 0 β(Γ(t)) dx ≤ 1 0 β(Γ 0 ) dx + T 0 1 0 a 1 (h) Γ ∂ x σ k (Γ) + a 2 (h) τ k (Γ) ∂ 3 x h β ′′ (Γ)∂ x Γ dxds.
To finish off the proof, we apply this inequality to a family of functions approximating the negative part of Γ. Namely, we fix a nonnegative χ ∈ C ∞ 0 (R) such that χ ≡ 0 has support in (-1, 0) and define β 1 by

β 1 (0) = 0, β ′ 1 (s) := - ∞ s χ(α)dα ∞ -∞ χ(α)dα for s ∈ R .
We then set β ε (s) := εβ 1 (s/ε) for s ∈ R and ε > 0. Taking β = β ε for ε > 0 in the above inequality, there holds, for each t ∈ (0, T ),

1 0 β ε (Γ(t)) dx ≤ T 0 1 0 a 1 (h) Γ ∂ x σ k (Γ) + a 2 (h) τ k (Γ) ∂ 3 x h β ′′ ε (Γ)∂ x Γ dxds , since β ε (Γ 0 ) = 0 due to Γ 0 ≥ 0. Observing that |τ k (s)β ′′ ε (s)| ≤ |sβ ′′ ε (s)| ≤ C(χ) for s ∈ R, we have T 0 1 0 a 1 (h) Γ ∂ x σ k (Γ) + a 2 (h) τ k (Γ) ∂ 3 x h β ′′ ε (Γ)∂ x Γ dxds ≤ C(χ) {|Γ|<ε} |a 1 (h) ∂ x σ k (Γ)∂ x Γ| + a 2 (h) ∂ 3 x h ∂ x Γ dxds ≤ C(χ) a 1 (h)σ ′ k (Γ) L∞(0,T ;L∞ (0, 1)) + a 2 (h) L∞(0,T ;L∞ (0, 1)) {|Γ|<ε} |∂ x Γ| 2 + ∂ 3 x h ∂ x Γ dxds.
As ∂ x Γ and ∂ 3 x h both belong to L 2 ((0, T ) × (0, 1)) and ∂ x Γ = 0 a.e. in {Γ = 0} by [9, Lemma A.4], we obtain in the limit ε → 0

1 0 max {-Γ(t, x), 0} dx ≤ 0, for t ∈ (0, T ).
This completes the proof.

3.2.

Proof of Theorem 3. Let σ be as in the statement of Theorem 3 and consider an initial condition (h 0 , Γ 0 ) ∈ H 1 ((0, 1)) × L 2 ((0, 1)) with h 0 ≥ 0, Γ 0 ≥ 0 and T > 0. First, applying Lemma 4 and Lemma 6, we obtain a sequence (h k , Γ k ) k≥1 of solutions to (29)-( 30), ( 3)-( 4) for which ∂ t Γ k ∈ L 2 (0, T ; (H 1 (0, 1)) * ) and Γ k ≥ 0 a.e. in (0, T ) × (0, 1). In particular, for each k ≥ 1, the time regularity of h k and Γ k , together with the initial conditions (35) (h k (0, •), Γ k (0, •)) = (h 0 , Γ 0 ), yield the integration by parts formula:

T 0 ∂ t h k , ζ dt = - 1 0 h 0 (x)ζ(0, x)dx - T 0 1 0 h k (s, x)∂ t ζ(s, x)dxdt , T 0 ∂ t Γ k , ζ dt = - 1 0 Γ 0 (x)ζ(0, x)dx - T 0 1 0 Γ k (s, x)∂ t ζ(s, x)dxdt for any test function ζ ∈ C ∞ ([0, T ] × [0, 1]) such that ζ(T, x) = 0 for all x ∈ [0, 1] and ∂ x ζ(t, x) = 0 for all (t, x) ∈ [0, T ] × {0, 1}.
Hence, taking such a test function ζ in (33)-(34) we obtain :

T 0 1 0 h k ∂ t ζ + a 3 (h k ) + 1 k ∂ 3 x h k + a 2 (h k ) ∂ x σ k (Γ k ) ∂ x ζ dxdt = - 1 0 h 0 (x)ζ(0, x)dx , (39) 
T 0 1 0 Γ k ∂ t ζ + a 2 (h k ) τ k (Γ k ) ∂ 3 x h k + a 1 (h k ) Γ k ∂ x σ k (Γ k ) ∂ x ζ + DΓ k ∂ 2 x ζ dxdt = - 1 0 Γ 0 (x)ζ(0, x)dx . (40)
So, the proof reduces to find a weak cluster point (h, Γ) of the sequence ((h k , Γ k )) k≥1 that has the regularity ( 19) and for which we can pass to the limit in the two previous equations. First, we note that the conservation laws ( 9) are also satisfied by (h k , Γ k ). Consequently, due to (36) and the Poincaré inequality, we have uniform bounds for

• (h k ) k≥1 in L ∞ (0, T ; H 1 (0, 1)) and (g σ (Γ k )) k≥1 in L ∞ (0, T ; L 1 (0, 1)), • ( a 3 (h k )∂ 3 x h k ) k≥1 , ( a 1 (h k )∂ x σ k (Γ k )) k≥1 , and ( -σ ′ (Γ k )/Γ k ∂ x Γ k ) k≥1 in L 2 ((0, T ) × (0, 1)).
Owing to the bound (A5) from below on σ ′ , this yields a uniform bound on (Γ k ) k≥1 in L ∞ (0, T ; L 2 (0, 1)) and L 2 (0, T ; H 1 (0, 1)), and the sequence of fluxes, given by

J k s := a 2 (h k ) a 1 (h k ) 1/2 τ k (Γ k ) Γ k ∂ 3 x h k + a 1 (h k ) 1/2 ∂ x σ k (Γ k ), J k f := a 3 (h k ) 3 + 1 3k 1/2 ∂ 3 x h k + a 2 (h k ) 3a 3 (h k ) + 3 k -1/2 ∂ x σ k (Γ k ),
are also bounded in L 2 ((0, T ) × (0, 1)) by (36).

Repeating the arguments in [3, Section 2] and [7, Section 3.4], we may extract a subsequence (not relabeled) and find functions h and Γ such that the following convergences hold:

• h k → h in C([0, T ] × [0, 1]) and Γ k → Γ in L 2 (0, T ; L p (0, 1)) for all p ∈ [1, ∞), • 3a 3 (h k ) + 3/k ∂ 3 x h k ⇀ H in L 2 ((0, T ) × (0, 1)) with H = 3a 3 (h) ∂ 3 x h a.e. in {h = 0}, • ∂ x Γ k ⇀ ∂ x Γ in L 2 ((0, T ) × (0, 1)).
Arguing as in the proof of [7, Equation (3.28)], the previous convergences imply that

(3a 3 (h k ) + 3/k) ∂ 3 x h k ⇀ h 3/2 1 (0,∞) (h) ∂ 3 x h in L 2 ((0, T ) × (0, 1)
) . Next, interpolating the bounds on (Γ k ) k≥1 with the help of [5, Proposition I.3.2], we deduce that (Γ k ) k≥1 is bounded in L 6 ((0, T )×(0, 1)) and that the convergence of (Γ k ) k≥1 to Γ takes actually place in L p ((0, T )×(0, 1)) for all p ∈ [2, 6). Now, since

0 ≤ τ k (s) ≤ s for all s ≥ 0 and τ k (s) = s for 0 ≤ s ≤ s k := (k/C g ) r/(r+1) -1 1/r
(see assumption (A6) and ( 27) for the definitions of r and τ k , respectively), we have, for p ≥ 1,

T 0 1 0 τ k (Γ k ) Γ k -1 p dxdt = {Γ k >s k } τ k (Γ k ) Γ k -1 p dxdt ≤ 2 p {Γ k >s k } dxdt ≤ 2 p s 6 k {Γ k >s k } Γ 6 k dxdt ≤ C(p, T ) s 6 k . Since s k → ∞ as k → ∞, we conclude that τ k (Γ k )/Γ k → 1 in L p ((0, T ) × (0, 1 
)) for any p ≥ 1. Similarly, since σ ′ k (s) = σ ′ (s) for s ∈ [0, s k ] and σ ′ ∈ C 1 (R), it follows from (A6) and (28) that, given p 0 ∈ [1, 6/(r + 1)), R ≥ 1, and k ≥ 1 such that s k ≥ R, we have

T 0 1 0 |σ ′ k (Γ k ) -σ ′ (Γ)| p0 dxdt ≤ {max {Γ k ,Γ}≤R} |σ ′ (Γ k ) -σ ′ (Γ)| p0 dxdt + {Γ k >R}∪{Γ>R} |σ ′ k (Γ k ) -σ ′ (Γ)| p0 dxdt ≤ σ ′′ L∞(0,R) {max {Γ k ,Γ}≤s k } |Γ k -Γ| p0 dxdt + C(p 0 , C g , r) {Γ k >R}∪{Γ>R} Γ (r+1)p0 k + Γ (r+1)p0 dxdt ≤ σ ′′ L∞(0,R) T 0 1 0 |Γ k -Γ| p0 dxdt + C(p 0 , C g , r) R 6-(r+1)p0 {Γ k >R}∪{Γ>R} Γ 6 k + Γ 6 dxdt ≤ σ ′′ L∞(0,R) T 0 1 0 |Γ k -Γ| p0 dxdt + C(p 0 , C g , r, T ) R 6-(r+1)p0 .
Letting first k → ∞ and then R → ∞ yield that σ ′ k (Γ k ) → σ ′ (Γ) in L p0 ((0, T ) × (0, 1)) for any p 0 ∈ [1, 6/(r + 1)). As r < 2 we note that we may choose p 0 > 2 in the previous convergence which, combined with the weak convergence of (∂

x Γ k ) k≥1 in L 2 ((0, T ) × (0, 1)) implies that ∂ x σ k (Γ k ) ⇀ ∂ x σ(Γ) in L q0 ((0, T ) × (0, 1)) for some q 0 > 1. Consequently, a 1 (h k ) ∂ x σ k (Γ k ) ⇀ a 1 (h)∂ x σ(Γ) and a 2 (h k ) 3a 3 (h k ) + 3 k -1/2 ∂ x σ k (Γ k ) ⇀ a 1 (h) 2 ∂ x σ(Γ) in L 2 ((0, T ) × (0, 1)).
Thus, we conclude that

J k s ⇀ H/2+ a 1 (h)∂ x σ(Γ) and J k f ⇀ H +( a 1 (h)/2)∂ x σ(Γ) in L 2 ((0, T )×(0, 1)
). Combining these convergences with the convergence of (h k ) k≥1 to h in C([0, T ]×[0, 1]) and that of (Γ k ) k≥1 to Γ in L 2 ((0, T )×(0, 1)) allows us to pass to the limit in (39)-( 40).

That h is nonnegative can be obtained as in [START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF]Section 3.4] while the nonnegativity of Γ is preserved by the weak limit. Concerning the energy estimate (23), we recall (A5) and prove as above that

-σ ′ k (Γ k )/Γ k → -σ ′ (Γ)/Γ in L 2 ((0, T ) × (0, 1)). Consequently, ( -σ ′ k (Γ k )/Γ k ∂ x Γ k ) k≥1 converges weakly in L 1 ((0, T ) × (0, 1)) to -σ ′ (Γ)/Γ∂
x Γ, and we can pass to the weak limit in the energy estimate. This completes the proof of Theorem 3.

Existence of nonnegative solutions for slowly decaying surface tension

From Theorem 3 we obtain existence of weak solutions for a class of surface tension σ decreasing at least quadratically to -∞. We now extend with Theorem 2 the existence result to a class containing surface tensions which decrease slowly to -∞ at infinity (but not too slowly, see (H2)) and are thus closer to applications. To this end, we fix a surface tension σ satisfying (H1)-(H2) and an initial condition (h 0 , Γ 0 ) ∈ H 1 (0, 1) × L 2 (0, 1) satisfying h 0 ≥ 0 and Γ 0 ≥ 0. We split the proof of Theorem 2 into three steps: we first construct a sequence (σ k ) k≥1 of surface tensions approximating σ and enjoying the properties (A4)-(A6) for k ≥ 4 (with constants depending of course on k). Owing to this construction, we may apply Theorem 3 to obtain, for each k ≥ 4, a nonnegative weak solution (h k , Γ k ) to ( 1)-( 4) satisfying (23). We then show that (h k , Γ k ) k≥4 is compact in suitable function spaces. In the last step, we identify the equations satisfied by the cluster points (h, Γ) of (h k , Γ k ) k≥4 .

4.1. Construction of approximate surface tensions. For k ≥ 1, we set σk (1) := 0 and

σ′ k (s) :=              kσ ′ 1 k -k s for s < 1 k , σ ′ (s) for 1 k ≤ s ≤ k, σ ′ (k) - s k 1+θ for s > k. (41) 
Recall that θ is defined in [START_REF] Jensen | Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture[END_REF]. Denoting a family of even mollifiers by (χ ε ) ε>0 , we introduce then the approximate surface tension σ k by

σ ′ k := χ 1/k 2 * σ′ k , σ k (1) = 0. (42) 
The following proposition verifies that we can apply Theorem 3 to any approximate surface tension. Proposition 7. Given k ≥ 4, the free energy g k := g σ k associated to σ k via formula [START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF] 

satisfies (A4)-(A6). Proof. By construction, σ ′ k ∈ C ∞ (R)
and, owing to the properties of χ 1/k 2 , straightforward computations yield that

σ ′ k (s) = kσ ′ 1 k -k s for all s ≤ k -1 k 2 , (43) 
σ ′ k (s) = σ ′ (k) - s k 1+θ for all s ≥ k + 1 k 2 . (44) 
In particular, it follows from (43

) that [s → σ ′ k (s)/s] ∈ C ∞ (R) and g k satisfies (A4). Next, if s ∈ ((k-1)/k 2 , k+(1/k 2 )), we have s -(1/k 2 ) ≥ (k -2)/k 2 ≥ 1/(2k
) and it follows from (41), (H1), and (H2) that

σ ′ k (s) ≤ R kσ ′ 1 k r 1 (0,1/k) (r) + σ ′ (r) 1 (1/k,k) (r) + σ ′ (k) 1 (k,∞) (r) χ 1/k 2 (s -r) dr ≤ R 1 2 σ ′ 1 k 1 (0,1/k) (r) + 1 2 σ ′ (r) 1 (1/k,k) (r) + 1 2 σ ′ (k) 1 (k,∞) (r) χ 1/k 2 (s -r) dr ≤ 1 2 sup [1/k,k] {σ ′ } R χ 1/k 2 (s -r) dr = 1 2 sup [1/k,k] {σ ′ } < 0 . (45) 
We then infer from ( 43)-(45) that

g ′′ k (s) = - σ ′ k (s) s ≥              k if s ≤ k -1 k 2 , - 1 4k sup [1/k,k] {σ ′ } if k -1 k 2 ≤ s ≤ k + 1 k 2 , 1 k 1+θ if k + 1 k 2 <
s , and we obtain the existence of a constant c k > 0 for which (A5) holds. Finally, it follows from (8) that, for s ∈

((k -1)/k 2 , k + (1/k 2 )), σ ′ k (s) ≥ - R (1 + σ 0 ) 1 (0,1/k) (r) + σ 0 1 (1/k,k) (r) + σ 0 + r k 1+θ 1 (k,∞) (r) χ 1/k 2 (s -r) dr ≥ -(2 + σ 0 ) R χ 1/k 2 (s -r) dr = -(2 + σ 0 ) .
Noting that ( 8) and ( 43)-(44) guarantee this lower bound also for s ∈ [0, (k -1)/k 2 ) and s

≥ k + (1/k 2 ), we conclude that σ ′ k (s) ≥ -(2 + σ 0 ) for s ≥ 0 . (46) 
In addition, it follows from ( 8) and (43

) that σ ′ k (s)/s ≥ -(1 + σ 0 ) k for s ∈ (-∞, (k -1)/k 2 ]
. These two facts give

g ′′ k (s) = - σ ′ k (s) s ≤        k(1 + σ 0 ) for s < k -1 k 2 , k 2 (2 + σ 0 ) k -1 for s ≥ k -1 k 2 , (47) 
and we obtain (A6) with r = 0 (so that it also holds true for arbitrary r ∈ (0, 2)).

The previous proposition and Theorem 3 ensure that, for any T > 0 and k ≥ 4, there exists at least a nonnegative weak solution (h k , Γ k ) to ( 1)-( 4) with surface tension σ k and initial condition (h 0 , Γ 0 ). We prepare the study of compactness properties of the sequence (h k , Γ k ) k≥4 by deriving technical properties of the approximate surface tensions (σ k ) k≥4 . Proposition 8. If θ is the exponent given by [START_REF] Jensen | Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture[END_REF], then there exist constants

C 1 , C 2 ∈ (0, ∞) such that, for k ≥ 4, 0 ≤ g k (s) ≤ C 1 1 + s 2 for all s ≥ 0 , (48) 
-(2 + σ 0 ) ≤ σ ′ k (s) ≤ -C 2 ks (1 + s) θ (1 + ks) for all s ≥ 0 . ( 49 
)
Moreover, (σ k ) k≥4 converges uniformly to σ on compact subsets of [0, ∞).

Proof. The first inequality in (49) having already been proved in (46), we concentrate on the second inequality and first establish a similar estimate for σ′ k . As the surface tension σ satisfies (8), there holds σ′ k (s) ≤ -

σ 1 (1 + s θ ) ≤ - 2 θ-1 σ 1 (1 + s) θ for s ∈ 1 k , k , σ′ k (s) ≤ - s k 1+θ ≤ - 1 (1 + s) θ for s ≥ k , whence σ′ k (s) ≤ - C ks (1 + ks)(1 + s) θ for s ≥ 1 k since ks/(1 + ks) ≤ 1 for s ≥ 0. Also, σ′ k (s) ≤ -ks ≤ - ks (1 + ks)(1 + s) θ for s ∈ 0, 1 k . Consequently, if s ≥ (k -1)/k 2 , we have s -(1/k 2 ) ≥ (k -2)/k 2 and, as k ≥ 4, 2s ≥ s + 1 k ≥ s + 1 k 2 ≥ s - 1 k 2 ≥ s 2 ,
we have

σ ′ k (s) ≤ - C (k(s -1 k 2 )) (1 + k( 1 k 2 + s))(1 + ( 1 k 2 + s)) θ ≤ - C 2 ks (1 + ks)(1 + s) θ for s ≥ k -1 k 2 .
Since σ ′ k (s) = σ′ k (s) for s ≤ (k -1)/k 2 by (43), we end up with

σ ′ k (s) ≤ - C 2 ks (1 + s) θ (1 + ks)
for s ≥ 0 , and thus obtain (49). We next note that, given R > 0 and s ∈ [0, R], it follows from (8) that, for k ≥ R, we have

|σ k (s) -σ(s)| = 1/k min {s,1/k} kσ ′ 1 k -k r -σ ′ (r) dr ≤ σ ′ 1 k + 1 1 2k + σ 1 k -σ min s, 1 k ≤ 1 + σ 0 2k + σ(0) -σ 1 k and |σ ′ k (s)| ≤ 1 + σ 0 k for s ∈ - 1 k 2 , 0 .
Consequently, owing to the continuity of σ in [0, ∞) and the properties of the convolution, the sequences (σ k ) k and (σ k ) k converge uniformly to σ on compact subsets of [0, ∞).

Finally, integrating the bound (46) gives g k (s) ≤ (2 + σ 0 ) (s ln s -s + 1) ≤ (2 + σ 0 )(1 + s 2 ) for s ≥ 0, whence (48). 4.2. Compactness. Let T > 0. The main difference here with the strategy employed in Section 3.2 is that we no longer have an estimate on (Γ k ) k in L ∞ (0, T ; L 2 (0, 1)) but only in L ∞ (0, T ; L 1 (0, 1)), and this requires a different approach to the compactness issue for (Γ k ) k . Let us collect the estimates available for (h k , Γ k ) k which result from (1)-( 4), (23), and the nonnegativity of g k :

(1) Conservation of matter: for t ∈ [0, T ], there holds

1 0 h k (t, x)dx = 1 0 h 0 (x)dx , 1 0 Γ k (t, x)dx = 1 0 Γ 0 (x)dx . (50) 
(2) Energy estimate: for t ∈ [0, T ], there holds 1 2

1 0 |∂ x h k (t, x)| 2 dx + T 0 1 0 h 3 k (s, x) 1 (0,∞) (h k (s, x)) 21 |∂ 3 x h k (s, x)| 2 + h k (s, x) 8 |∂ x σ k (Γ k (s, x))| 2 dxds -D T 0 1 0 σ ′ k (Γ k (s, x)) Γ k (s, x) |∂ x Γ k (s, x)| 2 dxds ≤ 1 0 |∂ x h 0 (x)| 2 2 + g k (Γ 0 (x)) dx. (51) 
Moreover, both h k and Γ k are nonnegative a.e. in (0, T )×(0, 1), and

g k (Γ 0 ) 1 ≤ C 1 (1+ Γ 0 2 
2 ) by (48). Consequently, (50) and ( 51), together with the lower bound (49) on -σ ′ k and the Poincaré inequality yield:

(B.1) (h k ) k is bounded in L ∞ (0, T ; H 1 (0, 1)) and (Γ k ) k is bounded in L ∞ (0, T ; L 1 (0, 1)). (B.2) (h 3/2 k 1 (0,∞) (h k ) ∂ 3 x h k ) k , (∂ x Γ k /(1 + Γ k ) (1+θ)/2 ) k , and ( √ h k ∂ x σ k (Γ k )) k are bounded in L 2 ((0, T ) × (0, 1)).
We then infer from (20) (with surface tension σ k ), (B.1), and the embedding of

H 1 (0, 1) in L ∞ (0, 1) that (h k ) k is bounded in L ∞ ((0, T ) × (0, 1)) and (∂ t h k ) k is bounded in L 2 (0, T ; (H 1 (0, 1)) * ) . (52) 
Next, we prove the following embedding:

Lemma 9. Let Γ be a nonnegative function in L 1 (0, 1) such that (1 + Γ) (1-θ)/2 ∈ H 1 (0, 1). Then there exists C θ < ∞ depending only on θ such that, after possibly redefining Γ on a set of measure zero, Γ ∈ C 0,(1-θ)/2 ([0, 1]) together with

Γ C 0,(1-θ)/2 ([0,1]) ≤ C θ 1 + 1 0 Γ(x)dx 1 + 1 0 |∂ x Γ(x)| 2 (1 + Γ(x)) (1+θ) dx . Proof. Set G := 4 (1 -θ) 2 ∂ x (1 + Γ) (1-θ)/2 2 2 = 1 0 |∂ x Γ(x)| 2 (1 + Γ(x)) 1+θ dx < ∞.
We assume Γ to be smooth for simplicity and focus on the distance 1 + Γ(x) -1 + Γ(y) for 0 ≤ x ≤ y ≤ 1. Then, by Hölder's inequality

1 + Γ(x) - 1 + Γ(y) ≤ y x |∂ x Γ(z)| 1 + Γ(z) dz ≤ y x |∂ x Γ(z)| 2 (1 + Γ(z)) 1+θ dz 1/2 y x (1 + Γ(z)) θ dz 1/2 ≤ √ G y x (1 + Γ(z)) dz θ/2 |y -x| (1-θ)/2 ≤ √ G (1 + Γ 1 ) θ/2 |y -x| (1-θ)/2 . Since 1 0 1 + Γ(z)dz ≤ (1 + Γ 1 ) 1/2 ,
integrating the above inequality with respect to y over (0, 1) ensures that

√ 1 + Γ ∞ ≤ (1 + Γ 1 ) 1/2 + √ G (1 + Γ 1 )
θ/2 , so that there exists C θ depending on θ only such that

√ 1 + Γ C 0,(1-θ)/2 ([0,1]) ≤ C θ 1 + 1 0 Γ(x)dx 1/2 1 + 1 0 |∂ x Γ(x)| 2 (1 + Γ(x)) 1+θ dx 1/2 .
We conclude using the classical trick Γ = ( √ 1 + Γ) 

(Γ k ) k is bounded in L ∞ (0, T ; L 1 (0, 1)) ∩ L 1 (0, T ; C 0,(1-θ)/2 ([0, 1])) . (53) 
In particular, since Γ k

2 2 ≤ Γ k ∞ Γ k 1 , we have that (Γ k ) k is bounded in L 2 ((0, T ) × (0, 1)) . (54) 
Owing to (49), a first consequence of (54) is that (σ k (Γ k )) k is also bounded in L 2 ((0, T ) × (0, 1)). Furthermore, it follows from (51), (49), and (54) that

T 0 1 0 |∂ x σ k (Γ k )| 4/3 dxds = T 0 1 0 -σ ′ k (Γ k ) Γ k 2/3 |∂ x Γ k | 4/3 (Γ k |σ ′ k (Γ k )|) 2/3 dxds ≤ T 0 1 0 -σ ′ k (Γ k ) Γ k |∂ x Γ k | 2 dxds 2/3 T 0 1 0 (Γ k |σ ′ k (Γ k )|) 2 dxds 1/3 ≤ C(T ) (2 + σ 0 ) 2 T 0 1 0 Γ 2 k dxds 1/3 ≤ C(T ) . Consequently, (σ k (Γ k )) k is bounded in L 4/3 (0, T ; W 1 4/3 (0, 1)) . (55) 
Finally, (21) (with surface tension σ k ), (B.1), (B.2), (52), and (53) guarantee that

(∂ t Γ k ) k is bounded in L 1 (0, T ; (H 2 N (0, 1)) * ) , (56) 
where H 2 N (0, 1) := {w ∈ H 2 (0, 1) : ∂ x w(0) = ∂ x w(1) = 0}. Hence, owing to the compactness of the embeddings of H 1 (0, 1) and C 0,(1-θ)/2 ([0, 1]) in C([0, 1]) and the continuity of the embedding of C([0, 1]) in either (H 1 (0, 1)) * or (H 2 N (0, 1)) * , we infer from (B.1), (52), (53), (56), and [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]Corollary 4] that there are a subsequence of (h k , Γ k ) k (not relabeled) and functions h and Γ such that

h k → h in C([0, T ] × [0, 1]), Γ k → Γ in L 1 (0, T ; C([0, 1])) . (57) 
In addition, (∂ x h k ) k being bounded in L ∞ (0, T ; L 2 (0, 1)) by (B.1) and (∂ x σ k (Γ k )) k being bounded in L 4/3 ((0, T ) × (0, 1)) by (55), we have, up to an extraction of a subsequence and for some function Σ,

∂ x h k ⇀ ∂ x h weakly-⋆ in L ∞ (0, T ; L 2 (0, 1)) and ∂ x σ k (Γ k ) ⇀ Σ in L 4/3 ((0, T ) × (0, 1)) . (58) 
As a consequence of (B.1), (54), (57), and (58), we get that the limits satisfy h ∈ L ∞ (0, T ; H 1 (0, 1)), h ≥ 0 , Γ ∈ L ∞ (0, T ; L 1 (0, 1)) ∩ L 2 ((0, T ) × (0, 1)) , Γ ≥ 0 .

Finally, thanks to (B.1), (58), and (59), we have

T 0 1 0 |Γ k (t, x) -Γ(t, x)| 2 dxdt ≤ sup s∈[0,T ] { Γ k (s) 1 + Γ(s) 1 } T 0 Γ k (t) -Γ(t) ∞ dt -→ k→∞ 0 ,
so that we also have Γ k → Γ in L 2 ((0, T ) × (0, 1)) .

(60) 4.3. Identifying the limit system. According to the uniform bounds (B.1), (B.2), and (52), we first obtain that, up to an extraction of a subsequence and for some function  1 and  2 ,

h 3/2 k 1 (0,∞) (h k ) ∂ 3 x h k ⇀  1 , h 1/2 k ∂ x σ k (Γ k ) ⇀  2 ,
in L 2 ((0, T ) × (0, 1)).

(61)

Arguing as in [3, Section 3] and [7, Section 3.4], we first deduce from (B.2) and (57) that ∂ 3 x h belongs to L 2 (P(δ)) for all δ > 0 where P(δ) := {(t, x) ∈ (0, T )×(0, 1) : h(t, x) > δ} and  1 = h 3/2 ∂ 3

x h in {(t, x) ∈ (0, T )×(0, 1) : h(t, x) > 0}. Combining this result with (57) yields Together with (55), the convergence (62) ensures that σ(Γ) ∈ L 4/3 (0, T ; W 1 4/3 (0, 1)) and Σ = ∂ x σ(Γ) in (58). Next, collecting (57), (58), and (62) yields  2 = h 1/2 ∂ x σ(Γ), so that h 1/2 ∂ x σ(Γ) ∈ L 2 ((0, T ) × (0, 1)). It is then straightforward to pass to the limit as k → ∞ in the remaining terms in the weak formulation (20)-( 21) for (h k , Γ k ) and conclude that (h, Γ) is a weak solution to (1)-( 4) with surface tension σ and initial data (h 0 , Γ 0 ). This completes the proof of Theorem 2.

Remark 10. We shall point out that our strategy to prove Theorem 2 by approximating the surface tension σ ∈ C([0, ∞)) ∩ C 1 (0, ∞) by surface tensions (σ k ) k∈N satisfying the assumptions of Theorem 3 does not yield existence of nonnegative weak solutions for the limiting case θ = 1. More precisely, if θ = 1, then the analogue of Lemma 9 for the energy dissipation merely yields a control on √ Γ in the space of continuous functions (instead of a Hölder space as in the case θ ∈ [0, 1)), and we thus lose compactness of the concentration of any bounded family of solutions in L 2 ((0, T ) × (0, 1)). It seems that this threshold is of high importance. Indeed, provided -σ ′ (Γ) is dominated by 1/(1 + Γ) at infinity, a good choice of multiplier for (1)-( 2) yields that the integral (24) (with θ = 1) measures the dissipation of energy for any small solution.

  36) after time integration. The convergence of the Galerkin approximations to a solution to (29)-(30) satisfying the properties listed in Lemma 4 is then carried out as in[START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF] Section 3.3] to which we refer.

k 1 1 0h 3 1k 1 1 0h 2 1 1 0 2 T 0 1 0.T 0 1 0

 1131121211 (0,∞) (h k ) ∂ 3 x h k ∂ x ζ dxds = T 0 (0,∞) (h) ∂ 3 x h ∂ x ζ dxds , (0,∞) (h k ) Γ k ∂ 3 x h k ∂ x ζ dxds = T 0 (0,∞) (h) Γ ∂ 3 x h ∂ x ζ dxds , for any ζ ∈ C ∞ ([0, T ] × [0, 1]) such that ζ(T, x) = 0 for all x ∈ [0, 1] and ∂ x ζ(t, x) = 0 for all (t, x) ∈ [0, T ] × {0, 1}. We next claim the strong convergence σ k (Γ k ) -→ σ(Γ) in L 2 ((0, T ) × (0, 1)). (62)Indeed, on the one hand, we readily infer from (49) and (60) thatT 0 |σ k (Γ k ) -σ k (Γ)| 2 dxdt ≤ (2 + σ 0 ) |Γ k -Γ| 2 dxdt -→ k→∞ 0On the other hand, it follows from Proposition 8 and (49) that σ k (Γ) → σ(Γ) a.e. in (0, T ) × (0, 1) with |σ k (Γ)| ≤ (2 + σ 0 ) (1 + Γ) ∈ L 2 ((0, T ) × (0, 1)), whence lim k→∞ |σ k (Γ) -σ(Γ)| 2 dxdt = 0by the Lebesgue dominated convergence theorem. Thus, (62) holds true.

  except for the terms involving the bounded and Lipschitz continuous function τ k . Not surprisingly, considering the same Galerkin approximation to (37)-(38) as in [7, Section 3], one can prove the local existence of solutions to the Galerkin approximations exactly in the same way as in [7, Section 3.1]. To obtain the global existence, we argue as in[START_REF] Garcke | Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system[END_REF] Section 3.2] by deriving an energy estimate for the Galerkin approximations. Since there is a slight modification necessary, let us sketch the proof for (37)-(38), the argument being the same at the level of the Galerkin approximations.

		We multiply
	x h, (38) by v = g ′ σ (Γ), integrate over (0, 1), and add the resulting identities to obtain (37) by -∂ 2 d 1
	dt	0
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