N
N

N

HAL

open science

The large central charge limit of conformal blocks

Vladimir Fateev, Sylvain Ribault

» To cite this version:

Vladimir Fateev, Sylvain Ribault. The large central charge limit of conformal blocks. Journal of High
Energy Physics, 2012, pp.JHEP02(2012)001. 10.1007/JHEP02(2012)001 . hal-00627906v3

HAL Id: hal-00627906
https://hal.science/hal-00627906v3
Submitted on 8 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00627906v3
https://hal.archives-ouvertes.fr

Preprint typeset in JHEP style - HYPER VERSION

The large central charge limit of conformal blocks

Vladimir Fateev!? and Sylvain Ribault!

I Laboratoire Charles Coulomb UMR 5221 CNRS-UM2
Universigé Montpellier 2, Place Eugne Bataillon - CC070
F-34095 Montpellier Cedex 5 - France
2Landau Institute for Theoretical Physics
142432 Chernogolovka, Russia
vl adinmir. fateev@niv-nmont p2.fr, sylvain.ribault@niv-nontp2. fr

ABSTRACT. We study conformal blocks of conformal field theories withi’g symmetry algebra
in the limit where the central charge is large. In this limite compute the four-point block as
a special case of agls-invariant function. In the case when two of the four fielde aemi-
degenerate, we check that our results agree with the blook'®inatorial expansion as a sum over
Young diagrams. We also show that such a block obeys a sidir-differential equation, and that
it has an unexpected singularityzat= —1, in addition to the expected singularitieszat 0, 1, co.
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1. Introduction

Since the work of Belavin, Polyakov and Zamolodchikov [hE tonformal bootstrap method has
been an effective tool for studying two-dimensional confal field theories. That method relies on
a systematic exploitation of the symmetries of the theottyesSe symmetries determine functions
called conformal blocks. The simplest conformal blockstheecharacters of the representations
of the symmetry algebra, which may be called zero-point kdoan the torus. The correlation
functions of the theory are then combinations of the confdriphocks. For example, the partition
function on the torus is a combination of characters.

Combinatorial expansions for the conformal blocks of the%bro algebra have recently been
found [2], inspired by the conjecture of Alday, Gaiotto arachikawa on the relation between
two-dimensional CFTs and four-dimensional gauge thed8gsUntil then, no explicit formulas
for four-point blocks on the sphere were known. It would beyvateresting to generalize such



combinatorial expansions to conformal blocks of other lalgs, in particular thé?y algebras
[4, 5, 6] which are natural generalizations of the Virasdgehra.

This is however a challenging problem, in particular beeatin® fusion products ol y>3
representations in general exhibit infinite fusion muitipés. (See for instance Section 2.3 of [7].)
This feature is at the origin of difficulties in computing teee-point correlation functions in con-
formal Toda theories. These CFTs ha¥g; symmetry algebras, and their three-point correlation
functions are only known in special cases [8, 9]. Here we s¥itbw how to take infinite fusion
multiplicities into account and how to compute conformaddids in the limit where the central
chargec of the Wy algebra is large. (The conformal dimensions of the fieldsa@anwhile kept
fixed; this is sometimes called the light asymptotic limilt)is this limit which was used by Al.
Zamolodchikov as the starting point of the characterizatibVirasoro (V = 2) conformal blocks
by recurrence [10]. In this limits/; conformal Toda theory reduces to the quantum mechanics
of a point particle onSLy(C), the Wy algebra reduces tel,;, and theWy conformal blocks
reduce to special cases &fy-invariant functions. We will study such functions in détai the
casesN =2 andN = 3.

This will enable us to test a proposal for the combinatoriglaasion of a class d¥ confor-
mal blocks [11]. The proposed expansion, which we will sumineg is given for all values of,
assuming that all involved fields except two of them are atrhdly degenerate. This assumption
eliminates the problem of the infinite fusion multiplicgieWe will compare our results for large
¢ conformal blocks of that class, with the largdimit of the combinatorial expansion. The two
expansions agree up to the ord€r which supports the validity of the proposed combinatorial
expansion.

Plan of the article.  In Section 2, after a reminder on the largéimit of Virasoro conformal
blocks, we study/s-invariant functions and their relations with the lakgkmit of W5 conformal
blocks. Section 3 is devoted to the study of detailed pragsedf certain conformal blocks: the
differential equation they obey, and their critical expatse Then, in the concluding Section 4,
we comment on some aspects of the results, and compare thibrthevicombinatorial expansion.
Appendix A is devoted to the study of a quantum particleSdny (C) (with N = 2,3), which is
at the basis of the computation of the lakgkmit of correlation functions ok¢, conformal Toda
theory, and provides some justification for a number of theatigns of Section 2. Appendix B is
devoted to deriving the series expansion (2.66) of certaifarmal blocks.

Acknowledgements. We thank Vladimir Belavin for comments on the draft of thiice. We
are grateful to the JHEP referee for suggestions which leigtificant improvements. This work
was supported in part by the cooperative CNRS-RFBR gran8RI€-02-93106. S. R. is grateful
to the Institut Poncelet in Moscow for hospitality while paf this work was done.

2. W3 conformal blocks and s/3-invariant functions

2.1 Virasoro conformal blocks and s¢,-invariant functions

We first review the case of Virasoro conformal blocks, befaraeving to the technically more
complicated case dfi’3 conformal blocks. Basic information on Virasoro confornbédcks can



be found in [12]. A four-points-channel Virasoro conformal block on the sphéie, (c|A;|z;)

is a function of the positionszy, 22, 23, 24) € C* of four primary fields, which are characterized
by their conformal dimension&\1, Ay, Az, A4). Such a conformal block also depends onsan
channel conformal dimensioA;, and on the central chargeof the Virasoro algebra, which is
defined by generators,,7 and relations

memp:mf4mme+i%mn—1xn+n@mﬂo. (2.1)

The conformal block is defined as a sum over the states of &$iigheight representation of the
Virasoro algebra. The relevant representation is buithfeohighest-weight staté\ ) by applying
the creation modeg,,.o. If we assumd.), = _n and(Ag|As) = 1, then we can compute the
square nornf|L_,|A,)||*> = 2nA +Sn(n—1)(n+1). If o] > 2, this goes to infinity as — oo,
andL_,, descendents do not contribute to the "largdock”

Fa,(Ailzi) = lim Ga (c|Ailz) - (2.2)

Therefore, only the generatofé 1, Lo, L1) of the s¢s subalgebra of global conformal transfor-
mations survive in the largelimit. Nonetheless, some properties of the blocks are rettdd by
taking this limit: First, the existence of an analytic expian in the neighbourhood af = zs,

Fa,(Ailz) = 25727 22(1 4 O(212)) (2.3)

where we use the notation, = 21 — 29. Second, the behaviour under global conformal transfor-
mations, which we now review.

The s/, subalgebra of global conformal transformations has themggors(L_,, Ly, L) and
commutation relations

(Lo, L41) = FL+1 , [L1,L_1]=2Ly. (2.4)

A representation of the Virasoro algebra with conformal elisionA corresponds to agés rep-
resentation of spin-A. Notice that two Virasoro representations whose dimerssaa related by
the reflection

A*=1-A, (2.5)

correspond to two isomorphig/, representations. A primary field with positierand conformal
dimensionA behaves as a vector in a#, representation of spir A and isospin variable. The
action of thes/, subalgebra on the primary field is given by the differentjgi@tors

D) =55 Dian(lo) =255~ A, Dia (L) = 25" ~ 90z, (26)
which are such thab 4 .) preserves the commutation relations (2.4). The blagks(c|A;z;),
and therefore their largelimits Fa(A;|z), aresls-invariant four-points functions. What we call
an sls-invariant n-points function is a functio (A;|z;) of (A1, Ag,---A,) and (21, 22, - - 2)
such that

Vit e {L_l,Lo,Ll}, (Z D(Ai,zi)(ta)> g(AZ‘ZZ) =0. (27)
i=1



The invariant two- and three-points functions are wellskndo be
E(A1,Ag|z1,29) = Z1—22A1 , (assuming Ay = Ay) (2.8)
g(Al, AQ, Ag’Zl, 29, 23) = ZlAQ?’iAliAQ ZQA?}*AQiASZ?’AlQiAsiAI . (29)

Any invariant four-points functioif (A;|z;) can be written in terms of its values when three of the
z;s are fixed, for examplé, 23, z4) = (0,1, 00),

E(Ai]zi) = P(Ag]2:) 2™ T22E(A]0, 2,1, 00) | (2.10)

where we define the cross-raticand prefactoP(A,|z;) as

P(Ai|zi) _ Zl_zAl_Az21_3A3+A4Z4_3A3_A4Z4AQI_A221_4A1+A2+A3_A4 . 2= Z12%34 . (2.11)
213224
(Notice that we have?(A;|z;) = E(A1, A, 0|21, 22, 24)E(0, As, Ay|z1, 23, 24).) FOr brevity we
will sometimes use the notatidhz) = £(A;|0, z, 1, 00).
After these reminders on the global conformal symmetry, veeraady to write an explicit
integral formula for the large four-point conformal block,

Fa,(Ailz) = N/ dzs E(A1, Do, As|z1, 22, 25)E(AG, Ag, Aglzs, 23, 24) (2.12)
c

where the normalization factdv (a function ofA;, A,) and integration contout’ are determined
by the condition (2.3). This expression is justified in ApgisnA.1. With a general integration
contour, the integral in eq. (2.12) would yield a linear camation of the two "reflected” blocks
Fa, andFa:. Explicitly, we find

(A — A1+ Do) (Ag — Ay + A)

Fa.(Ai]0,2,1,00) = 2721 nz_o QA nan(2.13)
= z’AEFEAS — AL+ A, Ay — Ay + A3, 2A,,2) (2.14)
whereF' is the hypergeometric function, and we use the notations
n—1 .
(t)n = Z_]l(tw) - F(If(;” , (2.15)
and
To=A1+ Ay —Ay. (2.16)

The simplification of the conformal blocks in the largdimit can be interpreted as coming
from the elimination of local conformal symmetry, and thevstal of only the global symme-
try with its finite-dimensionalk/; algebra. This explains why the largeblocks (2.14) coincide
with the conformal partial waves which were computed by &®@ir Gatto and Grillo [13]. Such
conformal partial waves are associated to the global cordbsymmetry, and can therefore be
generalised to higher dimensions [14We will be interested in another type of generalisation:
staying in two dimensions, we will consider larger symmeitigebras.

lWe are grateful to Slava Rychkov for pointing out the artidte3] and [14] to us.



2.2 sfs-invariant functions

In preparation for writing the large conformal blocks of théVs algebra, we need to studys-
invariant functions. This is because th& algebra reduces te/s in the largec limit [15]2, in the
same way as the Virasoro algebra reduces/to (The eight generatorbg, L1, Wy, Wi, Wig

of the W3 algebra which survive in the largelimit can be identified with linear combinations of
the generatorg’, e’, f* of s¢3 which we are about to introduce.)

The algebras/s is generated by two Cartan elemefits, h?), three generatoréf!, f2, f3)
which are eigenvectors of the adjoint actiongbfindh? for the respective eigenvalués?2,1, —1)
and (1,—2,—1), and three generatofg', ¢2, ¢*) which are also eigenvectors but with opposite
eigenvalues. The remaining nonzero commutators are

L ==, [ el =6, (2.17)
e, fl=n', [ =0, [ f]=hn"+n", (2.18)
e =12, [ L=, [ f]== , [ f]=¢". (2.19)

In order to parametrize the representations#gf let us introduce its simple roofs;, e2) and the
weights of the fundamental representatidn, h2, h3) (not to be confused with th&/s generators
¢!, k7). The roots are supposed to be two independent vectors avsitialar product given by the
Cartan matrix(e;, e;) = K;; with K = ( % 3'). The weights of the fundamental representation

are
2 1 1 1 1 2
hl = 361 + §€2 s hQ = —361 + 362 s h3 = —361 — 362 . (220)

A representation is parametrized by a spin vegtior root space, whose coordinates we denote as

r=—(e1,j) , s=—(e2,]). (2.21)
Two representations are isomorphic when they are relatenhbyf the six Weyl transformations
(rs) = & (1) (3=r—sr7), (8,3 =7 —s), (2.22)
2—r,—147r+s), (-1+r+s2-5), (2—s52-71),

among which we single out the maximal Weyl reflection> j* where
j=ms)=j5"=02-s52-1). (2.23)

There is another useful reflection of the root space calledynkin diagram automorphisgh—
j“ where

j=(rs)=j=(sr). (2.24)

In the previous Subsection, we representég transformations in terms of differential op-
erators (2.6), whose isospin variableould be interpreted as the position of a CFT field on the

2According to [15] (pages 7-8)Vs reduces tosés by a two-step process of truncating to the vacuum-presgrvin
algebra and taking the largdimit. However, for our purpose of computing largeonformal blocks, the largelimit
does perform the truncation, as we explained in the casesdfitsoro algebra.



complex plane. In order to faithfully represettt; transformations, we need a triple of variables
Z = (w,z,y). (The number of needed variables is the number of creati@natqrse’; in the
case ofs/y this would be =1 ) Thes/; generatorgh, ¢!, f7) are represented as [12](Section
15.7.4)

D(jz)(h') = 220, + 7 — ydy + wdy , (2.25)
D z)(h?) = 2ydy + s — 28y +wdy , (2.26)
D(jz)(el) = 220, +rz + (w — 2y)0y + Wy , (2.27)
Diz)(€) = 4?0y + sy — w; , (2.28)
D(jz)(eg) = w20y + s(w — zy) + rw + zwd, + y(w — xy)0y , (2.29)
Dz (f') = =0u (2.30)
Dyz)(f?) = =0y — 20, , (2.31)
D z)(f%) = 0w . (2.32)

An s/s-invariantn-point function associated tospinsj, jo, - - - j, iS @ function€(j;| Z;) such that
Vit e (he, £, (Z D@i,zi)(ta)) E(jilZi) = 0. (2.33)
=1

Such an invariant will obey additional equations if someregpntations are degenerate. We will
call the representation of spjh semi-degenerate of the firgt = 1) or second k = 2) kind if

(e, 1) =0 and  dy)e(ii|Z) =0, (2.34)
where the differential operatorg) are defined as
dY) =0, +yd, , dY) =0,. (2.35)

These formulas fod(Zl) andd(ZQ) will be justified in Appendix A.2.

Let us write the solutions of th€/s invariance equation (2.33) in the cases of two- and three-
point invariants. We will write the solutions of these egoias$ in terms of convenient combinations
of isospin variables/; = (w;, z;, y;),

pij = yi(zi — x5) — (Wi —wj) , (2.36)
Tijk = TiWj — TjW5 + Tjwy, — TRpwj + Tpw; — Tiwy (2.37)
Xijk = YiWj — YjW; + YjWk — YpWj + YpwW; — YWk
+yiy; (@i — x5) + yiye(@; — 2k) + yryi(ze — z5) - (2.38)
We also introduce the three-point invariant
PijPjikPki
Oijr = === = (D(o,zi)(t“) + Dyo,z,)(t") + D(o,zk)(ta)) Oijr. =0.  (2.39)
PjiPkjPik
Our combinations are related by identities of the type
0123X123 = p21p32p13 (0123 + 1) , (2.40)
X123P41 + X134P21 + X142p31 = 0 . (2.41)



We then find that a nonzero two-point invariant can exist qryvidedj; = j§ (up to Weyl
reflections), and the invariant is then

E(J1,J21 21, Z2) = pyi Pz, (assuming ji = j3) . (2.42)

Consider now three-point invariants. The functi&(y, jo, js|Z1, Z2, Z3) depends on nine vari-
ables which are the components4f, Z5, Z3, and is subject to the eight equations (2.33). There-
fore, there exists an infinite-dimensional space of sahgtio This corresponds to the existence
of a nontrivial invariantd,,3 (2.39). In the special case when one of the three represmgas
semi-degenerate, we have an extra equation of the type)(28d the space of solutions is one-
dimensional. Let us start with the case when the first reptaten is semi-degenerate of the first
kind. The three-point invariant should be built from cordiions of isospin variables which are
killed by the differential operatod . (2.35), for instance

d(zll)/)lz =0, dy )X123 =0. (2.43)

We then find the three-point invariant

E(G1,d2, 33|71, Zay Z3) = Xiohors 2R py TR g2l (= 0), (2.44)

where we introduced the combination of spins
J = (ha,j1+ja+js) = 5(s1+s2a+s3—r —ry—7r3). (2.45)

Similarly, if the first representation is semi-degenerdtie second kind, we can use combinations
which are killed byd(21), in particular

d(ZQ)Pm =0, d(ZQI)O'lz?, =0, (2.46)

1
and we find the three-point invariant
EG1s dos Jal 21, Zo, Z) = oagpi 2T 2 pi T T T L (51 =0) . (2.47)

In general, when no representation is semi-degeneratepabegeneral three-point invariant is

g1 ji\Z') = X123P12J e r2+33P7J T3+32P§]3 Sngrj” 83p31r1 91(9123) (2.48)
J J —J— J—
= 0123/)21—’—7"3 o 82P3+r2 83/)23 r3+slp T2P13 g2(0123) - (2.49)

This depends on an arbitrary “multiplicity functiow] (¢), or on the equivalent functiog,(6) =
§—7—m=r2¥s3(9 4- 1)~/ g, (#). This function encodes the infinite multiplicity of say tlrérd rep-
resentation in the tensor product of the first two represiemi& The same feature manifests itself
in the fusion products ofi’; representations, we have called this the problem of theitefinsion
multiplicities in the Introduction.

Bases ofn-point invariants can be built from three-point invarianior instance s-channel
four-point invariants can be built as

Eg.q'15: Uil Zi) = N/ dZs E4(j1, J2, Js| 21, Zo, Zs)Ey (3% 1 J3, JalZs, Z3, Z4) ,  (2.50)
c

where j, is the s-channel sping, ¢’ are two multiplicity functions, V' is a normalization factor
which may depend o, j;, g, ¢, andC is an integration domain faZ, € C3. The integration
measure is the/s-invariant measuréZ = dwdxdy.



2.3 W35 conformal blocksin thelarge c limit

A four-point s-channelWs conformal block on the sphei€, ., (c|ai|2;) is a function of the
positions (21, z2, 23, z4) Of four primary fields characterized by their momefa , as, a3, ay),
and of the central chargeof the W3 algebra. The block also depends onsacthannel momentum
o, and on two multiplicity functiong, ¢’. The presence of such multiplicity functions is in general
necessary due to the presence of infinite fusion multipitand we have given a precise definition
of such multiplicity functions in the case sfs-invariant functions in the previous Subsection. We
will however not try to define such functions in the casdif conformal blocks, except in the
largec limit.

Let us introduce standard notations Wiy representations. Létandg = b + b~! be such
that the central charge is = 2 + 24¢%. A highest-weight representation of th&; algebra is
parametrized by its momentum, a two-dimensional vector which belongs to the root space of
sf3. Such a representation can alternatively be parametrigétd bonformal dimension\,, and a
chargeq((f’) which is (up to a normalization factor) the eigenvalue ofgp# 3 current, such that

3
1
Ao =5(@02Q-0) , ¢¥ = -3b H(hi, a—Q), (2.51)
where we defined) = ¢p, which involves the Weyl vectagr = e; + es.
The largec limit is defined as: — oo with A, ¢(®) fixed, or alternatively
b—>0 , a=-bj , jfixed. (2.52)

This is sometimes called the light asymptotic limit. In tlaeglec limit, the W3 algebra reduces
to s¢3, and the vector is the spin of ans/s representation. This spin is related to the limits
A =limA_; andg® = limg'®). b

b0 S pspd—bi Y

A=r+s , q(3):r—s, (2.53)

wherer ands are the components of the spinsee eq. (2.21). Let us define the largeur-point
conformal blocks,

.7:979/‘]-3 (]z|zz) = %E}(l) gg7g/‘_bjs (C| — b]z|Zz) . (254)

In analogy with the case of Virasoro conformal blocks, thgda: conformal blocks of théls
algebra can be computed as special casegpfnvariant functions. We claim that an isospin
variableZ = (w, z,y) of an s¢s-invariant function must then be of the typge = Z where we
define

7= (%22,2, z) . (2.55)

This relation between the isospifiand the worldsheet positioncomes from the following iden-
tities, which hold for any functiog (Z):

D(] Z)(h + h? )g Z)|Z:5 = —D(A7Z)(L0)E(Z) , (256)
D(JZ (el +e )5 Z)|Z:d = —lD(A Z)(Ll)e(* , (2.57)



where thes/, differential operatorsD a .)(t*) were defined in eq. (2.6), and té; operators
D7) (t*) in eq. (2.25)-(2.32). These identities show that the ppalty embedded/, subalgebra
of s¢3 with generatorgh! + h2,e! + €2, f1 + f?) can be identified with the/, algebra of global
conformal transformations. (See also [15].) Therefor@rgdc four-point block is a special case
of a four-points/s-invariant function (2.50),

Fo.q'15s Uilzi) = N/ dZs E4(j1, J2: Js| 21, 22, Zs)Eq (35, 335 Jal Zs, 23, Z4) (2.59)
c

where the maximal Weyl reflection— j* and the Dynkin diagram automorphisim— j“ were
defined in egs. (2.23) and (2.24), and the three-point iamééi, was given in eq. (2.48). The
normalization facto\” and the integration domaifi for Z, € C? are determined by the condition
(2.3). Other choices of integration domains in eq. (2.59udead to linear combinations of
six conformal blocks whose spins are related by Weyl transformations (2.22). Notice that the
condition (2.3) of analyticity and normalization of corfieal blocks also constrains the multiplicity
functionsg, ¢’. Applying that condition to a three-point invariant furetic, (41, jo, js|21, 22, Zs)
leads to the conditions

g(1) = 93 (r+2s—2r1—s1~2r2—s2) , g(0) is analytic near § = 1. (2.60)

We will now focus on a large four-point block ;. (j;|z;) such that the fields with numbers
2,3 are semi-degenerate of the first kind, so that the multtglitinctionsg, ¢’ disappear and the
componentsry, 3 of the spinsjs, j3 vanish. The assumptions;, = z; andZ; = %, lead to
simplifications in the combinations» (2.36) andy123 (2.38),

p12(71, %) = 321y, (2.61)
X123(Z1, %, Z3) = 3212 (2122 — Y321 — Y322 + 223y3 — 2w3) | (2.62)
so that the relevant three-point invariants eq. (2.44) lveco
— 2—J—T3+81+8221A23*A1*A2

E(J1, J2, J3| 21, 22, Z3)

_ J—
X (2122 — Y321 — Y322 + 2x3y3 — 2ws3) 7 (ygacg —y3z1 — w3 + %z%) o

2)—J—7"3+81 ( , (7“2 = O) . (263)

x (w3 — x322 + 525 2)‘]_51

w3 — Tr321 + %zl
where the conformal dimensions; are associated to the spirisas in eq. (2.53). Then the
formula (2.59) implies that®1 ™22 F; (5|0, z, 1, o0) depends on only four combinations of the six
nonvanishing components of the spiisjs, js, j4, Namely

rL—S82 , S1 , T4—83 , S4. (2.64)

It is actually convenient to use the following four combioat, where we cal(r, s) the compo-
nents ofj,,

a:%(53—|—54—|—s—r4—r), 5:%(51+32—S—T1+T),

2.65
y=a—sitr, S=B—s1+s. (2.69)



The integral in eq. (2.59) can be expanded ngar= 2z, see Appendix B. This leads to the
expansion of the largefour-point blockF;, (z) = Fj, (4|0, 2,1, 00) nearz = 0,

_an M (BB 4 M)k (@) (= + 8)n (O
Finz) =" n,;:o nliljl(r +s—1), (1)n+i ] (8)n+; (268)
_ =A%, - 2'2_”(7” = B)n(V)nls — a)n(d)n
— - nzzo nl ()p(s)p(r+s—1),
xF(B,v+n,r+n,2)F(a,0 +n,s+n,z2), (2.67)

where the notatiott),, was defined in eq. (2.15). The second form of this expressiabtained
by performing the sums ovérand j, and can be helpful in numerical computations. A similar
expression can be obtained if the fields with numiefsare semi-degenerate of the second kind
(instead of the first kind), by exchanging the two componera#ads of each spin.

There are five special cases where the bl&¢K z) (2.66) reduces to a hypergeometric func-
tion:

1. Casex = 3 = 0: In this cas€(3); = d;0 and(«); = d;0, SO that

Fi(2) = 2782 F(y, 6,7 + 5 — 1,2%) . (2.68)

This shows that blocks can have a singularity at —1, in addition to the physical singu-
larities atz = 0, 1, oo which appear when two of the fieldsat 2o, z3, z4 come together.

2. Casey = 0: In this casgy)n+i = dn+i,0 and we have
Fi(2) = 27812 F(, 0,8, 2) . (2.69)

3. Case) = 0: In this cas€0),,+; = 6,40 and we have
Fi(2) = 27202 F(B,7y,1,2) . (2.70)

4. Casex = s: In this cas€(s — «),, = d,, 0 and we have
Fjo(2) = 27 282(1 = 2) " F(B,7,7,2) . 2.71)

5. Cases = r: In this cas€r — 3),, = d,,0 and we have
Fi(2) = 27812(1 — 2) Y F(, 6,8, 2) . (2.72)

3. Differential equation and critical exponentsfor large ¢ conformal blocks

3.1 Case of Virasoro conformal blocks

The largec limit Fa,(A;|z) of a Virasoro four-point block obeys a second-order hypemyetric
differential equation, and we now explain how to deducedhisation from the integral expression
(2.12) for Fa,(A|zi). The largec block is indeed a function of four variables, which obeys
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the three equations (2.7) of global conformal invariance.adidition, the three-point invariant
E(A1, Ao, Aglz1, 29, z5) Which appears in the integral expression (2.12) also oltegetequations,
and together with the relation (A.5) for the quadratic Caisifiy(A) this implies

9ab(D(ay 21) + D(ag, o)) E) (DA 21) + Diag,on)) () Fa (Ailzi) = Co(Ag)Fa, (Ad]z) (3.1)

where the differential operatoiS , .)(t*) are defined in eq. (2.6). ThuBa, (A|z;) obeys four
differential equations, an&a, (A;0, z, 1, 00) obeys one differential equation, which turns out to
be the hypergeometric equation, whose solution (subjetiteaacondition (2.3)) we wrote in eq.
(2.14).

The critical exponents of the hypergeometric equation amk, and we deduce the critical
exponents\; of 221722 Fx (A0, 2,1, 00) at the three singularities = 0, 1, oc:

B
M A, 0 AL - A, (3.2)
Ao A:A1+A4—A2—A3A4—A3

‘ exponent 1 ‘ 9] ‘

The number)\go) = A} = 1— A, is not really a critical exponent of the block itself, rather
corresponds to another block with anotisechannel dimensiom\}. Notice that the exponents
at1 andoo are A,-independent; conformal blocks can be expected to behagergay at these
singularities only in the large limit. The transformations of the hypergeometric func§@an be
used to rewriteFa, (A0, z,1,00) as a combination of two functions with simple monodromy at
sayz = 1, but these two functions are not themselves conformal klatknother channel.

3.2 Differential equation for large ¢ W5 conformal blocks

That our large: four-point conformal blockF;_ (j;|z;) (2.66) with two semi-degenerate fields obeys
a differential equation follows from a simple counting ofriedles and equations. We consider
first the corresponding/s four-point invariant functior€;, (j;|Z;), which depends ot2 isospin
variables, namely the componentsAf, Z,, Z3, Z4, and is such thak;, (j;|z:) = &£;,(j:|1Z) where
Zis defined in eq. (2.55). There are three types of equatians;{¢j;| Z;):

1. Thesfs symmetry condition (2.33) yield$ equations.

1

2. As two fields are semi-degenerate, we have two equaﬁ%ﬁ%s (4ilZi) = d(Z)Ej (JilZ:) =

3

0, whered(Zl) was defined in eq. (2.35).

3. Thes/s symmetry condition for the three-point invariafif(j1, j2, js| Z1, Z2, Zs) which ap-
pears in the integral formula (2.50) will yield two more etioas. Thes/s symmetry condi-
tion (2.33) applied t&,(j1, jo, js|Z1, Z2, Zs) indeed implies

9ab (D, 21) + Do, 2)) AN Dy 21y + Do, 2)) (E)Ej, (il Zi) = Ca(4s) €, (il Zi) (3-3)
dabc(D(j1,Z1) + D(jz,Zz))(ta)(D(thl) + D(jz,Zz))(tb)(D(jl,Zl) + D(jz,Zz))(tc)gjs (]Z ’ZZ)

= —C3(js)€;. (il Zi) , (3.4)

using the equations (A.23) and (A.24) which involve the tresi@ir numbers’,(js) and
CB(jS)-
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The functiong;, (j;|Z;) of 12 variables therefore obey partial differential equations. Now the
function 7, (j;|2;) can be written in terms of a function of just one variable (thess-ratio of
21, 29, 23, z4), and this function obeys one differential equation. Thieowof the differential equa-
tion can be guessed to be six, the order of the Weyl growgofThis is because our differential
equations (3.3) and (3.4) depend on the spithrough the Weyl invariant€’s(j) and Cs(js).
Given a solution, Weyl reflections gf therefore provide five other solutions.

Let us explain how the differential equation ¥, (j;|2;) can be derived in principle. We will
not perform the derivation to the end, as the resulting eéguiavould be too complicated to be
useful. We will stop at the partial differential equatiomns €;_(j;|Z;), which imply the equation
for F;,(ji|z;) and are much simpler. It is from these partial differentiali@ions that we will
derive interesting information like the critical exporewff 7;_(j;|z;). To begin with, the first ten
equations allow us to rewrit€;, (j;|Z;) in terms of a function of two variablei%S (7:|U0, V),

A~

&, (ilZi) = Q4 Zi)€;,(4i| U, V) (3.5)
where the cross-ratids, V' are solutions of our ten equations when all spins are takeartm
U = P3aXx412 V= P21 X341 ’ (3.6)
P24 X431 P31 X421

and the prefacto€(j;|Z;) is the product of two three-point invariants of the type 43.with one
spin set to zero in each invariant (thereby imitating thdguter P(A;|z;) (2.11) of s¢s-invariant
functions),

Qi Z:) = E(j1, 52,0121, Z2, Z4)E(0, 3, ja| Z1, Z3, Za) , 3.7
_ X1—2];112Xl—gjfz;pﬁz+j34—84pjl'i12+j34—81p2—1j12—7"1 p§1j34+84pgg34—r4p;£12+81 ., (3.8)

where we defined
jrz = (ha,j1+ j2) = 3(s1+s2—11) , jsa = (ho,js +ja) = 5(ss+ sa—r4) . (3.9)
We haveQ(j;|Zi) = P(Ailz;) where P(A;|z;) was defined in eq. (2.11) amdl; in eq. (2.53),
and together with the expression (2.10) 5y, (j;|2;) in terms of F;, (z) = F;,(4:]0, 2,1, 00) this
implies
AFRE (2) = €,z 2) - (3.10)
The two equations (3.3) and (3.4) amount to two partial diffidial equations fo&‘fjs (7:|U, V),
which we computed with the help of the free mathematicalvga® Sage. The equations are of the
type Ex&;, (ji|U, V) = E3€;,(j:|U, V) = 0, where the differential operatofs, and F; are
Ey = D}, + D}, — DyDy — Dy — Dy — 1Cs(js)
+U(Dy + ji2 — s1)(Dv — Dy — jaa) + V(Dy + jsa — s4)(Dy — Dy — j12)
—UV(Du + jiz — 81)(Dv + jsa — s4) , (3.11)

E3 = (Dy — Dy)(Dy — 1)(Dy — 1) — £C5(js)
—U(Dy + ji12 — s51)(Dv — Dy — jaa)(Dv — 1) + V(Dy + jsa — 84)(Dy — Dy — j12)(Dy — 1)
+ UV (Dy + jiz2 — s1)(Dv + jza — s4)(Dy — Dy + ji2 — jaa) , (3.12)
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where we definedy = U% and Dy = V%. (The combinationgs, j34 of the components
r;, s; Of the spinsj; were defined in eq. (3.9).) The differential operatéksand £3 commute, as
guaranteed by their origin in th&s-invariant differential operators which appear in eqs3)and
(3.4).

Let us sketch how a sixth-order differential equation&er(j;|, 2) is obtained from the two
partial differential equationg, and E5 for éjs (7:|U, V). We cannot directly se/ = V in E,
and E3, because these differential operators do not keep the lihe- V'} invariant. To cure this
problem, we take linear combinations Bf and E3 with differential operators as coefficients, so
as to eliminateDy; — Dy while keeping the derivativ®; + Dy along{U = V'}. This yields a
differential operator of the typ&s = % ¢;(U, V)(Dy + Dy )’ such thatEs;, (5:|U, V) = 0,
and we thus haV%Z?ZO ci(z, z)(2z%)l} AR (2) = 0.

The resulting differential equation is however too congiéed to be useful. We were able
to compute it explicitly (with the help of a computer) onlyspecial cases when some parameters
ji» js Vanish. Even so, the equation is rather complicated, ancovm@tdisplay it. We will however
discuss its singularities and the corresponding critiggpbeents. Knowing the critical exponents
at a given singularity is equivalent to knowing the leadiegnt of the differential equatiofs near
that singularity. To derive this, the algorithm for obtaigithe differential equatio’s from Ey
and F53 can be applied to the first few leading termskyf, F'5 near the singularity. (Keeping one
term of each equation is in general not enough, except ainbalarity z = 0 as we shall see.)

3.3 Singularitiesand critical exponents of large ¢ W5 conformal blocks

A four-point correlation functio H‘i‘:l Va, (i) ) in s¢3 conformal Toda theory (or actually in
any conformal field theory) is expected to have singulaitéz; = z;, which in terms of the
cross-ratio amounts to = 0, 1, cc. A conformal block likeG, ., (cla;|z;), and its large: limit
Fq.q'15s(Jilzi), is therefore also expected to be singular at these poirgaekir, nothing in prin-
ciple excludes the existence of extra singularities in econfil blocks, and in the case when two
fields are semi-degenerate, we will indeed find that(j;|z;) has an unexpected singularity at
z = —1, as we already noticed in a special case (2.68).

While it is not clear to us why this singularity appears, wa aaleast explain why the point
z = —1is special. The sef0, 1,00} of the physical singularities is invariant under a set of six
PSLy(Z) transformations — (2,1 — 2,2, -, % 1 — 1), Butin our correlation functions the
fields2 and3 are semi-degenerate, and the only nontrivial transfoomatihich does not mix them
with the other fields iz — % The pointz = —1 is characterized as the nontrivial fixed point of
that transformation. Notice that this argument is speciither tos-channel conformal blocks (as
opposed to blocks in other channels or to correlation fons, nor to the largelimit (as opposed
to generic values of).

But let us first comment on the singularity at= 0. In the limit U,V — 0, the partial
differential equations?s (3.11) andE; (3.12) foré .(Ji|U, V') are reduced to their respective first

lines. Let look for solutions of the type

éjs (5:|U, V) =UrVY Z Cmn UV (assuming cpo = 1) , (3.13)

m,n=0
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for some exponent§., v). Using the expressions (A.20) and (A.21) &(js) andCs(js) respec-
tively, we find six solutions which correspond to the pdjisr) such thatj, = —ve; — pes up to
Weyl reflections. We adopt the solutidp, v) = (@, %) where(r, s) are the components of
Js- The equatiorE»&; (4;|U, V') = 0 leads to a recursion relation for the coefficieats,,

(m?+n*—mn—m—n+sn+rm)cmn+(m—1+7)(n—m+1-B)cm1n
+(n—1+0)(m—-—n+1—-a)emp1—(n—1+8)(m—14+7v)cm-1n-1=0, (3.14)

where the combinations, 53, v, § of spin components were defined in eq. (2.65). This relatam h
a unique solution such thag o = 1 (assuming:,, , = 0 unlessm,n > 0), which is

min
n

D@ ™ (B (= B @)nn(s — )
= oG Z;] TC——T (3.15)

Cm,n

) (8)n n—nm(r+s—1) "

h
So, once the critical exponen(gs, v) are deduced fronEs, and Es, the equationEs is enough
to determine the solution uniquely. The equatEgEAjs (7:|U, V) = 0 leads to another recursion
relation, which however has the same solution. Sefting V' = zin éjs (7:|U, V) asin eq. (3.10),
we recover the expression (2.66) 6y, (z).

It is less straightforward to compute the critical exposecnftzA1+A2]-"js(z) atz =1,00,—1
than atz = 0, and we present only the results. The functigh *22F; (z) obeys a differen-
tial equation of order six, and therefore has six exponeneaeh singularity, which we number
arbitrarily: 3

e:r:ponentH 0 00 1 ‘ -1 ‘

A1 r+s |[r+s—-vy—-90—-1 r+s—y—-606—-1 A

Ao 147 r+s—vy—29 r+s—vy—29 0

A3 1+4s | r+s—a—2y 0 1 (3.16)

A4 3—r | r+s5—0-28 [r+s—a—-F—y—40| 2

As 3—s r+a—05-9 s—a—29 3

A6 4—r—s| s+ —a—7y r—pB—v 4

where the nontrivial critical exponent at= —1 is

A=s1+s4—1l=r+s+a+p—-v—-56—-1. (3.17)

These critical exponents ef*1+22 F; (z) can be compared with those of conformal blocks of the
Virasoro algebra (3.2). Notice that the critical exponeatta regular point aréd, 1,2, 3,4, 5), so
the point—1 is almost regular in that only one exponent is not an inteflee sum of all exponents
(with a minus sign for the exponentsaf) is >0 (A”) — AP 4 AWM 4 Dy — 97,

In the five special cases at the end of Subsection 2.3, thkbieduce to hypergeometric func-
tions, and at each singularity we recover two exponents Dsitxo Most of the critical exponents
(3.16) predicted by the differential equation can thus bdiomed in these special cases.

3The exponents which we write are valid when the values of pitessare generic. In the special cases when two of
the exponents at a given singularity coincide, compliecetican occur, including the appearance of logarithmic témms
the expansion of;, (z).
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Finally, the existence of the surprising singularityat —1, and the value of the critical expo-
nent\, can be confirmed using the integral representation (B.theo€onformal block. After some
manipulations which are rather straightforward, we indtéed that the block has the asymptotic
behaviour (ifA < 0)

T+ 5 — DI(=A)
25-1 TG (s — )T (r — B)

Fj.(2) 2z + 1%, (3.18)
As expected, the coefficient ¢f + 1)* vanishes in the four special cases where the singularity at
z = —1 disappears, see eq. (2.69)-(2.72).

4. Conclusion

4.1 Comparison with the combinatorial expansion

A combinatorial expansion is proposed in [11] for four-gaionformal blocks of thé/’; algebras,
such that two fields are semi-degenerate and therefore miténfiision multiplicities are present.

2 = 1ra2hy

If the fields with numberg, 3 have momenta along the weight, that is @ , then the

Q3 = T3h
four-point blockG,, (c|a;|0, z, 1, c0) reads

FG,X(O‘ZJ7 Qs 7°3)FX,5(0657 ai,ra)

(4.1)

1 s o
g S(C|O[‘|O, z, 1, OO) = (1 — Z)Ts(gqu)zfA'lQ Z‘M
« ) ZX: FX,X(QS’QS’O)

where the functiorf’; y, (a, o, r) is defined as

3
vax,(a,o/,r) = H (H [(hj,a - Q) — (h,d — Q) — %r —bly,;(s) + b_l(a,)\;(s) + 1)}
i,j=1 \seX,

X H [(hj, a— Q) — (hz‘, o — Q) - %7" + b(l)\;(s) + 1) — bila)\j (8)} )(4..2)

SG)\]'

Besides the W3 notations” A, «, Q, ¢, b introduced in Subsection 2.3 and the definition (2.24)
of the Dynkin diagram automorphisgn— j¢, these formulas use notations for Young diagrams
which we now review. (See [2] for more details.) The sum in €4.1) is over triplesX =
(A1, A2, Ag) of Young diagrams. Each diagram is a collection of boxes,emuh boxs has an arm
lengtha)(s) and leg length,(s) relative to a diagram\, which are positive ifs € A. The triple
0 = (0,0,0) is the set of three empty diagrams.

We have checked that the largdimit (2.52) of the block (4.1) agrees with the independentl
derived prediction eq. (2.66) up to the ord€r modulo the exchange of the componentsnd s
of the spins due to the use of different kinds of semi-degdnefields. The agreement is rather
non-trivial, because individual terms of the sum over Yodiagrams can have spurious poles (as
functions of the components of,), and these spurious poles cancel when the sum is performed.
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4.2 Concluding remarks

In this article, we have given an integral formula (2.59) foe largec limits of arbitrary W3
conformal blocks on the sphere. This formula is a specia cagans/s-invariant function, where
the isospin variables take special values determined bypdiséions of the fields. This result
implies that the large conformal block depends nontrivially on only eight combioas of the ten
components of the spir(gs, j1, j2, J3, j4), in the same way as the larg&/irasoro conformal block
(2.14) depends nontrivially on only three combinationshef five conformal dimensions.

We have thus shown how to take infinite fusion multiplicitie® account in this limit. This
might be helpful for solving the problem of the infinite fusioultiplicities in general, and allow
us to deal with arbitary conformal blocks in conformal fieletories withI/y symmetries. So
far, we know combinatorial expansions only for blocks withfasion multiplicities. For fusion
multiplicities to be absent, it is necessary to restrictrimmenta of the fields, such that they are
all almost fully degenerate except two of them. (See als¢.)IWhile we can deal with large
blocks in general, imposing such restrictions brings ingdrsimplifications. Thus we studied
the detailed properties a certain classiBf large ¢ four-point conformal blocks with two semi-
degenerate fields, and in particular we derived their sex@ansion (2.66). We found that, for
generic values of the parameters, such blocks have a siitgudd 2 = —1, in addition to the
expected singularities at = 0,1,00. We believe that the singularity at = —1 is absent for
non-infinite values of the central chargelt would be interesting to confirm this expectation, and
to understand how the singularity disappears for finiteeslofc.

We expect that our results can be generalizeglte-invariant functions andy conformal
blocks in the large: limit. In particular, we expect the largelimit of a Wy four-point conformal
block with two almost fully degenerate fields to obey a défgial equation of ordeN!, as we
observed in the cas€¢ = 2 and N = 3 in Section 3.

A. Quantum mechanics of a point particleon SLy(C)

For any integerN > 2, the algebrdVy is the symmetry algebra of a CFT calledly conformal
Toda theory. In the castl = 2 for example, the Virasoroifs) algebra is the symmetry algebra
of Liouville (sf5 conformal Toda) theory. The functional integral repreagah of the correlation
functions ofs¢y conformal Toda theory can be used for studying their largimits, which turn
out to be correlation functions of the quantum mechanicspdiat particle onSLy (C). (See for
instance [8].) This will provide some justification for oaleintification of large: conformal blocks
with s¢y-invariant functions. We will start with the case of the pgarticle onSLy(C), before
dealing with the technically more complicated cas&af;(C).

A.1 Point particleon SLs(C)

Let us callVa(z, z) a primary vertex operator of Liouville theory. This depemufsthe complex
coordinates z, z) of a point on the complex plane, and on the conformal dimen&iof the corre-
sponding Virasoro representation. The functional intlegraresentation of a correlation function
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(ITi—; Va,(z, z:)) of n such vertex operators leads to the largienit

lim Va,(2i,2) ) = / dg T @2 (g (A.1)
m<£[l ( >> - H

=1

Wherecbﬁz(g) is the classical limit of the field’s(z, z), evaluated on a solution of the Liouville
equation labelled by € SL,(C),

]72A

@ﬁg(g) = [vzgva , v, =(1,2). (A.2)

(Real solutions of the Liouville equation actually corresg to Hermitian matriceg. We will ne-
glect this subtlety.) The function’sﬁz(g) andwv, have a simple behaviour undef, tranformations
of the matrixg:

vot® = D1 ) (#)vz O2((1+et")g) = (1 + eDa 5 (t))E2:(9) + O(°) ,  (A3)

where the differential operator3» .)(t*) were introduced in eq. (2.6), and the generafots =
(L1, Lo, L_1) of sty are realized as the matrices

La=(07%) » Lo=5(%) » =018 (A.4)
Now the differential operator® a .y(t*) obey the relation
gabD(A,z) (ta)D(A,z) (tb) - CQ(A) ) (AS)

where we defined
g =2Tr %" | Cy(A)=A(A-1). (A.6)

Together with eq. (A.3), this implies th@tﬁg(g) is an eigenvector of thel,-invariant Lapla-
cian onSLs(C). Actually, the functionsl)ﬁz(g) provide a basis of functions &L, (C), whose
completeness can be expressed as the decomposition ofreedeita functiord(g, ¢'),

5(g,9") /JerA/ 22 02.(9)22% (), (A7)

where the reflected dimensiah* = 1 — A was defined in eq. (2.5). The equivalence between
representations with labels and A* manifests itself in the relatio6, (A*) = C2(A), and in the
reflection relation

2.(g) = R(A) / A2 |E(A, Az, 2) |2 957(9) | (A.8)
C

whereR(A) is a reflection coefficient, and the two-point invaridgtA, A|z, z') was given in eq.
(2.8).

Let us go back to Liouville theory, of whichLy(C) quantum mechanics is the largdimit.
An important axiom of conformal field theory is the assummptibat a four-point function can be
decomposed into four-point conformal blocks,

4
<HVA1(ZZVZZ)> /dA C C’A17A27 ) C’A87A37A4)’9A C’A ’ZZ)‘ ) (Ag)
=1
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where the structure constafitc|A;, As, As) depends on the central chakgand on the conformal
dimensionsd;, but not on the field positions;. (We will not study how the--dependent contour
of integration must be manipulated in the largémit.) We now check that our formula (2.12) for
the largec four-point block Fa, (A;|z;) is compatible with the large limit of this axiom. To do
this, we insert the identity = fSLQ(C) dg' (g, ¢") together with the formula (A.7) faf(g,¢’) in
the largec limit (A.1) of the four-point function,

4
lim Va, (2, Zi :/ dAs/d(Q)zs
o (It} = [ oo |
Aq Ao Ag / s As Ay /
/ d.g <<I)z1 zlq)zz zgq)zs,és) (9)/ d.g ((I)z; 29(1)23 zg(I)Z4 Z4) (g) . (AlO)
SL2(C) SLy(C)

The integrals over and ¢’ producez-dependent factors proportional to the three-point imrari
E(A1, Ao, As|z1, 22, 23) (2.9), andz-independent factors which we cadll(Aq, Aq, A3),

4
lim <HVAi(zi,zi)> :ﬁ dAs B(A1, Ao, A)B(AY, Ag, Ay)
i=1 PRICS

c—00

x/d@)zs E(Ar, A, Az, 29, 20)E(AL Ay, Aglzs, 25, 20> . (A1)
C

Decomposing the integn}f]C d®? z, into a combination of contour integrals overandz, yields a
linear combination of the two term&a_ (A]z)|* and \J—“A;(Aiyzi)f whereFa, (A;|z) is given
by eq. (2.12). But these two terms give the same contribuﬁo}i]m <H4_1 Va, (#, zi)> because

the integration contour nf +ir @A is invariant under the reflectlof_\ — A¥. Absorbing any
remaining prefactors into fhB- factors, we obtain

c— 00

lim <H Va,( zz)> :/1 dA, B(A1, Mg, A)B(AY, As, Ay) | Fa.(Ailz)]* .(A12)
5+iR

This formula can be interpreted as the lardinit of the decomposition (A.9) of a four-point func-
tion into four-point conformal blocks, provided we haB¢A, Ag, As) = lgn C(c|A1, Ag, Ag).
This provide a justification for the formula (2.12) @i, (As]2;).

A.2 Point particleon SL3(C)

A basis of functions orb L3(C) can be defined as

. 3 _ _ = —x,1) 00 1
(I)] B — P 1TP T1—" T7—% uz (’U), Z P = <O -1 OQA 13
Z,Z(Q) [uzPg uz]  [vzgvz] vy = (zy —w,—y, 1)’ 100/ )

where we recall thaZ = (w, z,y) is a three-component isospin vector, and that the compsnent
(r, s) of the spinj are defined in eq. (2.21). The vectarg andv are such that

uzw(t®) = D_p, 2)(t)uz  vzt" = Dy 2yt vz , (A.14)
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where the differential operatoi3; )(t*) are defined in egs. (2.25)-(2.32) and the weights
eg. (2.20), thes/s generatorg® are represented as the matrices

= (B08). e = (393), (A15)

000 00 -1

a=(308). = (189). @ = (180). (A19)
000 000 000

L (080), 2= (39D, = (38D) (A1)
000 010 100

and the action of the Dynkin diagram automorphisran such matrices is
w(t®) = -P@tH)TP. (A.18)

It follows that the functionI)jZ >(g) behaves undes/; tranformation as

®7, (1 +et)g) = (1+ GD(j,Z)(ta))q’]é,Z(g) +0(e%) . (A.19)

)

As a result,cbjz 7(g) is an eigenvector of the quadratic (Laplacian) and cubiariant differential
operators orb L3(C), with the respective eigenvalues

Ca(j) = (4,7 + 2e1 + 2e3) = %(7’2 +s2+ rs) —2r —2s, (A.20)
3

Cs(j) = =6 J(hisj+e1+e2) =2(r—s)(2r+5—3)(2s+7—3). (A.21)
i=1

These Casimir numbers can be derived by computiggnvariant combinations of the differential
operatorsD; »(t*), using the covariant tensors

g% =Trt%® | d® = Tr (t7°° + t9°) (A.22)
Then we have the identities

9aD(j.2)(t") Dy 2 (1) = Ca(j) (A.23)

daveD ;.2 (t*) D5, 2) (") D 2) (1) = Cs(5) - (A.24)
The Casimir number€z(j) andCs(j) are invariant under the six Weyl reflections (2.22), which
is a manifestation of the equivalence of two representatishenever their spins are related by a

reflection. Atthe level of the functioﬂer 7(9), this equivalence manifests itself as a relation which
we now write in the case of the maximal reflectipr> j*,

¥, ,(0) = RG) [ 4242 |£G.5°12.2)] @), ,(9). (A.25)

whereR(j) is a reflection coefficient, and the two-point invaridy, ;| Z, Z’) was given in eq.
(2.42). This generalizes thelL,(C) reflection relation eq. (A.8).

Now, the functiorﬂ)jéz(g) simplifies if eitherr = 0 or s = 0, and then it obeys the differential
equations,

dy' 007 (g) = d) @0 (g) =0 d(ZQ)CI’(;j? (9) = d(Z?)fl’(;j? (9) =0, (A.26)
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where the operator¢$(zl) andd(Zz) were defined in eq. (2.35). This is a consequence of the \&ector
uz andvz obeyingd(;)uz = d(Zl)vZ = 0, and this justifies our definitions dle) andd(ZQ). Notice
that these operators obey the remarkable property

4% Do,7)(t%) = Dy 2 (tDdy) . (E=1,2). (A.27)

(We recall that,, are the simple roots offs; for instance the coordinates of the spia= —e; are
(r,s) =(2,-1).)

Finally, we can write the analog i¥5 conformal Toda theory of the expression (A.1) for large
c Liouville theory correlation functions, by using the fuioets (I)J'Z’Z(g) on SL3(C). The isospin
variable Z must be specialized @& = z = (%22, z,z) (as in eq. (2.55)), and we must remember
the relation (2.52) betweds momentax ands/s spinsj. CallingV,(z, z) the vertex operator of
s¢3 conformal Toda theory with the momentumwe have [8]

lim Vi (2, %) ) = / dg TT®% - (g). (A.28)
Cc—00 <Z:H1 > SLS((C) Z:H1 Zi3%4

B. Derivation of the expansion of a four-point block

Here we derive the expansion eq. (2.66) of the larfpur-point blockF;, (z) = Fj, (4]0, 2, 1, 00),
starting from the integral formula eqg. (2.59). We propose pwssible ways to perform the calcula-
tion. The first way is more straightforward, but it leads t@ariula (B.4) which is less symmetric
than eq. (2.66) and has spurious poles. The second way isttegghtforward as it starts with a
six-dimensional (instead of three-dimensional) integoat the symmetrya, d, s) < (5,~,r) of
eg. (2.66) is manifest throughout the calculation. (Weltebat » ands are the components gf,
and that the combinations of spin componentg, v, 6 are defined in eq. (2.65).)

B.1 First way

After performing a few change of variables, the integrahfala (2.59) (together with eq. (2.63))
leads to

L(r)T(s)(r+s—1)
Ir'(B+s—DI(OT(=6+7r+s5—1)(r—pB) /Co dwdxdy
W (wy —w) Ry w - ay) P w2+ 1) TR ) (L ez we?) T
(B.1)

]:js (Z) _ ZﬁAi eiw(ﬁféJrs)

where the condition (2.3) has been used for determiningrisagtor and the integration contour
Co: ye(%,-%) then we(r—1,0) then z€(0,1). (B.2)

Let us denote the integral (B.1) &, (z) = ((1 —yz)"*(1 — 2z +wz*)"7), and expand the
integrand in powers of. This reduces the problem to computing expectation valtiexoomials
w”xkym, and we find

wnxk my\ _ ZﬁAi _ n((;)ern(’l“ —ﬁ)n . 14 (B _E)k
< Y > ( 1) (T+S - 1)m+n =0 Cm (S)Z(T)k+n—€ ’ (83)
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where the notatiofit),, was introduced in eq. (2.15), and we writé, = 7) This leads to

o.] q m
Fi.(z) = 22 Z 'm' (D SN setmticicn (r = B)i(B = )q-i(O)m+i (B.4)

q,m=0 i=0 ¢=0 (S)Z(T)qfé(r +s5— 1)m+i

This can be seen to agree with eq. (2.66) by an automaticlatiou of the first few orders in.
This agreement is non-trivial, as it involves the cancifabf the spurious poles which are present
in eq. (B.4).

B.2 Second way

We start again with eq. (2.59). We fist want to make this foammbre symmetric, at the expense
of replacing the three-dimensional integral ov&rwith a six-dimensional integral. This is done
by using a reflection relation for conformal blocks, whictihie holomorphic half of the reflection
relation eq. (A.25) for functions o6 L3(C). This leads to

fjs(]l"zl) = Nl/ dZSdZ; g(jlijij‘gh22728)5(j:w7j;k‘287 Z;)g(]s7]37]4‘22723724)(85)
C

5
= Nip3*"pip " rl/c dZsdZ; X550%0 01y p3d P57 0y les/Pf/eru *HB.6)

1

The notations come from Subsection 2.2, except the defisitidz’ (2.55) and ok, 3, v, § (2.65).
The contourC; and normalization factak/; are supposed to be determined by the condition (2.3).
We will not keep track of contours and normalizations exfhicinstead we will callC; and \;

the various contours and normalizations which appear icalailation.

Out of the six integrals dZ,dZ in eq. (B.6), the two integrals over, andy/, can be per-
formed immediately using the formulf, dy 17, (a;y — b)) = NTl;<j(aibj — azb)itostt
(assuminng’:1 a; = —2), where the choice of the integration contdtironly affects the nor-
malization factor\ and is therefore not important for us. Then, we replace thie femaining
variables(ws, x5, w’, 2’,) with four new variablegw, =, w’, '), using the change of variables

s§1s

24212 0. | Z1Z34 l(Zl —|—Z4) (w+x_|_ 1)

Ty = 22 £51 , (B.7)
: B EEESY
2 2
1282 A% (w4 1)

_ 1 za 231 B.8
Ws =3 212x+z34—z(w+x+1) ’ (B.8)

242

and similarly forz/, and z/, with the exchanges of |nd|ce( 14). We can then check global
conformal invariance, and restrict our attentionAQ(z) = F;, (ji|0, z, 1,00) asin eq. (2.10),

Fis(2) = Z_Af2./\/—2/ drdwdz'dw’ (v —wz' +1 — z2)* Hw —w'z +1 — za’)’!
Co

—a—l—s—l(

x (W —wx') w—wz) PN = 2(w+ 1)1 — 2w +1))70 . (B.9)

We now perform another change of integration variablespghtcing new variables, ~ which this
time mix the unprimedz, w) and primedz’, w’) variables:

c=w —wr' , T=w—-wrz. (B.10)
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We also introduce the notatien= 1 — =z’ for convenience, and we obtain

Fi,(2) = AN / drdr'dodr w0 4+ w)* (T + w)ﬁflafaJrs*lT*B”*l
C3

X (1= Fwo+(r+w) T (L= E@ T+ o+ w) - (B.11)

We expand the last two factors, for instance

(e}

(1= 3er+trrw) "= Y Dt () oy w). @12

nlyl W

n,1=0

where the notatiort),, was introduced in eq. (2.15). Then we integrate aver € (0, 00), and
then overz, 2’ € C such thatz’ = —z using [, dzdz’ (1 — za! )2 = N(Sn,n/ﬁ,
where\ is ann-independent normalization factor. This directly leadsdo (2.66).
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