
HAL Id: hal-00627902
https://hal.science/hal-00627902v1

Submitted on 30 Sep 2011 (v1), last revised 7 Feb 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identical coupled task scheduling problem: the finite
case

Michaël Gabay, Gerd Finke, Nadia Brauner

To cite this version:
Michaël Gabay, Gerd Finke, Nadia Brauner. Identical coupled task scheduling problem: the finite
case. 2011. �hal-00627902v1�

https://hal.science/hal-00627902v1
https://hal.archives-ouvertes.fr


Identical coupled task scheduling problem: the finite case
Michaël Gabay∗, Gerd Finke∗, Nadia Brauner∗

Rapport de recherches − 29 september 2011 − 30 pages

Abstract: Coupled tasks belong to the class of multi-operation tasks, where two consecutive
operations are separated by a certain time interval of fixed duration. The objective is to schedule
the tasks on one machine in order to minimize the makespan. Such problems occur especially in
the case of the management of radar systems.

The complexity status of this problem has been settled for all particular cases, except the case
of the identical coupled task problem, where one has multiple copies of a single coupled task. This
scheduling problem seems to be simple at first glance. However, its complexity status (for both, the
cyclic and the finite case) has remained open for many years. Recently, Vassilissa Lehoux-Lebacque,
Gerd Finke and Nadia Brauner proved that the cyclic case is polynomial. The aim of this work was
to study the finite case by using some of the results and structures known from the cyclic case.

We have been able to see that the finite case strongly differs from the cyclic case. Using integer
programming and the commercial solver CPLEX, we have obtained a series of optimal solutions for
small instances. The structures underlying these solutions are much more complicated than those
of the cyclic case. Eventually, we have obtained results that let us think that this problem is not
in NP.

Keywords: Scheduling, Coupled tasks, Complexity, High multiplicity.

Résumé : Les tâches couplées sont des ttâches multi-opérations pour lesquelles deux opérations
consécutives sont séparées par une durée fixe. L’objectif est de trouver un ordonnancement sur une
machine de durée totale minimale. Ces problèmes surviennent lors de la mise en place de systèmes
radars.

La complexité de ce problème a été déterminée dans tous les cas, à l’exception du cas des tâches
couplées identiques. Récemment, Vassilissa Lehoux-Lebacque, Gerd Finke et Nadia Brauner sont
parvenus à prouver que ce problème est polynomial dans le cas cyclique. L’objectif de ce travail est
d’étudier le cas fini en se servant des structures utilisées dans le cas cyclique.

Durant cette étude, nous avons pu observer que le cas fini est très différent du cas cyclique.
à l’aide de la programmation lineaire en nombres entiers et du solveur commercial CPLEX, nous
avons obtenu un catalogue de solutions optimales pour des petites instances. Les structures de ces
solutions sont beaucoup plus compliquées que celles du cas cyclique. Nous avons enfin obtenu de
nombreux résultats (solutions, configurations et propriétés) qui nous laissent penser que ce problème
est probablement non NP.

Mots-clés : Ordonnancement, Tâches couplées, Complexité, Haute multiplicité.

∗Laboratoire G-SCOP 46, avenue Félix Viallet - 38031 Grenoble Cedex 1 - France

1



Introduction
The coupled task problem arises in the case of scheduling tasks in radar systems: to detect an
object, the radar transmitter emits a pulse in some direction and then, after a fixed amount of
time, the receiver tries to receive the reflection of the first signal. If some reflection is received, the
radar system can compute the position, the direction and the speed of the object using the transit
time of the pulse and the doppler effect.

Formally, there is one machine: the radar system. There is a first operation of duration a:
emitting a pulse, then a fixed duration L and eventually an operation of duration b: receiving the
pulse. Moreover, the idle time of duration L can be used to schedule other tasks. In the general case
there can be many different tasks with different durations. For instance when tracking an object,
this object can be more or less close to the radar system and hence the transit time can vary. A
coupled task scheduling problem is then given by a set of tasks of the form (ai, bi,Li) and the aim
is to minimize the makespan (the total duration of the scheduling) on a single machine (the radar).
The real problem is an online scheduling problem but here we consider only the offline version. The
complexity of all cases is known except when ∀i ai = a, Li = L and bi = b. This problem is called
identical coupled task scheduling problem. Recently, Vassilissa Lehoux-Lebacque, Gerd Finke and
Nadia Brauner have proven in [1] that this problem is polynomial in the cyclic case. However, the
complexity status of the problem remains unknown for the finite case.

One can think that this problem is simple but it will be explained in the next section why this
is not true. Moreover, we would like to point out that the study of this problem is not meaningless.
As described in [2], a radar system executes different kinds of tasks (surveillance, tracking, etc.),
either all done on the same system (for recent combat radars) or on different systems (for classic
radars). For the surveillance task, in order to detect whether an object enters an airspace, all of
the tasks are roughly of the same duration, hence can be supposed to be identical, and the problem
is cyclic. In order to maximize the chances to detect the object, the cycle time rate has to be
minimized. This corresponds to the cyclic identical coupled task scheduling problem.

The aim of our work was to study the finite case in order to analyze its complexity. To reach
this goal, we tried to use the patterns known from the cyclic case to build optimal schedules in
some particular cases and collect information and properties about the general finite case.

In this report, we will first explain the problem, its difficulties and what is known about it.
Then we will present some positive and negative results obtained and point out what remains to
be done.

1 Problem overview
In this section, we will formally describe the considered problem and give its state-of-the-art.

1.1 Problem description
The problem is the following:
Input: 4 positive integers a, b, L, n.
Output: a schedule of n identical coupled tasks on a single machine minimizing the makespan.

A coupled task consists of a first operation a, followed by an operation b in exactly L units of
time after the accomplishment of a as represented figure 1. n is the number of identical tasks to
schedule. Operations cannot overlap while operations belonging to other tasks can be scheduled
during the separation length L.

We call a task a coupled task and we call an operation one of the two parts of a task, i.e. a or b.
We will assume that L≥ a+b (otherwise the problem is trivial) and that a> b. Such assumption

can be made because Orman and Potts proved in [3] that if a= b a greedy schedule (placing all a’s

2



Figure 1: A single coupled task

as soon as possible) is optimal and if b > a then we can compute the schedule by inverting a and b
and reverse it.
Moreover, we can assume that a, b, L are integers (as we do not manipulate irrational numbers,
a, b, L could be rational but multiplying them by the least common multiple of their denominators
will make them integers without changing the problem).

We have stated the problem as an optimization problem, we will now state it as a decision
problem:
IDENTICAL COUPLED TASKS SCHEDULING
Instance: 4 positive integers a, b, L, n and a positive number Cmax.
Question: Does there exists a schedule of makespan smaller or equal to Cmax ?

Using Graham’s notation − as done in [3] − this problem can be stated as 1|Coup− task, ai =
a, Li = L,bi = b|Cmax.

1.2 Problem characteristics
At first glance, this problem could seem to be easy. However, it is in fact quite different to the
other special cases of the coupled task scheduling problems. When some of the durations are fixed
- but not all - the input is at least n+ 2 integers (at most 2 durations are fixed and n operations
of non-fixed duration remain). Hence, the length of an instance is O(n log(h)), where h is the
maximum of all given integers. In the case of the identical coupled task scheduling problem, the
input is a, b, L, n - 4 integers. Hence the length of the instance is O(log(max(a,b,L,n)). More
precisely, as L≥ a+ b, the length of the instance is: O(log(max(L,n))) =O(log(L) + log(n)). Such
a problem is called a high multiplicity scheduling problem. The reader can refer to [4] and [5] for
more details about these problems.

An algorithm that would be polynomial in n is exponential in log(n). Moreover, let us recall
the definition of the class NP (as stated in [6]):

Definition 1. A language L is in NP if and only if there exists polynomials p and q, and a
deterministic Turing machine M , such that:

• ∀ x,y the machine M runs in time p(|x|) on input (x,y)

• ∀ x ∈ L, there exists a string y of length q(|x|) such that M(x,y) = 1

• ∀ x /∈ L and all strings y of length q(|x|), M(x,y) = 0

In other words, there exists a certificate that is polynomial in the length of the instance and can
be verified in polynomial time. In our case, the problem comes from this certificate: a complete
schedule is not a certificate that is polynomial in the length of the instance. This is the difficulty of
the problem: in other special cases, a complete schedule (specifying for instance all of the starting
times of the n coupled tasks) can be given as a certificate. In our case, it cannot. The solution
needs to be described in terms of structures - as done in the cyclic case exposed section 1.4. Hence,
even proving that the problem is or is not in NP may be difficult.

One can think that placing as many coupled tasks in succession as possible with no unnecessary
idle time is enough to have an optimal schedule, but this is not the case as can be seen figure 2 and
3: with the same instance a = 8, b = 4, L = 28, n = 6, a greedy schedule gives a makespan of 112
time units while another schedule gives a makespan of 104 time units.

3



Figure 2: A greedy schedule for a= 8, b= 4, L= 28, n= 6, makespan: 112

Figure 3: An optimal schedule for a= 8, b= 4, L= 28, n= 6, makespan: 104

1.3 State-of-the-art
The coupled task scheduling problem was originally introduced by Shapiro in [7]. In this article,
he proved that the general problem is NP-complete and proposed 3 heuristics. For more details
about the theory of NP completeness, the reader can refer to [8]. Later on, Orman and Potts
demonstrated in [3] the complexity of almost all cases (except ai = a, Li = L and bi = b) where
some of the durations are fixed. The table 1, from [3], sums up all of these results (they are
symmetric: aj = a, Lj = L, bj is the same as aj , Lj = L, bj = b). The borderline NP-hard and
polynomial cases are represented in this table. All of the other complexities can be derived from
them.

Table 1: Complexity of coupled task scheduling problems
Strongly NP-Hard aj ; Lj ; bj

aj = Lj = bj
aj = a; Lj ; bj = b
aj = a; Lj = L; bj

Open aj = a; Lj = L; bj = b
Polynomial aj = Lj = p; bj

aj = bj = p; Lj

In the case where the duration separating operations is not fixed, Gupta demonstrated in [9]
that multioperation scheduling problems with time-lags are NP-hard in the strong sense. More
specifically, he demonstrated that the coupled task scheduling problem with time-lags is NP-hard
in the strong sense.

In his PhD thesis [2], Cyril Duron, studied the case of the online insertion of a random task
(a simple or a coupled task) in a schedule with the criterion of minimizing the sum of delays. He
exposes in his thesis applications of coupled task scheduling problems, especially in the case of
multifunction radar systems, including battle radars.

Brauner et al. demonstrated in [10] that the coupled task scheduling problem is equivalent to a
one-machine no-wait robotic cell problem.

In [11], an exact algorithm using graphs for the identical coupled task scheduling problem is
presented. Its complexity is O(nr2L) where r ≤ a−1√a holds. Baptiste improved this result by
proving in [12] that for fixed a, b and L, the problem can be solved in O(log(n)). However,
the constant is exponential in L and therefore this algorithm cannot be used in practice, as the
computational experience in [10] shows.
Baptiste also proved in [12] that there always exists an optimal integer solution for the coupled
task scheduling problem (in the general case) by remarking that the constraint matrix of the linear
problem corresponding to minimizing the makespan while knowing the order of the tasks is totally
unimodular.

4



Recently, Blazewicz et al. demonstrated in [13] that the identical coupled task scheduling
problem with unit processing times (a = b = 1) and strict precedence constraints is NP-complete
in the strong sense. Similar results are shown by Simonin et al. in [14].

During her PhD thesis [15], Vassilissa Lebacque started to work on the identical coupled task
scheduling problem and devoted to this topic a chapter of her thesis which opened the way to find
the solutions of this problem in the cyclic case.
Recently, Lebacque et al. demonstrated in [1] that the identical coupled task scheduling problem
is polynomial in the cyclic case. The next section describes their work.

The coupled task scheduling problem is a model for scheduling operations on an radar system
using a mechanically steered antenna. Recent radar systems may use an Electronically Steered
Antenna instead. In such a case, the operations are faster as the beam can be moved instantaneously
in another direction and its waveform can be changed instantaneously too. Hence, there is no longer
a fixed duration between two tasks but rather minimal and tight times and costs. Concerning
those systems, Emilie Winter and Philippe Baptiste proposed in [16] a framework for the analysis,
demonstrated that the problem is NP-Hard in the strong sense and proposed a few heuristics to
solve this problem.

1.4 The cyclic case
In this section, we will describe the solution of the identical coupled task problem in the cyclic case.
All the definitions and results here come directly from [1].

Definition 2 (Cyclic identical coupled task scheduling problem). Let three positive integers a,
b and L be given. One has multiple copies of a single coupled task (a;b;L), consisting of two
operations (or parts), the first having length a and the second length b, and both operations are
exactly separated by L time units. A cycle C is a finite sequence of a’s, b’s and idle times that
can be appended repeatedly to each other, to form a feasible placement of the coupled tasks (i.e.
without overlapping of operations). C contains necessarily the same number of a’s and b’s.
The cycle time λ(C) is the ratio of the length of C and the number of coupled tasks in C (i.e.
the number of elements in C divided by 2). We call two cycles C1 and C2 equivalent if they
have the same cycle times, λ(C1) = λ(C2). The cycle C1 dominates C2 if their cycle times verify
λ(C1) ≤ λ(C2). The dominance is strict if λ(C1) < λ(C2). A cycle is optimal for the identical
coupled task problem if and only if it dominates all other cycles.

As can be understood in that definition, in the cyclic case, the aim is to find a cycle C that
minimizes the cycle time λ(C).

In [1], a profile is defined as follows:

Definition 3 (Profile, Window). Let C be a cycle and WS = [aS ,L,bS ] = aSSbS a window of C
(S is the set of operations between aS and bS). Obtain S̄ by converting in S all subsequences bb to
āb. Should S terminate with a b, then also this b becomes ā since it is followed by bS . Count the
number β of terms (ba) occuring in S̄, then count the number α of remaining a’s and ā’s. We call
(α,β) the profile of the window WS .

The figure 4 illustrates an example window, the configuration of this window is:
a0baababab0 = a0(ba)a(ba)(ba)b0, hence there are three ba’s and one a in this window, which corre-
sponds to a profile (1,3).

Figure 4: An example (1,3) window

5



Consider a second example. Given a window starting with a1: a1babbaabaabb1, we have:
a1babbaabaabb1 = a1(ba)ā(ba)a(ba)aāb1. Hence the profile of this window is (4,3).
Remark 1. An ā is always counted in α as given an ā0, it was either bb0b= āā0b or ab0b= aā0b. In
both cases, it is not a ba.

A window contains α+2β operations and we have αa+β(b+a)≤L. Then take the slack variable
γ as: γ =L−αa−β(b+a), where γ is the total idle time of a window. These parameters constitute
an extended profile of the cycle: (α,β,γ) - the profile is simply constituted of two parameters: (α,β).

A cycle C(α,β) can be constructed based on a profile (α,β). This can be achieved by normalizing
the order of the elements in a window to: W = aaα(ba)βb = aα+1(ba)βb. Then extending this
sequence to Z = aα+1(ba)βbα+1(ab)β . Z contains 1 +α+ 2β coupled tasks in the cyclic sense.
Whatever the idle times in the first window are, constructing a schedule by following Z using an
earliest placement strategy (a new a is placed without idle time following a b or an a), gives the
cycle C(α,β) after (β+ 1) repetitions of Z.

They also define the notions related to blocks:

Definition 4 (Blocks). Let (αN ,βN ) be the optimal cyclic profile, we define M = αN + 2βN . A
block B is a sequence of 2(M + 1) consecutive operations. A block is tight if all of its windows
are tightly-packed (that is they contain a maximum number of operations: M). A block B is
short if its length satisfies: |B| ≤ 2L+a+ b and long otherwise. The gain of block B is defined as
∆(B) = (a+ 2L+ b)−|B|.

M satisfies the following integer program:

maxM
subject to: M = α+ 2β

αa+β(a+ b)≤ L
M, α, β ∈ N

It is then proven, that the optimal cycle is C(αN ,βN ) with αN , βN and the cycle time λ(C)
given by the polynomial algorithm 1 of complexity O(log(L)2).

Algorithm 1 Best cyclic profile
Input: a, b, L (a > b, L≥ a+ b)
Output: Best profile (αN ,βN ,γN ) and cycle time λ

1: Let βN = b L
a+bc and R= L−βN (a+ b)

2: if R< a then
3: αN = 0 and γN =R
4: else
5: αN = 1 and γN =R−a
6: end if
7:
8: if γN ≥ (βN + 1)(a− b) then
9: αN = bLa c, β

N = 0 and γN = L−αNa {here γN satisfies b > γN > a− b}
10: end if
11:
12: λ= (βN +1)(2L+a+b)−γN

(βN +1)(1+αN +2βN )
13:
14: return (αN ,βN ,γN ),λ

6



Figure 5: Optimal cyclic profiles

From this algorithm, we can immediately see that there are only three kinds of optimal solutions:

In [1], the following property is also proven:

Property 1. A cycle C(α,β,γ) is dominated by:

1. C(α+ 2,β−1,γ− (a− b)) if β ≥ 1 and γ ≥ (β+ 1)(a− b)

2. C(α−2,β+ 1,γ+ (a− b)) if α≥ 2 and γ ≤ (β+ 1)(a− b)

This dominance is strict when γ > (β+ 1)(a− b) in 1 or γ < (β+ 1)(a− b) in 2.

This is a dominance rule, hence this proves that given the optimal profile (αN ,βN ,γN ), when
γN = (βN +1)(a−b), for a positive integer i, all cycles having a profile (αN +2i,βN−i,γN−i(a−b))
with βN − i≥ 0 or a profile (αN −2i,βN + i,γN + i(a− b)) with αN ≥ 2i are optimal.

Eventually, this points out a link between the profiles having the maximum number of operations
as all such profiles are (αN + 2i,βN − i,γN − i(a− b)) with β ≥ i and γN − i(a− b) ≥ 0 or (αN −
2i,βN + i,γN + i(a− b)) with αN ≥ 2i.

2 Objectives and plan
The objective of this study was to use the results shown in the cyclic case to find results and
properties for the finite case. Especially, we first try to generalize the structure known from the
cyclic case in order to apply them in the finite case.

As will be seen in the following, the solution structures are far more complicated than in the
cyclic case. In order to generate a catalog of solutions, we will first develop the methods we use to
solve instances of the problem.

3 Solving instances for the finite case
The methods proposed by Ahr et al in [11] cannot be used for practical computations (the running
time is highly exponential in L). We decided therefore to use two other approaches, namely Integer
Programming and Dynamic Programming, to solve instances of the problem.

3.1 Integer Programming
In order to solve instances of the problem, we wrote a mixed integer linear program and imple-
mented it on OPL (IBM - ILOG) modeling language to solve instances using the CPLEX solver for
integer programming (IP) (more information at: http://www-01.ibm.com/software/websphere/
products/optimization/). To solve problems, the CPLEX algorithm relies on the (dual) simplex
algorithm, barrier interior point method and branch and bound.
In this section, we will expose the basic model and some of the improvements made.

7

http://www-01.ibm.com/software/websphere/products/optimization/
http://www-01.ibm.com/software/websphere/products/optimization/


The basic model is the following mixed integer program (MIP):

min tn (1)
subject to: ti ≥ ti−1 +a ∀i ∈ {2, . . . ,n} (2)

tj− ti ≤ L+Myi,j ∀i, j ∈ {1, . . . ,n} s.t. i < j (3)
tj− ti ≥ (a+L+ b)yi,j ∀i, j ∈ {1, . . . ,n} s.t. i < j (4)
ti ∈ R+ ∀i ∈ {1, . . . ,n} (5)
yi,j ∈ {0,1} ∀i, j ∈ {1, . . . ,n} (6)

ti are the decision variables corresponding to the starting times of the tasks. Remark that as
all tasks are the same, we can fix their starting, i.e. if i < j then the task i starts before the task j.
yi,j are boolean decision variables needed to ensure that an a never overlaps with a b.
The objective (1) is to minimize the makespan, hence to minimize the starting time of the last
coupled task tn. The first constraint (2) corresponds to the duration of operations a’s and prevents
two a’s from overlapping. Moreover, as two a’s cannot overlap, two b’s cannot overlap. The only
case remaining is the overlapping of an a and a b.
The second and the third constraints (3, 4) prevent an a and a b from overlapping: for i < j, either
the task j starts before the task i ends, hence tj ≤ ti+a+L−a= ti+L and the constraint (3) is
activated (yi,j = 0) and the constraint (4) is trivially verified. Or the task j starts after the task i
ends, hence tj ≥ ti+a+L+b and the constraint (4) is activated (yi,j = 1) and the constraint (3) is
trivially verified provided that M is large enough.

This model is a good start for small instances but it has to be improved to work with larger
instances. Moreover, M needs to be fixed to a reasonable value.

In order to improve the model, we did the following modifications:

• Adding constraint t1 = 0 (it is obvious that the optimal solution will respect this but if not
specified, other cases will be considered).

• Fixing yi,j = 0 ∀i≥ j. It prevents the algorithm from branching although it is not necessary
(but in fact CPLEX seems to detect it too).

• Adding constraint ti ≤ ti−1 +a+L+b: this correspond to a “non-separation”: if the following
task is placed a+L+b units later, this is as if a new schedule begins. Hence there is no point
starting later than the starting time of the new schedule.

• Remark that if an a is after a ′b′, then all following a’s will be after this b. This can be
expressed through the constraint yi,j ≥ yi,j−1.

• Having an initial solution of makespan Cinit
max helps to eliminate more nodes at the beginning

of the branching by searching only better solutions. This can be accomplished by adding the
constraint tn ≤ Cinit

max− b−L−a− 1. When using such a constraint, M can be set to Cinit
max

for instance. In order to set M and use this constraint, we can compute the greedy schedule
value.

• For two tasks i, j, with i < j, we have tj ≥ ti+(j−i)a. Hence, whenever (j−i)a≥ a+L+b then
bi cannot overlap with aj and therefore, the non a-b overlapping constraints are not necessary
and should be removed. Adding the non-overlapping constraints only when necessary strongly
improves the computation time.

• Transforming the Mixed Integer Program into an Integer Program by changing the domain of
ti into N. Though it results in having more nodes during the computation, the computation
speed is slightly improved.

8



• Removing y and expressing a-b overlap constraints as logical constraints: for i < j, tj ≤ ti+L
OR tj ≥ ti+a+L+ b (this is not an IP any more though it may be linearized). This did not
help the solving process.

In order to illustrate those optimizations, we have run some tests on an instance where a = 9,
b= 7, L= 45 and n= 25. For this instance, the optimal cyclic profile is (1,2,4). The greedy schedule
has a makespan of 485 and the schedule using the cycle C(1,2) until enough tasks are accomplished
is optimal. The optimal makespan is 477 and the optimal schedule is represented fig. 6.

The tests have been run on a dual core 2 processor at 2×2.26GHz, using CPLEX 12 and run on
only one thread (hence using only one core) in order to be fair and deterministic. The results are
available table 2. In this table, from one line to the next, all of the previous optimizations have
been kept. The efficiency column, corresponds to the base time (using the base MIP), divided by
the time needed using the model on the line.
Please notice that the illustrated tests have been run on only one instance and hence some more
exhaustive tests may be needed to really be able to compare the optimizations. We have executed
more tests while making the models and the trends illustrated table 2 were confirmed.

Figure 6: Optimal solution of the benchmark instance

Unfortunately, we cannot add more cuts because we do not know enough about the structures
of optimal solutions in the finite case. Moreover, as will be shown afterwards with some surprising
solutions, there seem to be no clear solution structure that could be used to generate cuts.

After more experiments, it appears that the complexity of the solving process increases expo-
nentially with the number of blocks d n

M+1e. We have managed to compute the optimal solution
up to a = 10, b = 9, L = 82 and n = 37 (d n

M+1e = 5) in 4h10, without the best model and with
CPLEX 10. However, we have not been able to compute the optimal solution for a = 10, b = 9,
L= 82 and n= 46 (d n

M+1e= 6) after more than two weeks of computation (with CPLEX 10).

3.2 Dynamic Programming
In order to try to have a faster solving method, we implemented a dynamic programming method
in C++.
The method is constructive: when an a is placed, there are only b’s that are already placed after-
wards (the b’s corresponding to this a and some previous a’s).
Let C∗max be the optimal makespan, f(i,S) the function computing the optimal makespan with i
operations a to place and S a set of times {t1, . . . , tkS

} (related to the current time) on which begin
b’s (corresponding to some a’s previously placed). Moreover, S is such that t1 ≥ a. We denote
|S|= tkS

+ b.

9



Table 2: Optimization benchmark

Additional Constraints
Computation time
(in seconds) Node count Efficiency

None (MIP) 229,9 535200 100%
ti positive integers (IP) 222,8 656000 103%
t1 = 0 122,8 482700 187%
yi,j = 0 ∀i≥ j 122,8 482700 187%
ti ≤ ti−1 +a+L+ b 179,9 725600 128%
yi,j ≥ yi,j−1 152,2 507300 151%
tn ≤ tgreedy schedule

n 91,3 338500 252%
tn ≤ tcyclic solution

n 91,1 335100 252%
Removing constraints 3
and 4 when i is far enough
from j

68,8 321000 334%

Replacing y by logical con-
straints

243,0 538500 95%
Removing logical con-
straints when i and j are
far enough

99,5 472500 231%

The recursive formula is the following:

C∗max =f(n,∅) (7)
f(i,∅) =f(i−1,{L−a}) +a (8)
f(i,S) =min(f(i,S←) + [S|− |S←|,f(i−1,S→) +a+L−|S→|) (9)
f(0,S) =|S| (10)

Let l be the smallest integer such that l ≥ 1 and ∀i ∈ {1, . . . ,kS}, ti+ b ≤ l or ti ≥ l+a. We have
l ≤ tkS

+ b. Then, let j be the smallest integer such that tj ≥ l, we have: S← = {tj− l, . . . , tkS
− l}.

In other word, S← is the nearest set of b’s “after” S such that there is an idle time of at least a.
Let S′ = {t1−a, . . . , tkS

−a,L}, l the smallest integer such that l ≥ 0 and ∀i ∈ {1, . . . ,kS}, ti+ b≤ l
or ti ≥ l+a. Let j be the smallest integer such that tj ≥ l, we have: S→ = {tj− l, . . . , tkS

− l,L− l}.
In other words, S→ is the nearest set of b’s “after” S′ such that there is an idle time of at least a.

This is the dynamic programming approach we have implemented. The previous definition of
S← and S→ may seem to be complicated, but in fact, computing them is done with a greedy
algorithm of cost O(#S) (where #S is the number of elements in S).

This recursive formula tries all of the possible placements (except those with an a separated
from the next a by more than L+b, but we have explained in the previous subsection why it is not
necessary) and returns the best, which is the optimal solution.

However, the number of combinations of S is exponential and hence it is impossible to keep
everything in the computer memory. In order to tackle with this issue, we have implemented a
partial memoï¿1

2zation approach: sets S are memoized only for some S such that #S < j is fixed.
Eventually, in order to speedup the computation, we compute a lower bound at each iteration and
cut the branch if the current time plus the bound is greater than the current best makespan found.

This program is efficient when n is small, yet as n increases, it is necessary to increase the number
of memoized sets (a good ratio is to memoize up to k(M+1) operations with k= max(b n

M+1c−1,0)).
However, the memory space needed is highly exponential and the solving time grows exponentially.
Using this program, we have not been able to reach better performances than using CPLEX with the
most efficient model we had developed.

10



4 Definitions
In this section, we will introduce definitions through the study of examples. We will show patterns
for some instances where we will see that it will not be possible to consider only the optimal cyclic
profiles.

As in the cyclic case, we denote (αN ,βN ,γN ) the optimal cyclic profile and we define M as the
maximum number of operations contained between an a and its corresponding b: M = αN + 2βN .
Remark 2. Remark that if two b’s are scheduled consecutively, then there is an idle time of at least
a− b between those two b’s. Such idle times are called intrinsic. Moreover, we can consider that
the first b takes the time of an a. We shall denote again such b’s as ā.

We will have saturated and tight profiles that we define as follows:

Definition 5 (Saturated, Tight). A profile (α,β) is saturated if for β fixed, α is maximal (α cannot
be increased).
Recall that M is the integer that maximizes α+ 2β. A profile (α,β) is tight if α+ 2β =M .

When we consider optimal solutions, we first assume that coupled tasks are shifted as much as
possible to the left (left-shifted). Moreover, we assume that the schedule is compact which means
that none of its tasks can be placed earlier without delaying any task.
Considering compact and left-shifted schedules only is a very important choice as some properties
(such as the β increasing property) might not hold if the schedule is not compact.
We can make this choice because there always exists an optimal compact left-shifted schedule:
given a non-compact schedule, we can make it compact by beginning some tasks earlier without
lengthening the schedule. Moreover, if a schedule is not left-shifted, shifting some tasks to the left
cannot lengthen the schedule. Hence there always exists a compact left-shifted optimal schedule.
The sequence F (fig. 7) is an example of non compact sequence.

Figure 7: A non compact sequence, a= 10, b= 9, L= 82

It is clear that there will never be any b in the first window. Yet, these b’s do exist in a way
as their place is “reserved”, in order to be able to put ab’s afterwards. Those b’s, whose place are
reserved but cannot be placed are called ghost b’s. Moreover, it is the same with the a’s in the last
window of the schedule. In order to have the real profile of a window, it is needed to count ghost
b’s and ghost a’s. This profile, including ghost a’s and b’s is called a shadow profile.

Figure 8: The optimal solution for a= 7, b= 3, L= 43, n= 10, optimal profile: (0,4,3)

As seen in the cyclic case, there is a duality between a’s and b’s, this duality can be used to
determine the profile of sets of tasks which begin with a b:

Definition 6 (Duality). The dual of an operation a is b and the dual of b is a. The dual of a set
of operations is the dual of all of its operations.

In order to determine the profile of a set ofM+2 tasks beginning with a b, we should determine
the profile of its dual. The figure 9 illustrates a dual window (3,2).

11



Figure 9: Windows and dual window (3,2), for a= 10, b= 9, L= 76, the dual is written above the
operations, in red.

4.1 Pure strategies
A first obvious strategy, called pure strategy is to generate schedules using a unique (shadow)
profile, i.e. following exactly the cycle pattern of C(α,β) for n tasks. We shall concentrate on
saturated profiles only. An example of such a strategy, using a (0,4,3) profile, is given fig. 8.

We know that pure strategies place 2(α+2β+1) elements (a’s or b’s) on a duration a+2L+b−δ,
with 0≤ δ < a for saturated profiles. For pure strategies, we define a new kind of blocks:

Definition 7 (Profile block). Given a saturated profile (α,β,γ), a profile block B(α,β;δ) is a
sequence of 2(1 +α+ 2β) consecutive elements. Starting with the first element, counting all non
intrinsic idle times and the idle time following the last element gives the length of the profile block
|B(α,β;δ)|. Then δ = (a+ 2L+ b)−|B(α,β;δ)|. We call α+ 2β+ 1 the profile block number, i.e.
half of the number of operations of the profile block.

A profile block corresponds, in fact, to a sequence Z of a cycle C(α,β). Fig. 8, the first block
is a1 . . .a5(idle = 3)b1 . . . b5. This is a profile block B(0,4;3). Fig. 9, a profile block B(3,2) is
illustrated.

We can remark that given a profile (α,β,γ), for a profile block B(α,β,δ), we have 0≤ δ ≤ γ.
Indeed: the gain of this profile block is at most γ. Moreover, as it represents a profile, it contains
exactly 2(α+ 2β+ 1) operations and the first window is followed by α+ 2β operations, with idle
times at most γ, hence the length of the profile block is at most (a+L+ b) + (αa+β(a+ b) +γ) =
(a+L+ b) +L= a+ 2L+ b, hence δ ≥ 0.

Pure strategies use a single (saturated) profile. It is quite natural to consider particular profile
blocks containing the maximum number of tasks 2(M+1). These profile blocks are associated with
tight profiles. This allows us to extend the definitions of saturated and tight to profile blocks: if
the profile is saturated, then the profile block is saturated. The same goes for tight profile blocks.

Now that we have described the interesting structures for pure strategies, we can make a list of
feasible solutions for an example. Table 3, we consider an example where a= 5, b= 3, L= 100 and
n is small. All of the saturated profiles are represented in the first column of the table. When n is
smaller than M , the pure strategy using the saturated profile whose block number is the closest to
n and placing the maximum number of a’s for this block number is optimal. Remark that in this
case, it is very important that the profile block is a(ba)βaα(ab)βbα rather than aaα(ba)βbα(ab)β
because in the first case, the last a’s will be placed earlier. Table 3 illustrates this evolution of
the pure strategy solutions for an instance with small n and a big L (OPT means that it is a real
optimum, over all possible placements).

Let us analyze the example table 3. There are 13 saturated profiles and the profile block number
goes from 21 to 25. The first three top profiles are tight (1 +α+ 2β = M + 1 = 25). The optimal
cyclic profile is (0,12,4).
The optimal solutions OPT are found with CPLEX. They are at least until n = 30 profile block
solutions. For n ≤ 21, the greedy earliest placement strategy is optimal (profile (20,0)). It should
be noted that in the finite case, the order of the terms (ba) and a are important. To get the optimal
profile block solution of table 3 for n≤ 30, all ba’s are to be placed before all a’s.
Remember that in the cyclic case, all cycles are equivalent, independent of the placements of the β
terms ba and the α terms a.
As will be seen later, the order of terms (ba) and a in profile blocks is essential for the solution

12



Table 3: Optimal pure strategy for a= 5, b= 3, L= 100, n small

α β γ
Block number

1 +α+ 2β n≤ 21 22 23 24 25 26 27 28 29 30
0 12 4

25 (tight)
OPT

2 11 2 OPT OPT
4 10 0 OPT OPT OPT
5 9 3 247 8 1 OPT
8 7 4

2310 6 2
12 5 0 OPT
13 4 3 2215 3 1 OPT
16 2 4

2118 1 2
20 0 0 OPT

quality.
For the example and n ≤ 30, all optimal solutions OPT are described as pure strategy solutions.
As we shall see later, pure strategies are not sufficient for larger n and other instances.

4.2 General blocks
Consider any solution. We define a block as a sequence of exactly 2(M + 1) elements (including
ghosts) and the idle time after the last element.
In order to study solution structures, we will aggregate operations into blocks. The remaining set
of operations is an incomplete block and will be called the extension.
We also extend the definition of tight and saturated to a block: a block is tight if all of the
windows (including dual windows) contained in this block are tight and a block is saturated if all
of the windows (including dual windows) contained in this block are saturated.

In a profile block, δ defines the gain of this profile block, compared to a+2L+b. Corresponding
to a block, we define the gain as follows:

Definition 8 (Gain). The gain of a block B is ∆(B) = 2L+a+ b−|B|. If ∆(B)≥ 0, the block is
short, otherwise, it is long.

In order to minimize the makespan, the gain of the schedule has to be maximized. Hence, in a
pure strategy using profile (α,β,γ), the first block has to be a profile block B(α,β;γ).
For a profile block B(α,β,δ) such as α+ 2β = M , the profile block is tight and hence, δ = ∆(B).
The fig. 8 illustrates this case. However, this is not always the case. For instance, fig. 10, the first
operations constitute a profile block B(3,2,3). However, M = 8> 3+2×2. Hence the first block is
a1 . . .a10 and ∆ = 7 + 2×43 + 3−108 =−12. Therefore, the first block is long.

Figure 10: The optimal solution for a= 7, b= 3, L= 43, n= 12, optimal profile: (0,4,3)

13



4.3 Pure strategy approximation
One may wonder how good are pure strategy solutions for large n. We have the following approx-
imability theorem:

Theorem 1 (Asymptotic guarantee). The pure strategy using the optimal cyclic profile is asymp-
totically optimal.

Proof. Given an instance I, with n = k(βN + 1)(αN + 2βN + 1) = k(β+ 1)(M + 1). Denote lC =
(a+ 2L+ b)(βN + 1)−γN the optimal cycle length. We have: Opt(n,I) ≥ klC (otherwise a better
cycle would exist). The pure strategy (of length P (n,I)) is made of k cycles and an extension in
order to finish the tasks started in the last window. Hence, Opt(n,I)≤P (n,I)≤ klC+L. Therefore:

P (n,I)−Opt(n,I)
Opt(n,I) ≤ L

klc
−→
k→∞

0

Eventually, if n is different, let k = b n
(β+1)(M+1)c, we have:

P (n,I)−Opt(n,I)
Opt(n,I) ≤ P ((k+ 1)(β+ 1)(M + 1), I)−P ((k−1)(β+ 1)(M + 1), I)

Opt(n,I) ≤ 2lC
klc

−→
k→∞

0

This is an important result, and following it, one may believe that for n sufficiently large, the
best pure strategy will eventually be optimal. It will be shown later that there are instances where
the pure strategy never yields an optimal solution (see section 6, page 17).

5 General results
We can first notice that while ghost a’s can only appear in the last window, ghost b’s may appear
in other places. The fig. 11 illustrates why ghosts a’s cannot exist anywhere else: the green and
orange boxes illustrate two idle times of length a. Remark that counting a ghost a does not make
sense as their b’s would overlap with some other operations. On this figure, you can see that no
ghost b could be placed into these idle times too because to place a ghost b between two existing
b’s requires the sequence b(idle= a− b)(ghost b)(idle= a− b)b. Hence the minimum space needed
to place a ghost b is (a− b) + b+ (a− b) = 2a− b.

Figure 11: An optimal solution in the case a= 10, b= 9, L= 82

Back to the cyclic case, with the previous definitions, remark that the optimal cyclic profile is
tight and saturated. We can also immediately notice that a tight profile is saturated and that a
saturated profile may not be tight, as illustrated fig 12, 13, 14 (the optimal profile for a= 7, b= 3,
L= 24 is (0,2,4)).

We shall then summarize other general properties concerning profiles, profile blocks and blocks.

14



Figure 12: A tight block for a= 7, b= 3, L= 24

Figure 13: Another tight block for a= 7, b= 3, L= 24

Property 2.

• A tight profile is saturated but a saturated profile is not necessarily tight.

• By definition, a profile block, based on profile (α,β) contains 2(1 +α+ 2β) elements. This
implies that a profile block is a block if and only if its profile (α,β) is tight.

• Extending a profile block, based on a saturated non-tight profile, to a full block requires two
more elements. The additionnal length is therefore at least (a+ b). Hence the resulting block
is long with ∆≤ (a+ 2L+ b)− (a+ 2L+ b− δ+a+ b)<−b.

• Consider a general block that is neither tight (and short) nor an extension of a saturated but
non tight profile block (which is always long). Let us call such irregular block transition blocks.
Such blocks are all long, except in a very particular case (see [1]): suppose the profile of the
form (0,β) is feasible and tight. Drop from the tight block B(0,β) a single (suitable) element
and extend the sequence to a full block. Such a block may be short with ∆≤ a− b.

6 Mixed profile strategies
In order to generate schedules, based on profiles blocks, but with changing profiles, we can do the
following: replace an ′a′ by a ghost b, if it is possible and feasible.

As explained in the previous section, this replacement is not possible in a sequence of the form
b(ε1)a(ε2)b, with idle times such that ε1 + ε2 < a− b.

Two consecutive windows W1 = [a1,L,b1] and W2 = [a2,L,b2] are neighboring if there are no
further a between a1 and a2. Then, the following result seems to hold:

Conjecture 1. Given two neighbouring tight windows W1, W2 of shadow profiles (α1,β1) and
(α2,β2), we have: β1 ≤ β2.

Argument. All of the b’s in W2 are fixed by the a’s of W1 and earlier. As a consequence, the only
way to change profile is to modify a’s. Removing an a would result in a non tight window, hence
the a’s are either moved or replaced by ghost b’s. Moreover, moving an a has to be done in a margin
related to its surrounding idle times and the surrounding transformed a’s. Therefore, the only way
to change the profile is to transform some a’s into ghost b’s.
We will show that any transformation is either impossible or increases β2 (we denote (α2,β2) the
original profile and (α′2,β′2) after the transformation):

• aaa→ a(b)a: α′2 = α2−2, β′2 = β2 + 1, α′2 + 2β′2 = α2 + 2β2 the profile is still tight.

• aab→ a(b)b= aāb: the profile is unchanged.

• baa→ b(b)a= āba: the profile is unchanged because in ba1a2, a2 necessarily contributes in α
and in ā3ba4, ā3 necessarily contributes in α because a b before ā3 would also be an ā.

15



Figure 14: A saturated yet non tight block for a= 7, b= 3, L= 24

• bab→ b(b)b= āāb this transformation can be discarded since the resulting schedule would not
be compact: the a correspond to this ghost b could be placed instead of this ghost b. Consider
the whole transformed sequence: a1b

ja0b
ka2→ a1b

j(ghost b)bka2. The idle time around the
transformed a0 should be at least a− b and, in order for the schedule to stay tight, b0 is
transformed into an a. L time units later, the sequence corresponding to S1 = a1b

ja0b
ka2 is

S′1 = b1a
jb0a

kb2 and the sequence corresponding to S2 = a1b
j(ghost b)bka2 is S′2 = b1a

ja∗akb2.
Remark that in the sequences S′1 and S′2, if an a is transformed into a ghost b then the property
is verified. Hence, suppose that there is no transformation in these sequences (moreover, as
it must remain tight, no task is removed).
Remark that as the a in S′2 will be replaced by a b, it gives an (a− b) margin to place the
operation. Therefore, in order to make the placement of b0 impossible, the only way is to
place the a’s in the sequence S′ and the b’s in the sequence S such that b0 overlaps with some
task. Yet, the placement margins are strongly constrained by the fact that an a can be placed
in S and in S′. Hence, we think that the sequence S′ would not be compact because a∗ could
be placed instead of the ghost b. However, we have not been able to prove this very carefully
yet.

Remark that given a window of profile (α,β,γ) (we ignore what happens before and after this
window), if α≥ 2 replacing an aa by a ba is feasible and results in a profile (α−2,β+1,γ+(a−b)).
Moreover, if β ≥ 1 and γ ≥ a− b, we can replace a ba by an aa (it may be needed to shift the
schedule) and the profile will be (α+2,β−1,γ− (a−b)). In both cases, the windows have the same
number of elements as the original window, which is α+2β+2. This gives the list of profiles table
3.
As stated in remark 1, an ā always counts in α. Hence, if we have some ā, replacing an ā0 =
b0 by an a is feasible and either does nothing to the profile (if we had ab0b) or gives a profile
(α−2,β+ 1,γ+ (a− b)) (if we had bb0b).

Property 3. Given a profile (α,β,γ), all of the profiles having the same number of operations are,
for i a positive integer, (α+ 2i,β− i,γ− i(a− b)) with β ≥ i and γ ≥ i(a− b) or (α− 2i,β+ i,γ+
i(a− b)) with α≥ 2i.

Proof. All such profiles are feasible and have the same number of elements as stated in the remark
before. Moreover, there are no other profiles with (α+ 2i,β− i) with i an integer because either β
or γ will not be large enough (and a negative β or γ does not make sense).
Given another feasible schedule (α′,β′) = (α+j,β+i), its number of tasks in L is α′+2β′. Therefore,
in order for it to have the same number of tasks we should have α′+2β′ = α+2β⇔ j =−2i, hence
the profile should be of one of the forms given before.

Following that property, remark that for a profile (α,0), β can be increased to bα2 c. Hence, the
following corollary comes:

Corollary 1. When the optimal cyclic profile is (αN ,0), all saturated profiles are tight.

Proof. Given a feasible profile (α,β), we have: α+ 2β ≤M = αN , hence α≤ αN −2β which corre-
sponds to the tight profile (αN −2β,β). Hence, if (α,β) is saturated, then α= αN −β.

16



Table 4: A β increasing sequence for a= 10, b= 9, L= 80, n= 46

Block index Block configuration Profile Gain
1 aaa(ba)(ba)(ba)(idle= 3)b− (2,3) 3
2 a(ghost b)a(idle= 4)(ba)(ba)(ba)b− (0,4) 0
3 a(ba)(ba)(idle= 4)(ba)(ba)b− (0,4) 0
4 a(ba)(ba)(ba)(idle= 4)(ba)b− (0,4) 0
5 a(ba)(ba)(ba)(ba)(idle= 4)b− (0,4) 4

The property 3 allows us to create easily lists of equivalent profiles for i, the number of operations
in L, from 1 toM . However, due to the construction process, the length of the whole list is an O(L)
and the number of profiles with the same block number is an O(a). Hence it is not polynomial in
the length of the instance and therefore, in order to have a polynomial algorithm, this list cannot
be enumerated.

In theorem 1, we have shown that the pure strategy using the optimal cyclic profile is asymp-
totically optimal and we wondered whether for n sufficiently large, the pure strategy is really
optimal or not. Given the previous results, we can think that we can make the pure strategy
evolve in order to reach higher gain and hence the pure strategy will never be optimal in some
cases. Indeed, there exists such a case. For instance, when a = 10, b = 9 and L = 82, the op-
timal cyclic profile is (8,0,2). Yet, for n = k(M + 1) + 1, the pure strategy has a makespan of
k(a+2L+b−γN )+a+L+b= 181k+101, while the solution B(8,0,2)k−1B(0,4,6) has a makespan
of value: (k−1)(a+ 2L+ b−γN ) + (a+ 2L+ b−6) +a+L+ b = 181k+ 97. Increasing β helps im-
proving the schedule.

Therefore, in order to improve the pure strategy, we can make a β increasing strategy: using
only tight blocks, the aim is to reach a maximal gain by increasing β. For instance, for a = 10,
b= 9, L= 80, the tight profiles are (0,4,4), (2,3,3), (4,2,2), (6,1,1), (8,0,0). For 8 blocks (n= 73),
the pure strategy reaches an overall gain of 8. However, the schedule:
B(4,2,2)B(4,2,0)B(2,3,0)B(2,3,3)B(2,3,0)B(0,4,0)B(0,4,0)B(0,4,4) is feasible and reaches a gain
of 2 + 3 + 4 = 9.
Table 4, another β increasing sequence is represented. In this example, the optimal cyclic profile
is (0,4,4), and the best pure strategy for n = 46 uses profile (2,3) and reaches a gain of 6. The β
increasing sequence using tight profiles (2,3) and (0,4) reaches an improved gain of 3 + 4 = 7.

Although this approach helps increasing the gain, finding the best β increasing sequence may
be difficult: this is a knapsack problem (with structured data) and the list of elements has a length
O(a) (which is exponential in the length of the instance).

Let n= k(M+1)+j. Consider all tights profile (α1,β1,γ1) . . .(αl,βl,γl) such as ∀i∈{1, . . . , l} αi+
1≥ j. The knapsack problem is the following: for each profile i, take one element of volume βi+1
(the cycle length) and price γi. The volume of the bag is k− 1. The aim is to take the objects
that maximize the total value of the bag. The optimal β increasing sequence is then a sequence
of profile blocks corresponding to those profiles, with a last tight block whose profile is (α,β) with
α+ 1 ≥ j and (α− 2,β+ 1) not tight or α− 1 < j. The profile blocks can be taken of the form
aα+1(ba)βbα+1(ab)β with the gain maximal in the first block and β increased after β occurrences
of the block.

Moreover, there is another problem which is that the optimal solution might not at all use any
tight profile. Such an example is represented fig. 15. For this case, the best β increasing sequence
gives a makespan of 2× 181 + 97 = 459 > 458. This was a very astonishing result for us and the
reason why we started to think that this problem is not NP. In this example, the optimal strategy
uses a “transition” in order to reach a full gain in both of the profile blocks. The structure of the
solution is B(2,3,5)WB(4,2,4) with W a window that “collects” the b’s from the tasks started in

17



Figure 15: The optimal solution for a= 10, b= 9, L= 82, n= 19 − makespan: 458

the previous block and starts the tasks to finish in the following block. We will call such windows
transitions because they allow to change profiles (possibly with decreasing β) while preventing from
finishing a whole cycle before gaining γ again.

Those transitions prevents us from considering “structured” blocks of the form aα+1(ba)βbα+1(ab)β
or a(ba)βaαb(ab)βbα only because we have been able to prove that in some cases there exists no
optimal solution starting with a block of one of the previous forms. We have done that by adding
constraints to the integer program for the case a = 10, b = 9, L = 82, n = 19. In this case, no
structured optimal solution exists.

Finding those transitions is not an easy task and we analyze it more precisely at the end of the
subsection 7.2. Moreover, this combined with the fact that sometimes (such as represented fig. 10)
the optimal solution do not use tight profiles, shows that this problem is far from being easy to
solve, even without considering the complexity issues induced by the length of the instance.

By extension, we will call transition blocks the non-saturated blocks. Remark that a transition
block starting with an a is long, because it begins with a window (and hence a fixed length a+L+b)
followed by at least M + 1 >M operations. Hence, those operations need strictly more than L to
be done. Therefore, the transition block length is strictly superior to (a+L+ b) +L. Hence it is
long.

Occasionally, transition blocks can be short when they begin with a b, (0,β) is tight and γ ≥ b:
if we remove an a in a block in which the gain is ≥ b, the task following the end of the block is a b
that can be included in the block to replace the removed a without making the block long.

Remark that if (1,βN ) is the optimal cyclic profile, γ < b and (0,β) is not tight. Hence, the
short blocks are the saturated blocks.

7 Special subclasses of instances
As the general case seemed to be hard to tackle with, we decided to isolate subclasses of the problem
in order to solve them or prove them to be very hard to solve. The diagram 16 illustrates some of
the studied subclasses.

There is another subclass which is trivial, that is if n≤ L
a +1, the greedy schedule is optimal as

it places all a’s with no idle times.
In the following subsections, we will take a closer look at some of these subclasses.

18



Figure 16: Subclasses of problems

7.1 Unique tight profile
We will consider the case where there exists a unique tight profile. There exists a unique tight
profile when the optimal profile is (αN ,βN ,γN ) with αN ∈ {0,1} and γN < a− b. Moreover, if
αN = 1, γN < b.

We focused on the case where (0,βN ,γN ) is the unique tight profile. That is: (0,βN ,γN ) is the
optimal cyclic profile and γN < a− b. This case will be the one considered afterwards.

Given a block B(0,βN ), all of the b’s are fixed in the following window. It remains to place the
a’s but those a’s are constrained by the positions of b’s. Hence, there exists no transition respecting
the structure conditions (exposed remark 4 and illustrated fig. 19) that allows to reach a full gain
before and after it.
Therefore, in this case, the problem is not the transitions but rather to know if the optimal solution
will use the tight profile or not.

Lemma 1. Given a solution, divide it in blocks by starting from the first task and counting blocks.
Suppose one of these block is tight, take the first tight block of this division. Making all of the
previous block tight improves the schedule.

Proof. This is the first tight block. Hence, all of the previous blocks are non tight. Therefore, in
this case, they are long. Replacing all of them by tight blocks (by extending the first tight block to
the left) makes them all short and hence improves the makespan.

Remark that for the optimal solution, if it admits a tight block then the first block of the optimal
solution is tight because suppose the tight block is not the first block, transforming the previous
block into tight blocks strictly improves the schedule, which is absurd.

Moreover, once there is a tight block in the optimal solution, it is very costly to change profile
therefore, it seems that either the optimal solution is the pure strategy using the optimal cyclic
profile or none of its windows is tight. One can wonder if an optimal solution without tight windows

19



exists. Unfortunately, this is the case: fig. 10 the optimal solution for a= 7, b= 3, L= 43, n= 12
is represented. The optimal cyclic profile is (0,4,3). Hence M = 8 and this case contains one block
and an extension. The optimal solution uses the profile (3,2,3) of block number 7. The makespan
is 168 while the makespan of the pure strategy is 169. This optimal solution is remarkable for two
reasons: the first one is that in the second block, all a’s are placed consecutively, with no idle times
and without being separated by some b’s. The second reason is that the gain made in the first block
is not “lost” afterwards: the gain in the first block is the idle time before the first b of the schedule.
However, the first b of the second block will be preceded by an idle time of the same duration. Yet,
in this case, there are no a starting after the first b of the second block. Hence, there is no loss due
to this idle time.

Concerning this case, we have run many instances and most of the time the optimal solution
is the pure strategy using the optimal profile. Moreover, provided that n is large enough, it will
not be affordable to lose tasks in all blocks to increase the gain and hence the pure strategy will be
used. However, deciding whether the pure strategy is optimal or not seems to be complicated.

In order to simplify this case we tried to find properties in the case where γN = 0 and hoped that
in such a case, the pure strategy could always be optimal. However, we found a very interesting
counter example: for a= 10, b= 9, L= 76 and n= 30, the optimal cyclic profile is (0,4,0). Hence,
for n = 30, there are 3 blocks and an extension. This may seem to be large and so one can think
that the optimal cyclic profile will be used but in fact it will not. The length of the pure strategy
is 646 while the length of the optimal solution is 639. The optimal solution is illustrated fig. 17. It
is not compact but can be made compact by placing the operation a24 before b17.
In the compact equivalent schedule, the solution starts with a block (7,0), then β is increased and
all of the remaining blocks have a profile (5,1). Therefore, the optimal solution is not complicated,
yet we have to find the best β increasing sequence of blocks which is a hard task.
Moreover, for n small, there is often an optimal strategy which do not uses the tight profile. For
instance, when a= 10, b= 9, L= 76, for n= 11 to n= 26, the pure strategy is optimal only 5 times.

Figure 17: An optimal schedule for a= 10, b= 9, L= 76 and n= 30

Even in the more specific case γN = 0, it seems to be quite complicated to figure out whether
the optimal solution uses the pure strategy or not and if not how is the optimal solution.

7.2 All saturated profiles are tight
In this case, the optimal profile can take all of the three possible shapes.

We started by working on the case where (α,0) is optimal (hence all saturated profiles are tight,
from 1). We thought that as the optimal cyclic profile is the greedy solution, it could be easy to
generalize. In fact it is the opposite: as all saturated profiles are optimal, transition windows can
occur, making this case very complicated to deal with.

In this case, we still have a useful structure properties:

Property 4. The first block of an optimal schedule is tight.

20



Proof. As all saturated profiles are tight (αN + 2βN ,0) is feasible and tight (and hence short).
Whatever the first block is, it starts with an a and can be replaced by B(αN + 2βN ,0) because
this block is not constrained by a previous block (no task previously started has to end in it) and
completes M + 1 whole tasks while any other block completes less tasks (either it is not compact
and it may accomplish M+1 whole tasks or it has ghost b’s and accomplishes strictly less). Hence,
if the first block is not tight, then it is long and replacing it by B(αN + 2βN ,0) (which is short)
will shorten the schedule. Therefore, the first block of an optimal schedule is tight.

In the next part of this section, we will consider the case in which the profile (α,0) is optimal in
the cyclic case. This can be determined in O(log(L)2) time (using algorithm 1) which is polynomial
in the length of the instance.

We denote B the block of profile (αN ,0,γN ) with its idle time before the first b:

B = aα
N +1(idle= γN )bα

N +1

The length of the block B is |B|= a+ 2L+ b−γN . This block is illustrated fig. 18.

Figure 18: Block B in the case a= 10, b= 9, L= 82

In [1], it is shown that when the profile (αN ,0,γN ) is optimal, we have: b > γN ≥ a− b.
Remark 3 (Separability). The block B is separable, which means that given any feasible schedule
containing a block B, this block can be removed without changing anything in any other block and
the resulting schedule is still feasible. This comes from the fact that as there is no b in the first
part of the block B, there is no a in the previous block that should finish in the beginning of the
next block and as there is no a in the second part of B, there is no b that should finish in the
beginning of the following block. So there is no a in the end of the previous block and there is no b
in the beginning of the following block. Therefore, those two blocks can be put one after the other
without any modification.
Hence, block b splits the schedule, if there is a block B at some point in the optimal solution, this
means that the previous and the following schedules are both optimal for their respective number
of tasks.

Property 5. For n≡ 0 modM + 1, the optimal solution is B
n

M+1 .

Proof. As B is an optimal cycle in the cyclic case, B
n

M+1 is also an optimal cycle. Suppose we have
a solution S such that |S|< |B

n
M+1 |= n

M+1 (a+2L+ b−γN ), then S is a strictly better cycle than
B

n
M+1 which is absurd. Hence there is no such S.

Please note that this proof works because there is no extension to B
n

M+1 . In the general case,
repeating a cycle does not lead to a solution: in the finite case, the a’s started at the end of the
last block need to have their b’s finished.

Studying this case, we have observed that for pure strategies using saturated profiles, it seemed
that the best schedule was given by a decreasing sequence of α which is reinitialized every M + 1
tasks. We have computed pure strategies values for saturated profiles in the example a= 10, b= 9,
L= 82 and increasing n. Their values are given table 5. You can observe this decreasing sequence
of α with the best pure strategy, it is: αOPT = 0,2,2,4,4,6,6,8,8,0,2,2,4, . . . .

21



Table 5: Pure strategies values for a= 10, b= 9, L= 82 and small n

Task number \ Profile (8, 0, 2) (6, 1, 3) (4, 2 , 4) (2, 3, 5) (0, 4, 6) Optimal value
6 151 160 178 202 151
7 161 179 222 221 161
8 171 180 242 241 240 171
9 181 262 261 260 259 181
10 282 281 280 279 278 278
11 292 291 290 289 303 289
12 302 301 300 299 322 299
13 312 311 310 323 341 310
14 322 321 320 342 360 320
15 332 331 343 361 379 331
16 342 341 362 400 404 341
17 352 363 421 424 423 352
18 362 442 444 443 442 362
19 463 464 463 462 461 458
20 473 474 473 472 480 469
21 483 484 483 482 505 479
22 493 494 493 501 524 490
23 503 504 503 525 543 501
24 513 514 522 544 562 511
25 523 524 545 583 581 522
26 533 543 604 602 606 533
27 543 625 623 626 625 543
28 644 644 646 645 644 638
37 825 827 825 828 827 819

22



Table 6: β increasing strategies values for a= 10, b= 9, L= 82 and small n

Task number \ Profile (8, 0, 2) (6, 1, 3) (4, 2 , 4) (2, 3, 5) (0, 4, 6) Optimal value
19 462 459 458
20 472 470 469
21 482 480 479
22 492 491 490
23 502 501 501
24 512 512 511
25 522 522 522
26 533 533
27 543 543
28 644 640 638
37 825 821 819

This seemed to be a very encouraging result and we hoped that managing the end well (by
making the best β increasing sequence) could lead us to an optimal solution. In fact, we thought
that as all blocks should be short (this is our mistake), they must be tight and hence, β can only
increase.
You will find fig. 6 the values of the solutions when β is increased in the last block only (there may
exist better β increasing sequences for n= 28 and 37).

In the case n = 19 = 2(M + 1) + 1, there are two blocks and one task, hence it is possible to
increase β only once. The solution would then beB(8,0)B(0,4)a and the makespan 459 (overall gain:
∆ = 2 + 6 = 8). However, after being unable to prove this theoretically, we have investigated this
case deeper and proved, using CPLEX, that the optimal makespan value is 458. The corresponding
solution is represented fig. 15.

The structure of the optimal solution is the following: B(2,3;5)WB(4,2;4), with an overall gain
of 9. W = [a10,L,b10] will be called a transition window. It allows to change profile block in order
to reach a full gain in both of them. If we count blocks in the optimal solution, the second block is
long. However, the counterpart is such that it is worth delaying some tasks.

The structure of a transition is illustrated fig. 19.
Remark 4. Remark that given a profile block a0a

jb−t . . . b−1a
kb0 . . . (with j,k positive integers), its

gain is the idle time that was before b0. Hence, in the next block, this idle time comes before b−t,
while in the previous block, this idle time was before b−1.
Therefore, given two blocks B1 (whose first b in the transition window is denoted b′) and B2 (whose
last a in the transition window is denoted a′), in order to reach a gain δ1 + δ2, we have to be able
to make a transition such that: η1 = ja+ δ1 and η2 = pa+ δ2 with j,p positive integers.

Figure 19: The structure of a transition

This example rises some huge problems and cuts out our hopes that this problem may be
polynomial:

• In this solution, there are several profiles and a window. How can we describe the solution so
that it is polynomial in log(n) and log(L) ? The number of blocks is n

M > n
L/b = bn

L >O(nL )

23



which is exponential in n. Can we find some structures that would describe the solution
polynomially ?

• Do transitions exist ? Otherwise, is the optimal solution using short blocks only ? If it is the
case, how can we find the best β increasing sequence ? − if we change only the last block, it is
easy − in the general case, finding a sequence may be tough in its combinatorics. Especially,
how could we do it in O(log(L)) ?

• How can we find the transitions configurations ? Given two blocks B1 and B2 that are not
trivially incompatible (for instance if β1 +β2≥M). This can be modeled as a complicated flow
problem with a graph exponential in the length of the instance. More precisely, given a window
of profile (α,β) the number of possible combinations of these elements is

(α+β
α

)
=

(α+β
β

)
.

Hence, enumerating all possible transitions cannot be done in polynomial time.

All of these results incite us to think that even this case cannot be solved or described in
polynomial time. However, the case n≡−1 mod (M + 1) is quite interesting as it seems that the
optimal solution is B

n+1
M+1 without the last task. This is not surprising because (αN ,0) is the only

tight profile in which M − 1 a’s can be started in L, hence, as the last B loses only one task, it
cannot be replaced by another block in order to increase the gain. Therefore, B

n+1
M+1 minus the last

task should be the optimal solution. We have not proved it yet but tests on other examples did not
invalidate this conjecture.

The following section concerns a particular, yet very interesting, subcase of this class of problems.

7.3 An interesting subclass of instances
The last class of instances is very particular and help us emphasize the singularity of optimal
solutions in the finite case.

We consider the following problems: a−b= 1, (αN ,0,γN ) is the optimal cyclic profile (hence all
saturated profiles are tight). M = αN and n= 2(M + 1) + 1. In other words, there are two blocks
and a window to schedule.
The tight profiles are (αN − 2i, i,γN + i), for i ∈ {0, . . . ,βmax = bα

N

2 c}. The length of the tight
profiles list is O(a).

The fig. 15 illustrates the optimal solution for the case a = 10, b = 9, L = 82, n = 19. On this
example, the optimal solution is B(2,3,5)BE where B is a transition block and E the extension.
However, dividing another way, the optimal solution is B(2,3,5)WB(4,2,4) where W is a window
in which the tasks of the previous block end and those of the next block start. Moreover, it allows
to retrieve a full gain in the second block. This is an interesting and original structure. Hence one
can wonder whether it is common to all of the solutions of the current subclass.

We define the standard block B̄(α,β,∆) as a sequence of operations a1 . . .a2(idle = ∆)b1 . . . b2
(there may be any kind of operations between a1 and a2 and b1 and b2 but no ā between a1 and
b1) such as the shadow profile of the block is (α,β,γ) and ∆ = γ. As ∆ = γ, those blocks may be
denoted B̄(α,β) too.

Theorem 2. There exists an optimal solution of the form B̄1(α1,β1;γ1)WB̄2(α2,β2;γ2) with
W = [am,L,bm] a transition window.

The total length of the schedule is then (a+ 2L+ b− γ1) + (a+L+ b) + (a+ 2L+ b− γ2) =
C − (γ1 + γ2) where C = 3a+ 5L+ 3b is a constant. We denote ∆ = γ1 + γ2. Hence, finding the
optimal schedule is finding a schedule that maximizes ∆.

Proof of theorem 2. The solution B̄(αN ,0)WB̄(α−2βmax,βmax) is always feasible and has a gain
∆ = γN +γN +βmax.

24



Given an optimal solution, it can be seen as a B1WB2 (it is just a matter of ghosts). B1 and B2
are short because otherwise they could be replaced by B̄(αN ,0). Moreover, B1 and B2 are tight
because there exists only one type of non tight block and its gain is (a− b)≤ γN .
As B1 is the first block, it is already in the standard form B̄1. B2 can be modified to be in standard
form, without being lengthened. B2 = a1 . . .a2 . . . b1 . . . b2. In a2 . . . b1 there are only b’s and in b1 . . . b2
there are only b’s and ghost a’s.

• If there is an ā in a1 . . .a2, the corresponding coupled task can be removed and an a can
be placed instead of the ā. There will be no conflict with its b in the last window and the
schedule length is unchanged.

• If there is a b in a2 . . . b1 then there is an ā and B2 is preceded by an a. Remove this a and shift
the task (a1, b1) to the left. Insert this a after a1. The length of the schedule is unchanged.

The first block in an optimal solution (left-shifted) is some B̄1(α1,β1,∆1) with ∆1 = γ1. The
block contains 1 +αi+ 2βi operations a. Consider the schedule of the remaining (K+ 1) coupled
tasks, the first being am. We know the optimal solution for (K + 1) coupled tasks has a length
a+L+ b+ |B(αN − 2βmax,βmax,γN + βmax)|. This means that bm must be before B2 starts,
otherwise there would be a better solution.
Eventually, the gain in the last block is γ2 because the schedule is left shifted and hence if there
is an idle time, it is placed before a ′b′. Therefore, when considering an integer optimal solution
(which always exists) there is an idle time of duration at least 1 followed by a ′b′ which is a total
duration of at least a. Hence we can replace it by an a and shift the schedule to the left. The
resulting schedule has a smaller makespan.
Therefore, there exists an optimal solution of the form B̄1(α1,β1;γ1)WB̄2(α2,β2;γ2).

Remark that for (α−2βmax,βmax) there exists no transition window that allows us to reach a
maximal gain on both of its sides because the a’s in B1 fix the positions of the B’s in B2 and hence
lock the positions of the a’s in W . Hence, the overall gain value is strictly inferior to 2γN +βmax.
Therefore, the objective is to find the two blocks and transition window that allow us to reach a
maximum gain. This gain is in {2γN +βmax, . . . ,2γN +βmax−1}.

In this case, the certificate should be a compact description of the transition window (which
is a list of length O(L)). For instance, the starting points of a’s and b’s in the window section L
could be given. This certificate could be verified in polynomial time (in L): the first step is to
check that there is no overlap in order to verify the feasibility. The second step is to count a’s
and b’s: if there are β1 b’s and β2 a’s, then this means that B1 = B(αN − 2β1,β1,γ

N +β1) and
B2 =B(αN −2β2,β2,γ

N +β2). Moreover, it is infeasible if β1 +β2 ≥M . Eventually, the order and
the feasibility of the operations in B̄1 and B̄2 can be retrieved by comparing the positions of the
operations in the window with the positions in the standard list. For instance, for B1 the position
of the first b in the window should be in γi, or γi+a, or γi+ 2a, . . . .
Even though this certificate can be verified in polynomial time (pseudo-polynomial in the length of
the instance), its length is still exponential in the length of the instance. Hence, in order to have a
polynomial certificate we need to find more structure on the optimal solution.

In order to maximize ∆ we can use a binary search on the value of ∆: we know that ∆ ∈
{2γN +βmax, . . . ,2γN +2βmax−1}. Moreover, given a value of ∆, the possible profile combinations
can be determined in linear time. Hence, the problem is to determine the feasibility of a ∆. However,
we cannot enumerate all of the

(α+β
α

)
possible combinations to achieve this goal. Therefore, we

have to hope that there are some patterns in the optimal solutions.
Fig. 15, illustrates that being able to use a simple structured pattern as aα(ba)β in this case is

hopeless. On this example, the combined profiles are (2,3) and (4,2) and the overall gain reached
is ∆ = 9.

Yet, we have been studying more precisely lots of examples (171). Table 7 illustrates some
optimal profiles for a = 10 and b = 9, with differents L and n but n = 2M + 3. Analyzing all of

25



Table 7: Optimal profiles for a= 10, b= 9 and L= 82, n= 19 − L= 92, n= 21 − L= 104, n= 23

Profil Gain
(0,4) 6
(2,3) 5
(4,2) 4
(6,1) 3
(8,0) 2

Profil Gain
(1,4) 6
(3,3) 5
(5,2) 4
(7,1) 3
(9,0) 2

Profil Gain
(0,5) 9
(2,4) 8
(4,3) 7
(6,2) 6
(8,1) 5
(10,0) 4

the examples, we remarked that in all cases, the two optimal profiles are (α1,β1) and (α2,β2) with
(α1,β1) the tight profile whose α1 is maximal such that α1 ≤ β1 and (α2,β2) the tight profile whose
α2 is minimal such that α2 ≥ β2. Hence α1 = β2 and the two optimal profiles can be written as
(αN − 2x,x) and (4x−αN ,αN − 2x) with x = dα

N

3 e. Computing those profiles is simple arith-
metic and requires the cyclic profile to have been computed previously. Hence, the complexity is
O((log L)2) which is polynomial in the length of the instance.

Theorem 3. Denote x= dα
N

3 e, there is an optimal solution using profiles (αN −2x,x) and (4x−
αN ,αN −2x) in respectively the first and second block and those blocks are separated by a transition
window.

Proof. There always exists a feasible solution using those profiles. This solution first block is:

a(baa)α
N−2x(ba)3x−αN

(idle= γ1)b(abb)α
N−2x(ab)3x−αN

Its last block is:
aa(ba)α

N−2xa4x−αN
(idle= γ2)bb(ab)α

N−2xb4x−αN

Where the b’s in the first window and a’s in the last window are ghosts.
The baa’s in the first window let aa spaces in the transition window between two b’s. These empty
spaces can be used to place an a so that it matches a b in the first part of a second block. Moreover,
as α1 = β2, there are enough such spaces. Hence, the schedule is feasible and reaches maximum
gain (related to the profile used) in the two blocks.

Moreover, suppose there exists a better solution, theorem 2 implies that there is such a solution
that can be represented as B̄1(α′1,β′1;γ′1)WB̄2(α′2,β′2;γ′2) and reaching maximal gain in both blocks.
Hence, we have: α′1 ≤ β′1, α′2 ≤ β′2 and α′1 +α′2 < β′1 +β′2. Yet, remark that in order to reach full
gain in both blocks, the a’s placed in the transition window have to be adjusted and hence need to
be placed on a slot containing an aa in the first window. moreover, in order to change the profile,
two a’s in the transition window need to be separated by a space of at least b because otherwise,
they would be an āb in the second block and placing the first a would not help changing the profile.
Hence, as α′1 ≤ β′1, we can place at most α′1 such a′s using baa’s. Therefore β2 ≤α1 and the solution
exposed earlier is optimal.

This last result is polynomial. Yet, it emphasizes the complexity of this problem in both the
description of the solutions (the certificate) and the solving process as it seems that there is no
recursivity and beeing able to find rules for each congruence class and each different number of
blocks is out of question.

26



Conclusion
Given the results of the cyclic case, we thought that we could generalize the results of the cyclic
case to the finite case and tried to demonstrate some properties. Then we worked on some examples
and realized that many subtleties occur in the finite case. Eventually, we worked on a very specific
case and realized that even in such a “simple” case, finding the optimal solution cannot be done
easily.

Moreover, in order to be able to give a certificate polynomial in the length of the instance in
such a high multiplicity scheduling problem, we need to be able to aggregate data and hence the
optimal solutions need to be structured.

Ultimately, all of these results lead us to the following conjecture:

Conjecture 2. The identical coupled task scheduling problem is not in NP

It remains to prove this conjectures and some other results mentioned in this report.
Trying to prove that there exists no polynomial certificate may be very complicated as this is

not because one has not found a polynomial certificate that no such certificate exists.
All of the results obtained during that study let us think that solving this problem is also expo-
nential. In fact, this problem is probably in EXPSPACE which is known to be a strict superset of
PSPACE (and hence of NP). Therefore, a good approach to settle the complexity of this problem
could be to try to find a reduction of some problem in EXPSPACE to this problem.

References
[1] Vassilissa Lehoux-Lebacque, Nadia Brauner, and Gerd Finke. Identical coupled task scheduling:

polynomial complexity of the cyclic case. to be published, déjà paru dans les Cahiers Leibniz
n179, 2011.

[2] Cyril Duron. Ordonnancement en temps-réel des activités des radars. PhD thesis, Université
de Metz, December 2002.

[3] AJ Orman and CN Potts. On the complexity of coupled-task scheduling. Discrete Applied
Mathematics, 72(1-2):141–154, 1997.

[4] N. Brauner, Y. Crama, A. Grigoriev, and J. Van De Klundert. A framework for the complexity
of high-multiplicity scheduling problems. Journal of combinatorial optimization, 9(3):313–323,
2005.

[5] N. Brauner, Y. Crama, A. Grigoriev, and J. Van De Klundert. Multiplicity and complexity
issues in contemporary production scheduling. Statistica Neerlandica, 61(1):75–91, 2007.

[6] Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/NP_%28complexity%29.

[7] R.D. Shapiro. Scheduling coupled tasks. Naval Research Logistics Quarterly, 27(3):489–498,
1980.

[8] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
completeness. WH Freeman & Co. New York, NY, USA, 1979.

[9] J.N.D. Gupta. Comparative evaluation of heuristic algorithms for the single machine scheduling
problem with two operations per job and time-lags. Journal of Global Optimization, 9(3):239–
253, 1996.

27

http://en.wikipedia.org/wiki/NP_%28complexity%29


[10] Nadia Brauner, Gerd Finke, Vassilissa Lehoux-Lebacque, Chris Potts, and Jonathan White-
head. Scheduling of coupled tasks and one-machine no-wait robotic cells. Computers & Oper-
ations Research, 36(2):301 – 307, 2009. Scheduling for Modern Manufacturing, Logistics, and
Supply Chains.

[11] D. Ahr, J. Békési, G. Galambos, M. Oswald, and G. Reinelt. An exact algorithm for scheduling
identical coupled tasks. Mathematical Methods of Operations Research, 59(2):193–203, 2004.

[12] P. Baptiste. A note on scheduling identical coupled tasks in logarithmic time. Discrete Applied
Mathematics, 158(5):583–587, 2010.

[13] J. Blazewicz, K. Ecker, T. Kis, CN Potts, M. Tanas, and J. Whitehead. Scheduling of coupled
tasks with unit processing times. Journal of Scheduling, pages 1–9, 2010.

[14] G. Simonin, B. Darties, R. Giroudeau, and J.C. K
"onig. Isomorphic coupled-task scheduling problem with compatibility constraints on a single
processor. Journal of Scheduling, pages 1–9.

[15] Vassilissa Lehoux-Lebacque. Théories et applications en ordonnancement : contraintes de
ressources et tâches agrégées en catégories. PhD thesis, Université Grenoble 1 - Joseph Fourier,
September 2007.

[16] E. Winter and P. Baptiste. On scheduling a multifunction radar. Aerospace science and
technology, 11(4):289–294, 2007.

[17] J. Békési, G. Galambos, M. Oswald, and G. Reinelt. Improved analysis of an algorithm for the
coupled task problem with UET jobs. Operations Research Letters, 37(2):93–96, 2009.

[18] P. Dodin, P. Minvielle, and J.P. Le Cadre. A branch-and-bound algorithm applied to optimal
radar search pattern. Aerospace science and technology, 11(4):279–288, 2007.

28



Appendices
A Integer Programming model

Listing 1: "Integer Program for identical coupled task scheduling problem"
int a = ...;
int b = ...;
int L = ...;
int n = ...;

5 range Tasks = 1..n;
range MinusTasks = 2..n;

int s = a + L + b;

10 dvar int+ t[Tasks ];
int greedy[Tasks ];
int grd;
int M;
int G;

15 dvar boolean y[Tasks][Tasks ];

// Computes greedy schedule value
execute GREEDY {

var cour = 0;
20 var deb = 1;

for (var i in Tasks) {
greedy[ i ] = cour;
if (cour + 2 ∗ a > greedy[deb] + a + L) {

cour = greedy[i ] + a + L + b;
25 deb = i + 1;

} else {
cour = greedy[i ] + a;

}
}

30 grd = greedy[n];
M = 2 ∗ grd + L;
G = L / a + 2;

}

35

minimize t[n];

subject to {
t [1] == 0;

40 t [n] <= grd;

forall ( i , j in Tasks : i >= j) {
y[ i ][ j ] == 0;

}

29



45

forall ( i in MinusTasks ) {
orderingTasks :

t [ i ] >= t[i−1] + a;
50 no_separation:

t [ i ] <= t[i−1] + s;
}

55 forall ( i , j in Tasks : i < j) {
if ( i + G > j) {

init_y_pred:
y[ i ][ j ] >= y[i][ j − 1];

overlap_down:
60 t [ j ] − t[ i ] <= L + y[i][j ] ∗ M;

overlap_up:
t [ j ] − t[ i ] >= s ∗ y[i ][ j ];

}X
}

65 }

execute DISPLAY {
writeln ("t = ", t );
writeln ("y = ", y);

70 writeln ("Optimal = ", t [n]+a+L+b);
}

30


	Introduction
	Problem overview
	Problem description
	Problem characteristics
	State-of-the-art
	The cyclic case

	Objectives and plan
	Solving instances for the finite case
	Integer Programming
	Dynamic Programming

	Definitions
	Pure strategies
	General blocks
	Pure strategy approximation

	General results
	Mixed profile strategies
	Special subclasses of instances
	Unique tight profile
	All saturated profiles are tight
	An interesting subclass of instances

	Conclusion
	Appendices
	Integer Programming model

