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We have applied two state-of-the-art speech synthesis techniques (unit selection and HMM-based synthesis) to the synthesis of emotional speech. A series of carefully designed perceptual tests to evaluate speech quality, emotion identification rates and emotional strength were used for the six emotions which we recorded -happiness, sadness, anger, surprise, fear, disgust. For the HMM-based method, we evaluated spectral and source components separately and identified which components contribute to which emotion.

Our analysis shows that, although the HMM method produces significantly better neutral speech, the two methods produce emotional speech of similar quality, except for emotions having context-dependent prosodic patterns. Whilst synthetic speech produced using the unit selection method has better emotional strength scores than the HMM-based method, the HMM-based method has the ability to manipulate the emotional strength. For emotions that are characterized by both spectral and prosodic components, synthetic speech using unit selection methods was more accurately identified by listeners. For emotions mainly characterized by prosodic components, HMM-based synthetic speech was more accurately identified. This finding differs from previous results regarding listener judgements of speaker similarity for neutral speech. We conclude that unit selection methods require improvements to prosodic modeling and that HMMbased methods require improvements to spectral modeling for emotional speech. Certain emotions cannot be reproduced well by either method.

Introduction

The recognition of emotion from human speech, and the generation of synthetic speech that conveys emotion, have a number of applications. For example, in spoken dialog systems, it would be desirable for the system to be able to detect a user's emotional state, alter its subsequent actions, and express an appropriate emotion in its spoken response.

In state-of-the-art TTS methods, such as unit selection [START_REF] Black | Optimising selection of units from speech database for concatenative synthesis[END_REF][START_REF] Hunt | Unit selection in a concatenative speech synthesis system using a large speech database[END_REF][START_REF] Donovan | A hidden Markov-modelbased trainable speech synthesizer[END_REF][START_REF] Syrdal | Corpus-based techniques in the AT&T NEXTGEN synthesis system[END_REF][START_REF] Clark | Multisyn: Opendomain unit selection for the Festival speech synthesis system[END_REF] or statistical parametric speech synthesis [START_REF] Yoshimura | Simultaneous modeling of spectrum, pitch and duration in HMM-based speech synthesis[END_REF][START_REF] Yoshimura | Simultaneous modeling of spectrum, pitch and duration in HMM-based speech synthesis[END_REF]Zen et al., 2007a[START_REF] Zen | Statistical parametric speech synthesis[END_REF][START_REF] Yamagishi | A robust speaker-adaptive HMM-based text-to-speech synthesis[END_REF], reasonably high quality synthetic speech can be produced [START_REF] Karaiskos | The Blizzard Challenge 2008[END_REF], especially for normal neutral reading styles. For example, statistical parametric speech synthesis systems have been found to be as intelligible as human speech [START_REF] Yamagishi | The HTS-2008 system: Yet another evaluation of the speakeradaptive HMM-based speech synthesis system in the 2008 Blizzard Challenge[END_REF].

Email address: barra@die.upm.es (Roberto Barra-Chicote) 1 Corresponding author Concatenative unit selection speech synthesis systems are generally found to produce speech that sounds more similar to the target speaker than statistical parametric speech synthesis systems do [START_REF] Karaiskos | The Blizzard Challenge 2008[END_REF].

Each method has pros and cons for the generation of emotional speech. The main drawback of concatenative methods such as unit selection is that the technique requires a large speech database (e.g., tens or hundreds of hours of speech). To build a system capable of generating emotional speech would require a large database for each of an immense variety of emotions [START_REF] Bulut | Expressive speech synthesis using a concatenative synthesizer[END_REF][START_REF] Eide | Preservation, identification, and use of emotion in a text-to-speech system[END_REF][START_REF] Black | Unit selection and emotional speech[END_REF][START_REF] Pitrelli | The IBM expressive text-to-speech synthesis system for American English[END_REF], since this method cannot generalise or interpolate emotions. This would be expensive. To work around this problem, some researchers have attempted to incorporate prosodic or phonologic strategies into unit selection [START_REF] Hamza | The IBM expressive speech synthesis system[END_REF][START_REF] Pitrelli | The IBM expressive text-to-speech synthesis system for American English[END_REF][START_REF] Hofer | Informed blending of databases for emotional speech synthesis[END_REF], in which rules, found from small or blended emotional speech corpora, are used to modify the target F0 and duration contours [START_REF] Schröder | Emotional speech synthesis: a review[END_REF]. However, this heuristic approach does not always enable the production of emotions for ar-bitrary speakers and the design of an appropriate target cost function is far from easy because the relationship between the components of the target cost and listeners perceptions is unclear [START_REF] Strom | Investigating Festival's target cost function using perceptual experiments[END_REF]. In addition, since some required subword units may not be present in the small or mixed emotion corpus, this approach may require signal manipulation, which can result in reduced quality synthetic speech. Another practical, but equally severe issue is the accuracy of time-aligned labels of subword units such as diphones or demi-phones. In expressive or emotional speech, more precise labeling than can be obtained from automatic labeling is required [START_REF] Charonnat | Automatic phone segmentation of expressive speech[END_REF][START_REF] Gallardo-Antolin | Automatic phonetic segmentation of Spanish emotional speech[END_REF].

The main drawback of statistical parametric speech synthesis is that the spectra and prosody generated from HMMs tend to be over-smooth and lacking the richness of detail present in natural spectral and prosodic patterns because of the averaging inherent in the statistical approach; these aspects of speech are probably crucial in conveying emotion. In addition, listeners tend to associate negative emotions with robotic voices containing artefacts [START_REF] Barra | On the limitations of voice conversion techniques in emotion identication tasks[END_REF]. On the other hand, the statistical approach does have notable advantages over unit selection: since all acoustic parameters are modelled within a single framework, it is straightforward to transform or modify the speaking style or emotion by using HMM interpolation [START_REF] Tachibana | Speech synthesis with various emotional expressions and speaking styles by style interpolation and morphing[END_REF], multiple regression of emotion vectors [START_REF] Nose | A style control technique for HMM-based expressive speech synthesis[END_REF] and/or HMM adaptation techniques [START_REF] Tachibana | A style adaptation technique for speech synthesis using HSMM and suprasegmental features[END_REF]. Since the HMMbased approach requires less data than unit selection and since its flexible voice transformation framework enables the generation of intermediate strengths of emotions or even mixtures of emotions, the HMM-based approach is apparently less costly. Since time-aligned labels are used only for initialization of HMM parameters, the method is far less sensitive to the accuracy of the labels than unit selection.

The annual Blizzard Challenges, run since 2005, provide a clear picture of the performance of various corpus-based speech synthesis techniques (e.g., concatenative, HMMbased or hybrid) for a normal neutral reading style [START_REF] Black | The Blizzard Challenge -2005: Evaluating corpus-based speech synthesis on common datasets[END_REF][START_REF] Bennett | The Blizzard Challenge 2006[END_REF][START_REF] Fraser | The Blizzard Challenge 2007[END_REF][START_REF] Karaiskos | The Blizzard Challenge 2008[END_REF]. However, it is not well understood how well these approaches work for emotional or expressive speech.

One of the major problems in extending the investigation of speech synthesis to emotional speech is that of data collection. As pointed out in [START_REF] Burkhardt | A database of German emotional speech[END_REF], the so-called "full-blown" emotions very rarely appear in the real world and even if we can obtain recordings of them, there are significant ethical and privacy problems in using such data. Collecting real data is therefore difficult, even more so if we wish to do it in a recording studio. An additional problem is the categorization of emotions: the emotions may be treated as discrete classes or may be treated as continuous variables based on, for example, a Pleasure-Arousal-Dominance model [START_REF] Schröder | Speech and Emotion Research: An overview of research frameworks and a dimensional approach to emotional speech synthesis[END_REF]. The socio-cultural background of each individual listener may also cause varying perceptions of emotions, even from the same utterance. Therefore, we chose to use distinct acted emotions for our investigation.

In order to better understand the ability of unit selection and HMM-based methods to produce emotional speech, we built a number of voices from a common corpus, then evaluated them in a series of perceptual tests. The Spanish Expressive Voices (SEV) corpus [START_REF] Barra-Chicote | Spanish Expressive Voices: Corpus for emotion research in Spanish[END_REF] was used to build six emotional voices using per method. Synthetic speech generated from each emotional voice was evaluated using from three perspectives: measuring the speech quality; measuring the ability of listeners to correctly identify a given simulated emotion in terms of an emotion identification rate; and measuring the emotional strength of the generated speech.

The paper is organized as follows: in Section 2 the process of building the emotional synthetic voices is described, with details of the corpus and how it was assessed prior to its use in speech synthesis. Section 3 describes the design of the evaluation process, including the evaluation metrics used and the evaluation scenarios. In Sections 4 and 5 the evaluation results are presented and discussed. Section 6 summarises the main findings and identifies outstanding issues for future work.

Building Emotional Voices

In this section we describe the SEV emotional speech corpus and the initial subjective evaluation that was carried out to validate the corpus and to assess its quality.

The SEV Corpus

The Spanish Expressive Voices (SEV) corpus [START_REF] Barra-Chicote | Spanish Expressive Voices: Corpus for emotion research in Spanish[END_REF] comprises speech and video recordings of an actor and an actress speaking in a neutral style and simulating six basic emotions: happiness, sadness, anger, surprise, fear and disgust.

Due to a careful design and the relatively large size for a corpus of this type (more than 100 minutes of speech duration per emotion), the recorded database allows comprehensive studies of emotional speech synthesis, prosodic modelling, speech conversion, far-field speech recognition and speech and video-based emotion identification.

The SEV corpus covers speech data in several genres such as isolated word pronunciations, short and long sentences selected from the SES corpus [START_REF] Montero | Emotional speech synthesis: From speech database to TTS[END_REF], narrative texts chosen from a novel "Don Quijote de la Mancha", a political speech given by Spanish philosopher Ortega y Gasset, short and long interviews, question answering situations and short dialogs. The texts of all utterances are emotionally neutral. The structure of the SEV corpus is summarized in Table 1, where the average utterance length of each set is presented in terms of the number of word tokens and number of allophones tokens. The database has been labelled automatically. Phoneme segmentation was performed using HMM forced alignment. Phrase boundaries were determined from the results of the forced alignment. Accentual and syllabic information were predicted from the text. Utterance-medial pauses were inserted into the label sequence according to the prompt text, since the speakers were asked to insert pauses at certain word breaks marked in the prompt.

Finally, the whole database has been validated through objective and perceptual tests, achieving a validation score (emotion identification rate by listeners) as high as 89% [START_REF] Barra-Chicote | Spanish Expressive Voices: Corpus for emotion research in Spanish[END_REF].

Assessment of the SEV Corpus

A further evaluation of the female voice of the corpus was carried out to assess its quality. The evaluation was done by six subjects, three of whom were already familiar with the corpus2 and three who had never previously heard speech from the corpus. A total set of 3, 890 utterances were presented in random order (approximately 50 minutes per emotion), and at least two listeners evaluated each one. The listeners were required to identify the intended emotion of every given utterance, choosing a label from the six emotions plus an other label. Evaluators could listen to each utterance as many times as they needed before providing an answer. Additionally, they were requested to rate the Emotional Strength (ES) of each utterance using a 5-point scale: very low, low, medium, high or very high.

Table 2 shows the Emotion Identification Rate (EIR) for each emotion and the whole corpus. The EIR was calculated using majority voting between listeners (specifically, only utterances with a full agreement among listeners were considered as correctly identified). EIR >med is the EIR computed on only those utterances whose ES rank is higher than medium. EIR <high is the EIR computed on only those utterances whose ES rank is lower than high.

Every evaluator converged to a relatively constant EIR for each emotion after about two hundred utterances. The average EIR was 90% and the worst rate for any individual emotion was 73% (for happiness). As we might expect, those utterances whose ES rank is higher than medium were easier to identify and thus their EIR was 93%. In contrast, EIR <high was just 77%. Note that this is distinct emotional speech acted by a professional actress, yet the the emotion identification task is not trivial, even for humans. Specifically, confusions between happiness and surprise were frequently observed, especially in the short dialog and the question-answering subsets. We also detected that the actress's performance for disgust exhibited a variety of patterns, which was not a problem for trained listeners, but could be difficult for non-trained listeners to cope with. Regarding the emotional strength (ES) evaluation, only 60% of utterances on average were both correctly identified and ranked as medium strength or higher.

The results for listeners who were not familiar with the corpus initially contrasted with those of the evaluators, who were familiar with it. However, the unfamiliar listeners appeared to learn and adapt to the evaluation task during the evaluation. Thus, the utterances presented in the early stages of the assessment and the last stages have differing accuracies: listeners gradually improved their identification rates. This adaptation (which we refer to as a "training bias") would not occur if the evaluators or listeners only heard limited numbers of utterances; in that case, all EIR results would be lower, as can be clearly seen in the results described in section 4.2.

Emotional Voice Building from the SEV corpus

Emotional voices were built using two state-of-the-art synthesis techniques: unit selection and HMM-based synthesis. All voices built are emotion-dependent ones; that is, each emotional voice has been built from scratch using speech data only of the target emotion. The same Spanish text processing modules were used in both synthesis techniques (Barra-Chicote et al., 2008a). The unit selection voices were built using the Multisyn module of the Festival system [START_REF] Clark | Multisyn voice for the Blizzard Challenge[END_REF][START_REF] Clark | Multisyn: Opendomain unit selection for the Festival speech synthesis system[END_REF], and the HMM-based voices were built using a method similar to the Nitech-HTS 2005 system (Zen et al., 2007a) which is publicly available from the HTS toolkit website [START_REF] Tokuda | The HMM-based speech synthesis system (HTS) Version 2[END_REF].

The HMM-based speech synthesis system comprises three components: speech analysis, HMM training, and speech generation. In the speech analysis part, three kinds of parameters for the STRAIGHT [START_REF] Kawahara | Restructuring speech representations using a pitch-adaptive timefrequency smoothing and an instantaneous-frequency-based F0 extraction: possible role of a repetitive structure in sounds[END_REF] mel-cepstral vocoder with mixed excitation (the melcepstrum, log F 0 and a set of aperiodicity measures) are extracted as feature vectors for modelling by the HMMs. These are as described in (Zen et al., 2007a), except that the F0 values we used were more robustly estimated using a vote amongst several F0 extraction algorithms [START_REF] Yamagishi | A robust speaker-adaptive HMM-based text-to-speech synthesis[END_REF]. In the HMM training part, contextdependent multi-stream left-to-right MSD-HSMMs [START_REF] Zen | A hidden semi-Markov model-based speech synthesis system[END_REF] are trained for each emotion using the maximum likelihood criterion. In the speech generation part, acoustic feature parameters are generated from the MSD-HSMMs using the GV parameter generation algorithm [START_REF] Toda | A speech parameter generation algorithm considering global variance for HMM-based speech synthesis[END_REF]. Finally an excitation signal is generated using mixed excitation (pulse plus band-filtered noise components) and pitch-synchronous overlap and add (PSOLA) [START_REF] Moulines | Pitch-synchronous waveform processing techniques for text-to-speech synthesis using diphones[END_REF]. This signal is used to excite a mel-logarithmic spectrum approximation (MLSA) filter corresponding to the STRAIGHT melcepstral coefficients, generating the speech waveform. A Spanish system that we built using the same method on a different corpus exhibited very good performance in a recent Spanish speech synthesis competition (Barra-Chicote et al., 2008a).

Design of the Perceptual Evaluation

Evaluation Metrics

Typically, neutral synthetic speech is evaluated in terms of intelligibility, similarity to the original speaker and the overall quality (or naturalness). For emotional synthetic speech, identification of intended emotions and strength of expressed emotion should be evaluated as well as the overall quality of synthetic speech. We evaluated the following aspects of emotional synthetic speech:

1. Speech Quality (SQ): Listeners were asked to evaluate the overall quality of given emotional synthetic speech using a 5-point scale where 1 was labelled "muy mala" (very bad), 2 was "mala" (bad), 3 was "acceptable" (acceptable), 4 was "buena" (good) and 5 was "muy buena" (very good). 2. Emotion Identification Rate (EIR): The listeners were asked to identify the intended emotion in the given synthetic speech from a limited set of emotional categories: happiness, anger, surprise, sadness, fear, neutral, disgust, or other.

Emotional Strength (ES):

The listeners were asked to assess the emotional strength of the given synthetic speech using a continuous slider. The endpoints of the slider were labelled "very weak" and "very strong".

Experimental Design

Our goal was to get insights into how emotional speech affects the performance of unit selection and HMM-based speech synthesis methods. We also wished to find out how relevant each component of the synthetic voice (segmental information such as spectral envelope, or supra-segmental information as F0, phone duration or power) is to the perception of emotion. We evaluated natural and vocoded speech as well as neutral and emotional synthetic speech generated by the two methods, in order to establish upper bounds in speech quality and emotion identification rate.

In what we call mixed-emotions experiment, we conducted a component-level evaluation, in which we separately evaluated the spectral and source components of the HMM-based speech synthesiser. In HMM-based synthesis, the spectral envelope, F0, and duration components are synchronously and simultaneously trained and modeled, but their Gaussian parameters are statistically independent from each other. Thus this framework allows feature-level partial model substitution, which enables us to evaluate the contribution of each component by constructing a mixed model using components taken from a neutral model and an emotional model, as in Fig. 1.

There are eight possible combinations for the model substitution. We chose a subset of these for our experiments, based on the following criteria:

Segmental versus supra-segmental nature

We separately substituted the emotional spectral envelope with the neutral one and the emotional prosodic components (except power) with neutral ones. This will reveal the relative contribution of the spectral and prosodic components for the perception of each emotion3 . 

Relevance of each prosodic feature

We substituted emotional F0 and duration models with neutral ones. The EIR reduction, relative to the EIR obtained from the "fully emotional" model, will show the contribution of F0 and duration to the perception of each emotion.

Perceptual Tests and Subjects

The ten systems we built and evaluated are described in Table 3. In our experiments we define a scheme as the combination of a synthesis system and a given emotion. A total of 50 schemes had to be evaluated (8 systems (A, B, C, E, G, H, I, J in Table 3) combined with six emotions, plus unit selection neutral (D in Table 3) and HMM-based neutral systems (F in Table 3)).

A fully factorial experimental design would require each listener to hear too many stimuli, which has a number of drawbacks with regard to the evaluators' limited attention span and the "training bias" problem we described in Section 2.2. Instead, the experimental design was based on a balanced latin-square matrix [START_REF] Gomes | The challenge of generating spatially balanced scientific experiment designs[END_REF], similar to the experimental design used in the Blizzard Challenge [START_REF] Fraser | The Blizzard Challenge 2007[END_REF].

Each scheme generated a set of speech for the fifty sentences that were not included in the voice training sentences. They were medium length sentences, between 6 to 17 words and with an average length of 10 words. The content of the test sentences was emotionally neutral to allow listeners to focus on acoustic cues only. The latin-square design allow evaluation of all schemes and all synthesized sentences and controls for ordering effects by ensuring that each group of listeners hears the stimuli in a different order.

Fifty listeners, having a similar socio-cultural profile, participated in the evaluation, which was carried out individually in a single session per listener. All listeners were from the Madrid area and were between twenty and forty years old, and none of them had a speech-related research background nor had they previously heard any of the SEV speech recordings. The evaluation was conducted in a quiet environment using headphones. The authors decided to avoid long sessions, thus limiting to 50 the number of stimuli to be presented to each listener, so that the av- erage length of each session was 31 minutes.

The evaluation was conducted via a web browser interface shown in Figure 2. Speech quality, intended emotion and emotional strength were all evaluated in the same trial (and in this same "visual" order in the web page). Note that listeners were explicitly asked to make each judgement independently from the others. Before making a decision, each utterance could be played as many times as the listener wished, but they could never go back to re-evaluate previous utterances.

The evaluation using 50 listeners provided total of 300 evaluation responses (i.e. 50 per emotion) for each system, except for systems D and F in Table 3. Systems D and F are for the neutral emotion and have 50 evaluation responses for each. One evaluation response includes the listener's rating for speech quality, the identified emotion and the emotional strength, for a single stimulus.

Comparison of Speech Synthesis Methods

Speech Quality (SQ)

Figure 3 presents a boxplot showing SQ results for the speech synthesis methods, where the median is represented by a solid bar across a box showing the quartiles with whiskers extending to 1.5 times the inter-quartile range and outliers beyond this being represented as circles. The mean is represented by a cross. As explained in (Clark et al., 2007a), SQ scores are ordinal data and therefore we used a series of pairwise Wilcoxon signed rank tests with Bonferroni step-down correction to determine whether there are significant differences between the SQ scores of systems. Table 4 shows the significant differences between systems at p = 0.05. The SQ scores for natural speech and vocoded speech are high, as expected. For neutral speech, the HMM-based method (system F) has significantly better quality than that of unit selection (system D) whereas for emotional speech there is no significant difference between them. We can also see that emotional synthetic voices using both methods have worse quality than the neutral synthetic voices. Since all the neutral and emotional voices were trained on the same amount of speech data uttered by the same speaker, the results demonstrate that emotional speech utterances are more difficult to model.

Figure 4 presents the boxplot showing the SQ scores for each emotion using HMM-based and unit selection methods. Table 5 shows the significant differences between emotions at a significance level of p = 0.05. The emotional voice with the highest score for both techniques is anger. The average score for both the methods for anger is significantly better than the scores for surprise, sadness, and disgust. On the other hand, disgust has the lowest score for both techniques. Its average score is significantly worse than all the other emotions except sadness. These differences between emotions, regardless of the synthesis method used, deserves further investigation and will be the subject of future work.

Pairwise Wilcoxon signed rank tests were also conducted between HMM-based and unit selection systems for each emotion. Only for happiness, is there a statistically significant difference (at p < 0.05) between the SQ score for the HMM-based and unit selection methods. We presume that unit selection method has difficulty coping with the wider variety of happy-speech prosodic patterns within similar linguistic contexts [START_REF] Scherer | Vocal communication of emotion: A review of research paradigms[END_REF], because the evaluation of the cost functions is based on local features and there is no prosody modification in the synthesis process. On the contrary, because HMM-based synthesis explicitly models the prosody using wide-context supra-segmental features, it is able to generate smoother prosodic patterns. However, it appears that this context-dependency issue is less important for fear because the prosodic patterns are more uniform over all utterances [START_REF] Schröder | Emotional speech synthesis: a review[END_REF].

Emotion Identification Rates (EIR)

The EIR results are shown in Figure 5. The average EIR for natural speech is 64%. Surprise, happiness, and anger are correctly identified over 70% of the time. Sadness is identified over 60% of the time and fear is identified 50% of the time. Disgust was least well identified, with an EIR of just 30%.

The unit selection method has better absolute EIRs for happiness, anger, sadness, and disgust and the HMMbased method has better absolute EIRs for surprise and fear. This is interesting because, in neutral speech, unit selection systems generally achieve better speaker similarity scores than HMM-based systems [START_REF] Karaiskos | The Blizzard Challenge 2008[END_REF].

We analyze this result in Section 4.3. For the disgust emotion, both methods have their lowest EIR (18% for HMM and 30% for unit selection) and low SQ scores. The low EIR also obtained using natural speech for this emotion indicates that this emotion, at least as portrayed by the actress, is hard to identify.

Table 6 shows the EIR of synthetic speech, relative to the EIR of natural speech. This illustrates the discrepancies between identification of synthetic emotional speech and natural emotional speech. First, we can see that unit selection voices are generally more accurately identified than HMM-based voices. For individual emotions we can see that both methods have higher relative EIRs for anger and sadness, indicating that these emotions can be detected in synthetic speech about as well as in natural speech. On the other hand, we see that the unit selection method has a very low relative EIR for surprise and the HMM-based method has relatively a low relative EIR for happiness. One of the main features of surprise as acted 
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by the actress is a raising of F0 in the last stress group in an utterance. Neither method could reproduce this phenomenon well, particularly unit selection.

The unit selection voice for sadness obtains a higher EIR than natural speech. In our previous experiments on phonetic segmentation of this emotional speech corpus, we observed that many segmentation errors were due to parts of relatively long pauses sometimes being labelled as a part of an adjacent phoneme. This suggests that a cause for this unusually high EIR for unit selection speech is the insertion of "false pauses" that are interpreted by listeners as sadness.

Emotional Strength (ES)

The Emotional Strength (ES) score, elicited from the listeners using a slider, was treated as a continuous variable without categorical information. Since every listener may use his or her own scale, we normalized the scores on a per listener basis.

The boxplot presented in Figure 6 shows the normalized ES scores. We performed an ANOVA test to evaluate which factors had a statistically significant influence on the normalized ES scores. The ANOVA test results showed that the effect of system is strongly significant (p < 2.2e -16). Given this result, Pairwise t-tests with Bonferroni step-down correction were conducted to determine whether there are significant differences between the normalized ES scores of each system. Table 7 shows the significant differences between systems for p = 0.05.

As expected, natural and vocoded speech (systems A and B, respectively) obtained the highest ES scores. The unit selection method (system C) has a better overall ES score than the HMM-based method (system E). We assume that the statistical averaging process inherent in the HMM modeling process causes emotional strength to become weaker, in the same way that similarity to the original speaker is also somewhat reduced. However it is, in theory, possible for the HMM-based method to emphasize an emotion and so it could potentially improve the emotional strength, by using extrapolation [START_REF] Tachibana | Speech synthesis with various emotional expressions and speaking styles by style interpolation and morphing[END_REF]. Although we did not do this in the experiments here, interpolated and extrapolated examples for anger are available from http://lorien.die.upm. es/ ∼ barra/voices/emotions-interpolation and English samples are available from http://homepages.inf. ed.ac.uk/jyamagis/Demo-html/Style.html.

Feature-level analysis for the HMM-based method

The mixed emotion systems were evaluated as part of the same listening test described in the previous section, but we present the analysis separately in this section. The SQ scores, EIRs, and ES scores for the mixed-emotion systems are shown in Figure 7, Table 9 and Figure 6, respectively. Table 8 shows the significant differences found between the systems whose results are given in Figure 7. The EIRs are given as a percentage relative to the EIR of the corresponding fully emotional HMM-based system.

From Figure 7, we can see that mixing emotional models and neutral models generally results in a reduction in the SQ score (see "neutral duration", "neutral spectra", "neutral F0" and "neutral prosody"). This effect is most apparent for the neutral prosody system, which suggest that the F0 and duration parameters significantly contribute to the naturalness of emotional synthetic speech. This was also confirmed with pairwise Wilcoxon signed rank tests, in which statistically significant differences were only found between the emotional HMM-based system and the neutral prosody system.

From the results in Table 9, we can distinguish a clear pattern of either a high relative EIR or a very low relative EIR, with only a few intermediate values. If we say that an shows a significant difference in SQ between systems (at p = 0.05).
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EIR reduction of 75% or more (i.e., a relative EIR value of 25% or less in the table) indicates that those model components are essential for reproduction of that, we may conclude that:

1. Happiness and disgust are characterized by both spectral and prosodic components. 2. Anger is mainly characterized by the spectral components. Note that the spectral components include power coefficients as well as coefficients for spectral envelope. 3. Surprise and fear are mainly characterized by the prosodic components. 4. Sadness cannot be characterized by either spectral or prosodic components well. The frequency of pause may affect this emotion.

Note that the HMM-based method had better absolute EIRs for surprise and fear in Section 4.2. Since these emotions are mainly characterized by the prosodic components, we conclude that the HMM-based method has good prosodic modeling. In turn, for emotions that are characterized by not only the prosodic components but also the spectral components, synthetic speech using unit selection method is more accurately identified by listeners, because the spectral modeling of HMM-based method is not as good as the "spectral modelling" (i.e., unit playback) of the unit selection method. This is most likely due to the over-smooth spectra generated by the HMMs, which is an inherent and unsolved problem of the statistical approach.

From Figure 6 we can see that, compared to fully emotional HMM voices, the ES score decreases in the following order:

1. neutral duration 2. neutral spectra 3. neutral F0 4. neutral prosody (neutral F0 + neutral duration) This means that F0 is the most relevant parameter for emotional strength and that the prosodic components (F0 and duration, system H) are significantly more relevant to emotional strength than the spectral envelope (system G) or duration (system J). In other words, accurate models for some supra-segmental features such as F0 and duration are more important than spectral envelope features in emotional speech. These results are also consistent with our previous analysis [START_REF] Barra | On the limitations of voice conversion techniques in emotion identication tasks[END_REF] and results from automatic emotion identification tasks [START_REF] Barra | Prosodic and segmental rubrics in emotion identification[END_REF].

Conclusions and Future Work

Two state-of-the-art speech synthesis techniques (unit selection and HMM-based synthesis) were applied to emotional speech. A series of perceptual tests were used to evaluate voices built for six emotions available in the SEV corpus: happiness, sadness, anger, surprise, fear, and disgust. For the HMM-based method, we also evaluated spectral and source components separately and identified which components contribute to the reproduction of each emotion.

Although the HMM method produced significantly better neutral speech, synthetic emotional speech generated from HMMs and from unit selection has comparable speech quality, except for emotions having contextdependent prosodic patterns. Synthetic speech produced using unit selection has better emotional strength scores than when using the HMM method. The HMM-based method does have an ability to manipulate the emotional strength, although this was not explored in these experiments. For emotions that are characterized by both spectral and prosodic components, synthetic speech using unit selection is more accurately identified. When emotions are mainly characterized by the prosodic components, HMMbased synthetic speech is more accurately identified. These results suggests that unit selection methods require improvements in prosodic modeling whereas HMM-based methods require improvements in spectral modeling, for the synthesis of emotional speech.

Neither technique could reproduce the disgust emotion well, although listeners' identification rates even on natural speech were low for this emotion. The exact causes of this are a subject for future investigation.

The unit selection and HMM-based synthesis systems built are available at the SEV online demonstration page: http://lorien.die.upm.es/ ∼ barra/voices/ index.php?status=voices
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 1 Figure 1: Substitution of each component in an HMM-based speech synthesis system. This enables separate assessment of the importance of spectral and prosody components for emotional speech.
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 2 Figure 2: Web interface used by the listener for a perceptual evaluation.
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 3 Figure 3: Boxplot showing speech quality (SQ) scores for natural emotional speech, vocoded natural emotional speech, unit selection synthetic speech and HMM-based synthetic speech. For the emotional voices, the result shown is the average over the six emotions.

Table 4 :Figure 4 :

 44 Figure 4: Boxplot showing speech quality (SQ) scores for unit selection synthetic speech and HMM-based synthetic speech for each emotion.

Figure 5 :

 5 Figure 5: EIRs for natural emotional speech, unit selection synthetic emotional speech and HMM-based synthetic emotional speech.

Figure 6 :

 6 Figure 6: Boxplot showing the normalized emotional strength (ES) scores obtained for each system.

Table 6 :

 6 EIR relative to natural speech EIR, expressed as a percentage. The first row shows the emotions: Happiness, Anger, Surprise, Sadness, Fear and Disgust.

Table 7 :

 7 Results of pairwise t-tests over normalized ES scores and between natural speech (A), vocoded speech (B), unit selection (emotional) (C), HMM-based (emotional) (E), neutral spectra (G), neutral prosody (H), neutral F0 (I) and neutral duration (J). denotes a significant difference in ES between systems (at p = 0.05).

Figure 7 :

 7 Figure 7: Boxplot showing speech quality (SQ) scores for HMMbased synthetic speech, neutral spectra, neutral prosody, neutral F0 and neutral duration for each emotion.

Table 1 :

 1 Details of the SEV corpus used for building both unit-selection and HMM-based speech synthesis systems. #Utterances represents the number of utterances per emotion. #Words and #Allophones show the average number of word and allophone tokens per utterance, for each subset.

	SUBSET	#Utterances Duration (min) #Words #Allophones
	Isolated words	570	11	-	-
	Short sentences from tales	45	2	5	21
	Long sentences from tales	84	8	15	65
	Novel	100	11	16	70
	A speech	25	4	26	125
	Interview (short answers)	52	4	10	44
	Interview (long answers)	40	5	20	87
	Question-answering	117	4	4	19
	Short dialogs	142	5	4	22

Table 2 :

 2 Percentage of correctly identified utterances for Happiness

, Anger, Surprise, Sadness, Fear, and

  Disgust and the overall average (AVG) for the female speaker from the SEV corpus. EIR is the emotion identification rate. EIR >med is the EIR calculated using only utterances for which the Emotional Strength was rated as high or very high. EIR <high is the EIR calculated using only utterances for which the Emotional Strength was lower than high.

		H	A Su	S	F	D	N	AVG
	EIR	73 99 76 98 92 97 93	90
	EIR >med	76 99 85 98 97 98 98	93
	EIR <high 54 96 54 95 75 93 74	77

Table 3 :

 3 Definition and names of speech synthesis systems used for perceptual evaluation. E means emotional, N means neutral, and E voc means vocoded emotional speech.

		SYSTEM	Spectra	COMPONENTS F0 (& Aperiodicity)	Duration	PURPOSE
	A	NATURAL SPEECH		E		Evaluation of acted emotions (upper bound of EIR)
	B	VOCODED SPEECH		E voc		Evaluation of the impact of vocoder in the EIR
	C D SELECTION neutral UNIT emotional		E N		EIR itself and comparison with HMM-BASED
	E F		emotional neutral		E N		EIR itself and comparison with UNIT SELECTION
	G H	HMM	neutral spectra neutral prosody	N E	E N	E N	spectral versus prosodic nature
	I J		neutral F0 neutral duration	E E	N E	E N	Analysis of the relevance of each prosodic feature

Table 5 :

 5 Results of Wilcoxon signed rank tests with Bonferroni stepdown correction for SQ scores between emotions.denotes a significant difference in SQ between emotions at a significance level of p = 0.05. The first row and column give the emotions:

Happiness, Anger, Surprise, Sadness, Fear and Disgust.

  

Table 9 :

 9 EIR for mixed-emotion systems, relative to the EIR for a fully emotional HMM-based system, expressed as a percentage. The first row shows the emotions: Happiness, Anger, Surprise, Sadness, Fear, and Disgust. Underlined values highlight EIRs below 25%.

		H	A	Su	S	F	D
	Emotional	100 100 100 100 100 100
	Neutral spectra	18	13	75	81	72	22
	Neutral prosody	27	59	4	58	6	22
	Neutral F0	9	91	0	62	11	89
	Neutral duration	64	59	82 150 106	33
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They carried out a partial hand-labelling task of phone durations and pitch marks of a small subset of the SEV corpus. The manually annotated labels were used for other experiments and were not used for this experiment.

The spectral properties of speech may be affected by suprasegmental features as well as segmental features. For example, a speaker's laryngeal setting (e.g. breathy phonation) has relatively long-lasting spectral consequences. However, for the simplification of our discussions, we focus on only the purely segmental features of the spectrum in this experiment.
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