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Abstract 

 

Serum concentrations of low-density lipoprotein cholesterol (LDL-C), high-density 

lipoprotein cholesterol (HDL-C), triglycerides (TG) and total cholesterol (TC) are important 

heritable risk factors for cardiovascular disease. Although genome-wide association studies 

(GWAS) of circulating lipid levels have identified numerous loci, a substantial portion of the 

heritability of these traits remains unexplained. Evidence of unexplained genetic variance can 

be detected by combining multiple independent markers into additive genetic risk scores. 

Such polygenic scores, constructed using results from the ENGAGE Consortium GWAS on 

serum lipids, were applied to predict lipid levels in an independent population-based study, 

the Rotterdam Study-II (RS-II). We additionally tested for evidence of a shared genetic basis 

for different lipid phenotypes. Finally, the polygenic score approach was used to identify an 

alternative genome-wide significance threshold prior to pathway analysis and those results 

were compared to those based on the classical genome–wide significance threshold. Our study 

provides evidence suggesting that many loci influencing circulating lipid levels remain 

undiscovered. Cross-prediction models suggested a small overlap between the polygenic 

backgrounds involved in determining LDL-C, HDL-C and TG levels. Pathway analysis 

utilizing the best polygenic score for TC uncovered extra information compared to using only 

genome-wide significant loci. These results suggest that the genetic architecture of circulating 

lipids involves a number of undiscovered variants with very small effects, and that increasing 

GWAS sample sizes will enable the identification of novel variants that regulate lipid levels.  

 

 



Introduction 

Serum concentrations of low-density lipoprotein cholesterol (LDL-C), high-density 

lipoprotein cholesterol (HDL-C), triglycerides (TG) and total cholesterol (TC) are highly 

heritable phenotypes associated with the risk of cardiovascular morbidity and mortality 1-4. A 

number of genome-wide association studies (GWAS) successfully identified multiple genes 

influencing circulating lipid levels 5-12. There are currently over 100 established loci that 

include both common variants with relatively small effects as well as a considerable number 

of rare variants with large effects 13. Despite these successes, a substantial proportion of the 

heritability of each trait remains unexplained, suggesting that many determinants have yet to 

be identified 14.  

Several plausible explanations may underlie the unexplained heritability of lipid traits, 

including the presence of both unknown common variants with small effects and novel rare 

variants with larger effects. The ENGAGE GWAS 5 was one of the first large population 

based studies designed to find variants associated with circulating lipid levels. The study, 

based on 16 European cohorts including up to 22562 individuals, identified 6 novel loci, in 

addition to replicating 16 previously known loci. However, as demonstrated by the recent 

GWAS from the Global Lipid Genetics Consortium (GLGC), numerous additional variants 

passed the genome-wide significance threshold as a result of increased sample size 15. The 

GLGC GWAS, which included over 100000 individuals of European ancestry, reported 95 

loci, with 59 reaching genome-wide significance for the first time.  These results raise an 

interesting question: if common variants remain to be discovered, how many should we 

expect? Are there still a limited number of loci or can we expect a polygenic mechanism that 

involves a very large number of variants with very small effects? In the latter case, these 

variants would contribute to a continuous spectrum of alleles spanning the genome  and single 

genes involved in this complex polygenic model might not be detectable by GWAS, 

regardless of sample size 16. Evidence for this type of genetic architecture can be shown using 
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a genome-wide scoring approach, as was recently demonstrated for a number of psychiatric 

outcomes 17-19.  Additionally, these polygenic scores may provide extra information useful in 

determining p-value thresholds for pathway analysis.  

The current study aimed to explore the extent to which common variation accounts for 

the unexplained heritability of circulating lipid levels using the genome-wide scoring method. 

We also evaluated the evidence for a common polygenic effect underlying different lipid 

traits, using the same risk scoring approach. Finally, we examined the utility of genome-wide 

polygenic scores for identifying pathways beyond those identified using a classical GWAS 

approach.   

 

Materials and methods 

The polygenic risk score approach involves using results from a discovery set to explore the 

genetic architecture of an independent target sample.  Our discovery set consisted of the meta-

analysis of 16 European populations from the ENGAGE Lipid Consortium (N = 17798 - 

22562) (Table 1). A detailed description of this study, including populations,  genotyping 

information and statistical analysis, was previously published 5.  

The target sample consisted of RS-II, an extension of the Rotterdam Study, a 

prospective cohort study started in 1990 in the Ommoord district of the city of Rotterdam. 

RS-II, which was not a part of the ENGAGE discovery set, consists of 3011 participants (out 

of 4472 invitees) who were 55 years or older during the recruitment period (2000-2001) 20. Of 

the 3011, 2540 persons were successfully genotyped with an Illumina 610K array. Fasting 

HDL-C, TG and TC were measured with enzymatic colorimetric tests on a Roche/Hitachi 911 

analyzer (Roche Diagnostics, Meylan, France). LDL-C was estimated using the Friedewald 

formula 21.  

SNPs included in the construction of the polygenic scores were based on the results 

from the ENGAGE study. We selected different clusters of SNPs for the calculation of the 
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scores using several p-value thresholds (pdiscovery) ranging from 5 ×10-8 to 0.5. We calculated 

genetic scores for those various clusters of SNPs in the target sample by multiplying the 

number of risk alleles for each SNP (0, 1 or 2) by the effect sizes from the discovery set, and  

summing them up across all the SNPs in that cluster. For this analysis we used the PLINK 

“profile scoring” option. SNPs that had a call rate < 90% or HWE p-value < 1×10-8 were 

excluded from these computations. A/T and G/C polymorphisms were also excluded to avoid 

potential strand inconsistencies. SNPs in linkage disequilibrium (LD) were pruned over 200 

SNP sliding windows using a pair wise r2 threshold of 0.25 in PLINK 22. LD pruning was 

performed per SNP cluster. (See Supplementary Table 2 for the number of SNPs remaining in 

each cluster and used for analysis) 

The associations between these scores and serum lipid levels were tested in SPSS 

using linear regression models with sex, age and age2 as covariates (the same covariates as 

included in the discovery GWAS). The proportion of total variance explained by the genetic 

score, referred to here as the percentage of explained variance (PEV), was determined by 

comparing models with/without the risk score.  

To evaluate whether the PEV results were driven by the GWAS hits, we also 

constructed a variable comprised of only the significant GWAS variants and included it as a 

covariate in our original models. When calculating the polygenic scores for these analyses, we 

also removed SNPs within 2 Mb windows surrounding the GWAS hits. We employed exactly 

the same pruning approach for this analysis.  

In order to search for evidence for a shared genetic background between various lipid 

traits, we tested additional models in which we used the polygenic score for a particular lipid 

and tried to predict the others, for instance, utilizing the HDL-C polygenic score to predict 

TG, and vice versa.           

The score which yielded the highest PEV for a given lipid trait ostensibly includes the 

most valuable genetic information; therefore we selected these thresholds to utilize in 
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pathway analysis (in contrast to using only genome-wide significant loci).  For these analyses, 

we used the PANTHER tools (http://www.pantherdb.org) 23. We first tested the genome-wide 

significant SNPs (pdiscovery < 5 × 10-8) from the ENGAGE GWAS in the pathway analysis. 

These results were then compared with those obtained using alternative pdiscovery thresholds 

selected on the predictive ability of the polygenic scores. After SNP selection, SNPs within 

gene regions were converted to gene symbols using the “SCAN SNP and CNV annotation 

database” (http://www.scandb.org). Gene lists were tested for enrichment in three PANTHER 

categories: (1) pathways, (2) biological processes and (3) molecular functions. Testing for 

enrichment basically involves comparing one gene list to the reference list to statistically 

determine over- or under- representation of PANTHER classification categories. Based on the 

reference list, an expected value is computed (the number of genes one would expect in the 

list for a particular PANTHER category) and it is assumed that, under the null hypothesis, 

genes in the tested list are sampled from the same distribution as genes from the reference set. 

The Homo sapiens gene list from National Center for Biotechnology Information was used as 

the reference gene list. To avoid bias caused by multiple testing, PANTHER’s Bonferroni 

correction option was implemented. (See Supplementary Figure 1 for the over all flowchart of 

the study) 

 

Results  

Table 1 shows summary statistics for the discovery and target samples. The 

female/male ratio in the discovery set was significantly higher compared to the target set (1.6 

vs 1.2, p < 0.001). Genome-wide significant SNPs from the ENGAGE GWAS were checked 

for their associations in the target sample using linear regression. Generally, evidence of 

association between those SNPs and lipid levels were marginally significant or non-

significant (Supplementary Table 1).  The GWAS of circulating lipids in RS-II did not show 

any genome-wide significant findings except the CETP gene region SNPs which were 
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associated to HDL-C (rs7499892, p=3.4 ×10-13). Manhattan plots for the GWAS of the HLD-

C, LDL-C, TG and TC can be found in the Supplementary Figure 2.   

Prediction 

Figure 1 shows the PEV obtained for each lipid trait using the polygenic scores 

generated for a number of p-value thresholds in the target sample (RS-II). For HDL-C, the 

polygenic score computed using 19 genome-wide significant SNPs from 8 gene regions 

(pdiscovery < 5 ×10-8) resulted in the maximum PEV compared to the null model (4.75 %, p = 

3.6 ×10-30; Figure 1 A). For LDL-C, (Figure 1 B), the maximum PEV was observed with the 

polygenic score that included 21 SNPs with a pdiscovery < 1×10-6 (2.6 %, p = 5.1 × 10-16). Figure 

1 C shows PEVs for TG levels; the score that included 12 SNPs from 8 regions with pdiscovery 

< 1×10-7 (3.8 %, p = 2.8 × 10-21) was the best predictor. For these traits, the variance 

explained decreased with the inclusion of additional SNPs in the polygenic score selected 

using more liberal pdiscovery thresholds (Figure 1 A to C). Finally, for TC, the highest PEV was 

obtained using 46 SNPs from 24 regions with pdiscovery < 10-5 (2.7%, p = 1.4 × 10-16). This was 

higher than the PEV obtained using only the genome-wide significant SNPs (PEV = 2.1%, p 

= 8.2 × 10-13, n=20 SNPs from 11 regions; Figure 1 D).  As with HDL-C, LDL-C, and TG, the 

explained variance for TC dropped when more liberal pdiscovery thresholds were used to 

construct the polygenic score. For LDL-C, HDL-C and TC, all scores were significant (up to a 

threshold of pdiscovery < 0.5). We observed similar patterns when we used unpruned data 

(Supplementary Figure 3). 

Figure 2 shows the results from the second approach, in which models were adjusted 

for genome-wide significant variants. For HDL-C (Figure 2 A), the PEV increased as SNPs 

were added, up to 0.5 % with pdiscovery < 0.1 (p= 1.0 × 10-4) and remained significant until 

pdiscovery < 0.5 (p=2.3 × 10-4). A similar pattern was observed with LDL-C (Figure 2 B, 

explained variance was up to 0.4 % (p= 0.002) with pdiscovery  threshold of 0.2. In contrast, the 

polygenic score for TG, when the effects of known variants were excluded, was not 
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associated with TG levels in the target population (Figure 2 C). For TC (Figure 2 D), the 

maximum PEV was observed with pdiscovery < 1×10-5, (0.6 % and p= 1.8 × 10-4).  

Cross prediction 

Table 2 shows the phenotypic correlations for the four outcomes studied, and additionally 

shows the correlations between the polygenic scores for different pdiscovery thresholds. 

Correlations between the traits were modest, with the exceptions of TC and LDL-C, (r = 0.9) 

and TG and HDL-C (r = -0.5). The correlations between the polygenic scores were weaker 

than the phenotypic correlations (0.8 for TC/LDL-C and -0.2 for TG/HDL for pdiscovery < 5 × 

10-8)  

To evaluate the evidence for common polygenetic effects underlying lipid levels, we 

performed cross-prediction analyses (Figure 3). The highest PEV was based on the TC score 

at pdiscovery (TC) < 1×10-5, which explained up to 2.7% of the variance in circulating LDL-C (p = 

2.0 × 10-5; Figure 3 K). Similarly, LDL-C risk profiles explained up to 1.8 % of the variance 

in TC when we selected all SNPs with a pdiscovery (LDL-C) < 10-6 (p = 1.4 × 10-11; Figure 3 F). 

These findings are in line with the high phenotypic correlations between those variables. 

Figures 3 G to I show the predictions based on a TG score which explained up to 0.8 % of the 

variance in other lipids. HDL-C scores explained up to 0.3 % of the variance in other lipids 

(Figure 3 A to C).  

 Pathway analysis 

Pathways analyses using only genome-wide significant SNPs was compared to the analogous 

analyses using SNPs from the polygenic scores which yielded the highest PEV for each trait 

(Figure 1). These scores used thresholds of  p < 1 ×10-6 for LDL-C, p < 1 ×10-5 for TC, p < 5 

× 10-8 for HDL-C and p < 1 ×10-7 for TG. Table 3 shows the findings from the pathway 

analysis, based on alternatives to a p-value threshold of 5.0 × 10-8. None of the pathways 

among categories defined by the PANTHER tool were significant after strict adjustment for 

multiple testing (Bonferroni correction). With respect to biological processes the lipid and 
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fatty acid transport, and lipid, fatty acid and steroid metabolism pathways were two 

biological processes enriched in the HDL-C and LDL-C GWAS findings. At the level of 

molecular function, genes with an apolipoprotein and transfer/carrier function were enriched 

in LDL-C, while genes with a lipase function were observed to be significantly enriched 

among the top GWAS results for HDL-C. For HDL-C and TG, we were not able to select 

alternative p-value thresholds since the highest PEVs were observed with p < 5 × 10-8. With 

respect to LDL-C, the pathway analysis utilizing two different p-value thresholds (p < 1×10-6 

and p < 5 × 10-8) resulted in the same findings. No additional pathways were identified by 

using extra information from the risk profiles for LDL-C, TG and HDL-C. For TC, on the 

other hand, the lipid, fatty acid and steroid metabolism, lipid and fatty acid transport and 

transport terms additionally emerged among biological processes tested using the alternative 

threshold (Table 3).  

 

Discussion 

Using prediction modelling, we could explain up to 4.8% of the variance in HDL-C, 2.6% in 

LDL-C, 3.8% in TG and 2.7% in TC. These PEVs are very similar to those from similar 

studies 5,9 and much higher than the single SNP analysis of genome-wide significant SNPs 

from the ENGAGE GWAS (Supplementary Table 1)  

However, these proportions are much lower than those identified by GLGC, which were 

estimated to explain 12.4% (TC), 12.2% (LDL-C), 12.1% (HDL-C), and 9.6% (TG) of the 

variance in the Framingham Heart Study sample, as mentioned by Teslovich et al. 24. This is 

expected since increases in sample size lead to better estimation of the effect sizes of the 

SNPs and GLGC had a sample size 5 times larger than the ENGAGE sample, which we used 

as a discovery set in our study.   

For all of the traits, the PEV reached a maximum and then decreased with the use of 

more liberal pdiscovery   thresholds to calculate the polygenic scores (Figure 1). This is most 
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likely explained by the inclusion of more and more biologically non-relevant SNPs, so that 

the effects of true positive findings are diluted and this is reflected by the decreases in PEV. 

For all of the studied traits, we found the highest PEV when the polygenic score was based on 

SNPs with a low pdiscovery value (5 × 10-8 for HDL-C, 1×10-7 for TG, 1×10-6 for LDL-C and 

1×10-5 for TC).           

 Including the top regions from the ENGAGE GWAS dataset as a separate predictor in 

the models (Figure 2) uncovered a residual polygenic component which does not explain 

more than 1% of HDL-C, LDL-C and TC levels. These findings suggest that there are 

unknown genes with much smaller effects involved in determining these outcomes. However, 

the PEVs for these additional variants were small when compared with those for the top 

findings. For TG, on the contrary, excluding the top regions from the polygenic score resulted 

in non-significant findings. For TC, which is highly heterogeneous compared to the other 

traits, it seems that some variants remain to be discovered ( pdiscovery < 1×10-5).   

 It is of note that among newly discovered loci for HDL-C by GLGC, leading SNPs 

from 10 loci had p values >0.05 in the ENGAGE HDL-C analysis. Similar findings were 

observed for 10 loci for LDL-C, 3 loci for TG and for 9 loci in TC 24.    

 It is already known that monogenic disorders 25 and rare variants also account for 

variation in circulating lipid levels 26-32. This may help to explain why the explained variance 

is small compared to the high heritability of the traits, especially since many rarer variants are 

population specific, and might not have been well-represented in our European dataset, or not 

well tagged by the common SNPs under study.  For instance, APOE gene variations are 

tagged by the CEACAM16-TOMM40 region among the ENGAGE GWAS top findings, and 

SNPs from this region were not associated to LDL-C levels in RS-II, however, APOE ε2 

carrier status explains 2.6 % of the phenotypic variation in LDL-C levels in RS-II. 

Additionally, the gender ratio difference between the discovery and target samples may have 

been a limitation to the current study, since some loci show different effect sizes for males 
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and females 5.           

 Our findings have implications for gene discovery and suggest that GWAS of much 

larger samples may be needed to discover additional variants with small effects for HDL-C 

and LDL-C. However, at the same time, this study suggests that many of the unknown SNPs 

have relatively large effects and that is confirmed by the GLGC data. Our findings suggest 

that GWAS on serum lipids in the future will still be successful as sample sizes increase 14. 

 Our cross prediction results are interesting from a biological perspective.  These 

findings showed very little overlap between the polygenic scores for different circulating 

lipids. A strong inverse relationship exists between low HDL-C and elevated plasma TG (r = -

0.5 in RS-II). Low HDL-C levels are strongly associated with hypertriglyceridemia since high 

levels of plasma triglycerides drive an exchange reaction for HDL-C cholesteryl esters 

mediated by CETP 33. In addition, the triglyceride and phospholipids in HDL-C are 

hydrolyzed by LIPC 13,33. However, using our genetic evaluation it was not possible to predict 

a large proportion of the variance in TG levels using HDL-C risk profiles despite the 

correlation between the two lipids. The polygenic score for TG was slightly better in 

predicting HDL-C than when we used the top SNPs, however, the PEV did not exceed 0.6 % 

and was lower than the variance explained by HDL-C SNPs and also lower than the variance 

explained in circulating TG by TG SNPs.  Thus, our data implies that common genetic 

variants involved in determining both TG and HDL-C levels do not explain the phenotypic 

correlation between these traits, suggesting that the correlation may be influenced strongly by 

environmental factors, and/or restricted to a few genes. An alternative explanation may be that 

we tested the polygenic effects of common variants weighted by their effect size from the 

initial GWAS. When there are strong causal variants among the top hits that are specific to 

HDL-C but not to TG, this may dilute the effect of genes with small effect sizes on both 

outcomes. Also, the current analyses do not account other forms of genetic variation, such as 

rare variants or copy number variations (CNVs).       
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 As expected, we also found evidence for a number of genes that regulate both HDL-C 

and LDL-C (Figure 3A) and a similar overlap between TG and LDL-C (Figure 3 H). TC 

SNPs were able to explain up to 2.7% of the variation in LDL-C, suggesting that the genes 

determining LDL-C and TC are for a large part overlapping. This result is in-line with the 

high phenotypic correlation between the two measures.  Genome-wide significant findings 

from the ENGAGE GWAS harboured two loci (apolipoprotein B and LPL) influencing both 

HDL-C and TG,  2 loci influencing both TG and TC (DOCK7 and CEACAM16-TOMM40 

regions) and 7 loci influencing both LDL-C and TC (CELSR2, APOB, ABCG5, HMGCR, 

FADS2/3, LDLR  and CEACAM16-TOMM40). A limitation here is that LDL-C was not 

directly measured but calculated with the Friedewald formula in the RS-II sample and so, by 

definition, depends directly on TC, HDL-C and TG. This may cause a potential bias in 

findings for LDL-C and may inflate the association between lipids in cross prediction findings 

with this phenotype. We investigated whether the polygenic score approach can be used as a 

tool for selecting SNPs of interest in order to further evaluate them in a pathway analysis.  

First, we evaluated the genome-wide significant SNPs from an existing GWAS and compared 

the results to those obtained using the SNPs from the polygenic model with the maximum 

PEV.  Neither of the approaches yielded any novel pathways/biological processes (only those 

already known to be involved in lipid metabolism, such as cholesterol biosynthesis; lipid and 

fatty acid transport; and lipid, fatty acid and steroid metabolism). Also, we see that, although 

the use of the polygenic score approach did not provide extra information concerning LDL-C, 

HDL-C or TG, for TC, pathway analysis based on the best predicting polygenic score (with 

pdiscovery <1×10-5) was more informative than analysis based solely on the genome-wide 

significant findings.  Including TC SNPs up to a more liberal threshold of 1×10-5 suggested 

three processes which are already biologically known but were not detectable with the 5 × 10-

8 discovery threshold.  This finding shows that for complex traits like TC, the risk scoring 

approach might be used to select the SNP cluster which harbours a large number of true 
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positives that are not significant at the genome-wide level. Taken together with the polygenic 

component analysis results, it is likely that ENGAGE TC-GWAS results harbor undiscovered 

associated variants distributed between 1×10-6 < pdiscovery < 1×10-5.    

 Using a gene scoring approach, we tested the evidence of a polygenic component for 

the heritable circulating lipids. We concluded that a polygenic form of inheritance exists for 

HDL-C, LDL-C, TG and TC. These findings may be useful for future gene discovery efforts 

for lipids. We also tested for possible genetic overlap between biologically related lipid traits 

and compared two different approaches for pathway analysis. This study gives an example of 

utilizing the risk scoring approach to search for the common genetic background of different 

quantitative traits, thus; it may also be an example for more sophisticated future studies. 
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Table 1 
Descriptive data of discovery and replication samples 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ENGAGE RS-II 
 Men Women  Men Women 

Number of subjects 8403 14159 1061 1253 
HDL-C (mmol/L) 1.3 (0.3) 1.6 (0.4) 1.2 (0.3) 1.5 (0.4)
LDL-C (mmol/L) 3.4 (0.9) 2.3 (0.9) 3.6 (0.9) 1.5 (0.8)

TG (mmol/L) 1.6 (1.1) 1.1 (0.7) 1.6 (0.9) 1.5 (0.8)
TC (mmol/L) 5.6 (0.9) 5.9 (0.9)  5.6 (1.1) 5.7 (1.1)
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Table 2  
Correlation matrix of circulating lipids and genetic risk scores in RS-II.  
Lower-left side of the matrix shows the phenotypic correlation between circulating lipid levels, adjusted by age, age2 
and sex. Upper-right side of the matrix shows the correlation between the genetic risk scores of four circulating lipids, 
for the first four risk scores with pdiscovery < 5 × 10-8, pdiscovery < 1 × 10-7, pdiscovery < 1 × 10-6 and pdiscovery < 1 × 10-5 .  
* Correlation significant at p<0.05. **Correlation significant at p<0.001.  
 

 

   HDL-C  LDL-C   TG  TC  

C
or

re
la

tio
n 

be
tw

ee
n 

th
e 

ph
en

ot
yp

es
 HDL-C 

5 ×10-8    0.01  -0.20 **  0.02 C
orrelation betw

een the genetic risk scores 

1 ×10-7    0.01  -0.17 **  0.03 
1 ×10-6    -0.01  -0.09 **  0.07 **
1 ×10-5    0.02  -0.04 *  0.05 * 

LDL-C 

5 ×10-8 

-0.1 ** 

    0.01  0.76 **
1 ×10-7     0.02  0.75 **
1 ×10-6     0.05 *  0.81 **
1 ×10-5     0.03  0.71 **

TG 

5 ×10-8 

-0.5 ** 

 

0.1 ** 

    0.13 **
1 ×10-7      0.13 **
1 ×10-6      0.12 **
1 ×10-5      0.08 **

TC 

5 ×10-8 

0.1 ** 

 

0.9 ** 

 

0.3 ** 

   
1 ×10-7      
1 ×10-6      
1 ×10-5      
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Table 3 
Pathway analysis 
Enrichment of a particular “pathway”, “biological process” or “molecular function” PANTHER categories were tested by pathway analysis. SNPs 
that are included in the pathway analysis are selected based on their pdiscovery values which were 10-6 for LDL-C, 10-5 total cholesterol, 5 × 10-8 for 
HDL-C and 10-7 for Triglycerides. NCBI: Number of genes that belong to the particular category. Observed:Number of genes that belong to the 
given particular category among GWAS results. Expected:Expected value for number of genes that belong to the particular pathway among GWAS 
results. Over/Under:  Stands for “overrepresented /underrepresented”.  
* p-value corrected for multiple testing.  
n.s.: no significant findings. 
 
 

  NCBI Observed Expected Over/Under p p*
PATHWAYS n.s       

        
BIOLOGICAL PROCESS             

HDL-C 
Lipid, fatty acid and steroid 
metabolism 770 5 0.42 + 4.05 ×10-5 1.26 ×10-3

Lipid and fatty acid transport 131 3 0.07 + 4.77 ×10-5 6.91 ×10-3

LDL-C 
Lipid, fatty acid and steroid 
metabolism 770 4 0.51 + 1.46 ×10-3 4.52 ×10-2

Lipid and fatty acid transport 131 3 0.09 + 8.81 ×10-5 1.28 ×10-2

TG n.s       

TC 
Lipid, fatty acid and steroid 
metabolism 770 6 1.21 + 1.22 ×10-3 3.78 ×10-2

Lipid and fatty acid transport 131 4 0.21 + 5.55 ×10-5 8.05 ×10-3

Transport 1306 8 2.05 + 8.47 ×10-4 2.63 ×10-2

        
MOLECULAR FUNCTION 

HDL-C Lipase 75 3 0.04 + 9.11×10-6 1.47 ×10-3

LDL-C Apolipoprotein 23 2 0.02 + 1.10 ×10-4 1.77 ×10-2

Transfer/carrier protein 327 3 0.22 + 1.26 ×10-3 3.66 ×10-2

TG n.s       
TC n.s       
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