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Abstract

The paper presents a simple probabilistic analysis of the energy consumption in preamble sampling MAC protocols. We
validate the analytical results with simulations. We compare the classical MAC protocols (B-MAC and X-MAC) with LA-MAC,
a method proposed in a companion paper. Our analysis highlights the energy savings achievable with LA-MAC with respect to
B-MAC and X-MAC. It also shows that LA-MAC provides the best performance in the considered case of high density networks
under traffic congestion.

I. INTRODUCTION

Wireless Sensor Networks (WSN) have recently evolved to support diverse applications in various and ubiquitous scenarios,
especially in the context of Machine-to-Machine (M2M) networks [1]. Energy consumption is still the main design goal along
with providing sufficient performance support for target applications. Medium Access Control (MAC) methods play the key
role in saving energy [2] because of the part taken by the radio in the overall energy budget. Thus, the main goal in designing
an access method consists of reducing the effects of both idle listening during which a device consumes energy while waiting
for an eventual transmission and overhearing when it receives a frame sent to another device [2].

To save energy, devices aim at achieving low duty cycles: they alternate long sleeping periods (radio switched off) and
short active ones (radio switched on). As a result, the challenge of MAC design is to synchronize the instants of the receiver
wake-up with possible transmissions of some devices so that the network achieves a very low duty cycle. The existing MAC
methods basically use two approaches. The first one synchronizes devices on a common sleep/wake-up schedule by exchanging
synchronization messages (SMAC [3], TMAC [4]) or defines a synchronized network wide TDMA structure (LMAC [5], D-
MAC [6], TRAMA [7]). With the second approach, each device transmits before each data frame a preamble long enough to
ensure that intended receivers wake up to catch its frame (Aloha with Preamble Sampling [8], Cycled Receiver [9], LPL (Low
Power Listening) in B-MAC [10], B-MAC+ [11], CSMA-MPS [12] aka X-MAC [13], BOX-MAC [14], and DA-MAC [15]).
Both approaches converge to the same scheme, called synchronous preamble sampling, that uses very short preambles and
requires tight synchronization between devices (WiseMAC [16], Scheduled Channel Polling (SCP) [17]).

Thanks to its lack of explicit synchronization, the second approach based on preamble sampling appears to be more easily
applicable and more scalable than the first synchronous approach. Even if methods based on preamble sampling are collision
prone, they have attracted great research interest, so that during last years many protocols have been published. In a companion
paper, we have proposed LA-MAC, a Low-Latency Asynchronous MAC protocol [18] based on preamble sampling and designed
for efficient adaptation of device behaviour to varying network conditions.

In this paper, we analytically and numerically compare B-MAC [10], X-MAC [13], and LA-MAC in terms of energy
consumption. The novelty of our analysis lies in how we relate the energy consumption to traffic load. In prior energy
analyses, authors based the energy consumption on the average Traffic Generation Rate (TGR) of devices [17] as well as
on the probability of receiving a packet in a given interval [13]. In contrast to these approaches, which only focus on the
consumption of a “transmitter-receiver” couple, we rather consider the global energy cost of a group of neighbour contending
devices. Our analysis includes the cost of all radio operations involved in the transmission of data messages, namely the cost
of transmitting, receiving, idle listening, and overhearing.

The motivation for our approach comes from the fact that in complex, dense, and multi-hop networks, traffic distribution is
not uniformly spread over the network. Thus, the energy consumption depends on traffic pattern, e.g. convergecast, broadcast, or
multicast, because instantaneous traffic load may differ over the network. In our approach, we estimate the energy consumption
that depends on the instantaneous traffic load in a given localized area. As a result, our analysis estimates the energy consumption
independently of the traffic pattern.

II. BACKGROUND

We propose to evaluate the energy consumption of a group of sensor nodes under three different preamble sampling MAC
protocols: B-MAC, X-MAC, and LA-MAC. In complex, dense, and multi-hop networks, the instantaneous traffic distribution



over the network is not uniform. For example, in the case of networks with the convergecast traffic pattern (all messages go
to one sink), the traffic load is higher at nodes that are closer to the sink in terms of number of hops. Due to this funnelling
effect [19], devices close to the sink exhaust their energy much faster than the others.

The evaluation of the energy consumption in this case is difficult and the energy analyses published in the literature often
base the energy consumption of a given protocol on the traffic generation rate of the network [17]. In our opinion, this approach
does not fully reflect the complexity of the problem, so we propose to analyze the energy consumption with respect to the
number of messages that are buffered in a given geographical area. This approach can represent different congestion situations
by varying the instantaneous size of the buffer.

In our analysis, we consider a “star” network composed of a single receiving device (sink) and a group of N devices that
may have data to send. All devices are within 1-hop radio coverage of each other. We assume that all transmitting devices
share a global message buffer for which B sets the number of queued messages, B is then related to network congestion.
Among all N devices, N of them have at least one packet to send and are called active devices. Remaining devices have
empty buffers and do not participate in the contention, nevertheless, they are prone to the overhearing effect. Thus, there are
N, = N — N; overhearers. According to the global buffer state B, there are several combinations of how to distribute B
packets among N sending devices: depending on the number of packets inside the local buffers of active devices, Ns and N,
may vary for each combination. For instance, there can be B active devices with each one packet to send or less than B active
devices with some of them having more than one buffered packet.

In the remainder, we explicitly separate the energy cost due to transmission Fy, reception ., polling (listening for any
radio activity in the channel) £}, and sleeping E;. E, is the overall energy consumption of all overhearers. The overall energy
consumption F is the sum of all these energies. The power consumption of respective radio states is P;, P., P;, and P
for transmission, reception, channel polling, and sleeping. The power depends on a specific radio device. We distinguish the
polling state from the reception state. When a node is performing channel polling, it listens to any channel for activity—to be
detected, a radio transmission must start after the beginning of channel polling. Once a radio activity is detected, the device
immediately switches its radio state from polling to receiving. Otherwise, the device that is polling the channel cannot change
its radio state. The duration of a message over the air is ¢4. The time between two wakeup instants is ¢y = ¢; + t,, where 1;
and t, are respectively the channel polling duration and the sleep period. These values are related to the duty cycle.

III. PREAMBLE SAMPLING MAC PROTOCOLS

In this section, we provide the details of the analyzed preamble sampling protocols. Figure 1 presents the operation of all
protocols.

A. B-MAC

In B-MAC [10], all nodes periodically repeat the same cycle during their lifetime: wake up, listen to the channel, and then
go back to sleep. When an active node wants to transmit a data frame, it first transmits a preamble long enough to cover
the entire sleep period of a potential receiver. After the preamble the sender immediately transmits the data frame. When the
receiver wakes up and detects the preamble, it switches its radio to the receiving mode and listens to the channel until the
complete reception of the data frame. Even if the lack of synchronization results in low overhead, the method presents several
drawbacks due to the length of the preamble: high energy consumption of transmitters, high latency, and limited throughput.
We denote by tf the duration of the B-MAC preamble.

B. X-MAC

In CSMA-MPS [12] and X-MAC [13], nodes periodically alternate sleep and polling periods. After the end of a polling
period, each active node transmits a series of short preambles spaced with gaps. During a gap, the transmitter switches to
the idle mode and expects to receive an ACK from the receiver. When a receiver wakes up and receives a preamble, it sends
an ACK back to the transmitter to stop the series of preambles, which reduces the energy spent by the transmitter. After the
reception of the ACK, the transmitter sends a data frame and goes back to sleep. After data reception, the receiver remains
awake for a possible transmission of a single additional data frame. If another active node receives a preamble destined to the
same receiver it wishes to send to, it stops transmitting to listen to the channel for an incoming ACK. When it overhears the
ACK, it sets a random back-off timer at which it will send its data frame. The transmission of a data frame after the back-off
is not preceded by any preamble. Note however that nodes that periodically wake up to sample the channel need to keep
listening for a duration that is larger than the gap between short preambles to be able to decide whether there is an ongoing
transmission or not. The duration of each short preamble is t;( and the ACK duration is 2.
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Figure 1. Comparison of analyzed MAC methods.



C. LA-MAC

LA-MAC [18] is a scalable protocol that aims at achieving low latency and limited energy consumption by building on three
main ideas: efficient forwarding based on proper scheduling of children nodes that want to transmit, transmissions of frame
bursts, and traffic differentiation. It assumes that the network is organized according to some complex structure (tree, DAG,
partial mesh) and takes advantage of the network structure to support efficient multi-hop forwarding—a parent of some nodes
becomes a coordinator that schedules transmissions in a localized region.

The method periodically adapts local organization of channel access depending on network dynamics such as the number of
active users and the instantaneous traffic load. In LA-MAC, nodes periodically alternate long sleep periods and short polling
phases. During polling phases each receiver can collect several requests for transmissions included inside short preambles.
After the end of its polling period, the node that has collected some preambles processes the requests, compares the priority of
requests with the locally backlogged messages and broadcasts a SCHEDULE message. The goal of the SCHEDULE message
is to temporarily organize the transmission of neighbor nodes to avoid collisions. If the node that ends its polling has not
detected any channel activity and has some backlogged data to send, it starts sending a sequence of short unicast preambles
containing the information about the burst to send. As in B-MAC and X-MAC, the strobed sequence is long enough to wakeup
the receiver. When a receiver wakes up and detects a preamble, it clears it with an ACK frame containing the instant of a
rendezvous at which it will broadcast the SCHEDULE frame. If a second active node overhears a preamble destined to the
same destination it wants to send to, it waits for an incoming ACK. After ACK reception, a sender goes to sleep and wakes
up at the instant of the rendezvous. In Figure 1, we see that after the transmission of an ACK to Tx1, Rx device is again ready
for receiving preambles from other devices. So, Tx2 transmits a preamble and receives an ACK during the same rendezvous.
Preamble clearing continues until the end of the channel polling interval of the receiver.

IV. ENERGY ANALYSIS

LA- MAC provides its best performance in contexts of high density and traffic congestion. In order SHOW THE GAIN of
LA-MAC, we provide an energy analysis aimed at comparing EXPECTED energy consumption of all considered protocols.

We focus on evaluating expected energy consumption of a group of nodes when the number of messages to transmit within
the group is known. In our analysis, we consider one receiver and a group of devices that can have some messages to send
as well as empty buffers. In the analysis thta we provide, we focus our attention to the fact that in a complex sensor network
traffic congestion is not uniformly distributed over the network. In fact elements such as the MAC protocol, the density and
the traffic model have different impact in different areas of the network. For this reason instead of focusing on the simple
Traffic Generation Rate (TGR) [17] on the probability of receiving a packet in a given interval [13], we base our analysis on
the number of messages that a group of nodes must send to a reference receiver.

With this approach we can show different congestion situations as they happen in a multi-hops networks with convergecast
traffic pattern, where traffic distribution is not uniform with respect to proximity to the sink (in terms of number of hops). In
fact, the closer the sink, the higher the average traffic. We provide an evaluation that shows energy consumption with respect
to a group of nodes. We assume that a group of nodes share a global message buffer, depending on the number of messages
in the buffer there may be zero, one, two or multiple senders. Those nodes that have any message to send are called others
or overhearers, they don’t participate in the contention but are prone to the overhearing problem (one of the major causes of
energy waste in wireless sensor networks).

In the analysis we separate energy cost due to transmission (couple, triple or more) F;, reception E,, polling (listening
some activities in the channel) ; and sleep E. Consumption of other node that overhears the channel is represented by E,.
Overall expected energy consumption F is the sum of all energies. Global buffer state of the group of nodes is B. Power
consumption of radio states are P; for transmission, P, for reception, P; for channel polling and P, for sleep. We assume
that when a device is polling the channel, it listens to the air interface for some activity; if a message is already being sent
while a device starts polling the channel, the device will not change its radio state. Otherwise, if a device that is polling the
channel hears the beginning of new message, it switches its radio in receiving mode increasing the energy consumption. We
consider that the group is composed by N devices and one receiver. Depending on the state of buffers, the number of senders
Ny varies as well as the number of overhearing nodes N, = N — N;. We assume that all devices are within radio range of
each others. Duration of a message over the air is 4. Each frame elapses t; = t; + ¢,

A. Global buffer is empty (B = 0)

If all buffers are empty, all protocols behave in the same way: nodes periodically wakeup, poll the channel, then go back to
sleep because of absence of channel activity. Consumption only depends on time spent in polling and sleeping.

EALL(0)= (N +1)-(t;- P+ ts- P,) (1)



B. Global buffer contains one message (B = 1)

If there is one message to send, there are only two devices that are active: the one which has a message in the buffer (Vg
= 1) and the destination. The number of overhears is N, = N — 1.

B-MAC (B =1)

When message sender wakes up, it polls the channel and then starts sending one large preamble that anticipates data
transmission. Even if data is unicast, destination field is not included in preambles; therefore, all nodes need to hear both
preamble and the header of the following data in order to know the identity of the intended receiver. Provided that devices
are not synchronized, each device will hear in average half of the preamble. The cost of transmission is the cost of an entire
preamble plus the cost of transmitting data.

Ef(1) = (t) +ta)- P, )

The cost of reception is the cost of receiving half of the duration of a preamble plus the cost of receiving data. In packetized
radios, a large preamble is obtained by a sequence of short preambles sent one right after the other. For this reason, if a
generic device B wakes up and polls the channel while a generic device A is sending a long peamble, radio state of device
B will remain in polling state for a short time until the beginning of the next small packet of the large preamble; afterwards
the radio will switch in receiving mode consuming more energy. When the receiver (that is not synchronized with the sender)
wakes up, it polls the channel for some activity. Because of lack of synchronization, it may happen that at the time when the
receiver wakes up, the sender is performing channel polling. Probability of this event is p = t; /¢y, so if the receiver wakes up
during this period, it will perform half of the polling and then it will listen for the entire preamble. Otherwise, if the receiver
wakes up after the end of the polling of sender, it will listen half of the preamble (probabiliy 1 — p). In the remainder of this
document we say that with probability p transmitter and receiver are somehow quasi-synchronized.
B

t
EP() = (p-t; + (1=p)- o +1a) - P (3)

So more than the entire polling of the sender we must consider half of polling period that must be performed by the receiver
with probability p. »
Ef(1)=(1+3) ti P )

The cost of sleeping activity for the couple transmitter/receiver it depends on the time that they do not spend in polling,
receiving or transmitting messages.

B
Lo(pHd) 2 tatti-(1+2) P 5)

With B-MAC there is not difference in terms of energy consumption between overhearing and receiving a message. Therefore,
the cost of overhearing is:

EZ(1) = (2-tr —

B
Ef(l)=No-(Ef<1)+p~%’-Pz+(tf—(p-( +t)+ (L=p)- 5 +ta) - Py) (©)

ty
2

X-MAC (B=1)

When the sender wakes up, it polls the channel and starts sending a sequence of unicast preambles separated by a time
for early ACK reception. When the intended receiver wakes up and polls the channel, it receives the preamble and clear it.
Then the sender can transmit its message. After data reception, the receiver remains in polling state for an extra backoff time
t, that is used to receive other possible messages [13] coming from other senders. All devices that have no message to send,
overhear channel activity and go to sleep as soon as they receive any unicast message (preamble, ACK or data). The expected
number of preambles that are needed to wakeup the receiver is yX. Average number of preambles depends on the duration of
polling period, preamble and ACK messages as well as the duration of an entire frame [13]. 4X Is the inverse of the collision
probability of one preamble over the polling period of the receiver. In fact, if the couple sender/receiver is not synchronized,
the sender can not know when the receiver will wake up, thus each preamble has the same probability to be heard or not
by the receiver. Each sent preamble is a trial of a geometric distribution, so we say that before there is a collision between
preamble and polling period there are (X — 1) preambles whose energy is wasted.

1
= —— (7)

t—tX —tX
tf
Total amount of energy that is due to the activity of transmitting one message depends on the average number of preambles
that must be sent (y*) and the cost of early ACK reception. Provided that wakeup schedules of nodes are not synchronous,
it may happen that when the receiver wakes up, the sender is performing channel polling (transmitter and receiver are quasi-
synchronized with probability p).



In the case of quasi-synchronization, the receiver will perform in average half of the polling period and afterwards it the
will be able to clear the very first preamble of the strobe. In this case the cost of transmission only includes the transmission
of one preamble and the cost of receiving the ACK. Otherwise, if nodes are not synchronous (the receiver wakes up after the
end of the polling of sender), the receiver will cause the sender to waste energy for the transmission of v~ preambles and the
wait for an ACK (we consider waiting for ACK as a polling state) before it can hear one of them. The energy consumption
of all activities of polling is reported separately in E;% (1). Transmission cost is:

EX1)=1—-p) v 5 - PotptX Pottl Pty P (8)

=((L=p) v +p) S P+tl P4ty P 9)

The cost of the receiving activity is represented by the transmission of one ACK and the reception of both data and preamble.

EX(1) = (ta+t)) P+t P (10)

With probability 1 —p (no synchronization) the receiver will wakeup while the sender is already transmitting a preamble (or
it is waiting for an early ACK). Otherwise (with probability p) the receiver will perform in average, only half of its polling
period. The reason for this is that if the active couple is quasi-synchronized they simultaneously perform channel sensing, then
the sender starts the preamble transmission. As far as the sender is concerned, we must consider both the entire polling period
and the time that the sender waits for early ACK without any answer (event that happens with probability 1 — p).

X X X t;(—l—tf b
ErM)=(t+A-p)- 00" =1 t5)+ (A =p) —5—+p 5)+t) P (an
ty +ty
= (=P (P (P =) E) (G-t t)-B (12)

Sleep activity of the active couple is twice a frame duration minus the time that both devices are active.

X X

t t + 1t
EX(D) =2ty = (i (L =p) Y +p) (5 +80) +ta) = (0 5+ + 8+ (1 =p) - L=+ ta+ 1)) - P (13)
=@t =2 ta—pog —tF —t —(1=p) e — = (1=p) 7 4 p) (G +E) ) P (14

As other devices, the overhearers can wakeup at a random instant. However, differently from active agents, as soon as they
overhear some activity they go back to sleep. Therefore their energy consumption depends on the probability that such nodes
wake up while the channel is busy or not. The probability that at wakeup instant the channel is free depends on polling duration,
buffer states, the number of senders etc. In figure 2 we present all the possible situations that can happen. We consider as
reference instant, the time at which the transmitter wakes up (root of the tree). With probability p, the receiver and the the
transmitter are quasi-synchronized, not synchronized otherwise (probability (1 — p)). With probability p - p both the receiver
and a generic overhearer are quasi-synchronized with the transmitter, this is the Case 1 in the tree.

o Case 1: Sender, receiver and overhearer are quasi-synchronized. The overhearer will sense a preamble that is not intended
to it and the goes back to sleep.

l t
Eé(asel,o:é'PI+t§'Pr+(tf_§l—t;{)'PS (15)

o Case 2, 3, 4: Sender and receiver are synchronized but not the overhearer. When the overhearer wakes up, it can overhear
different messages (preamble, ACK or data) as well as clear channel. Possible situations are summarized in figure 4.
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— Case 2 If the ovehearer wakes up during a preamble transmission, it will ovehear the following ACK and afterwards
go back to sleep. The probability for the overhearer to wakeup during a preamble is p, = tf [ty

X X

X _
ECaseg,o -

2 2

t t
L P4ty P (ty— L — ) P

(16)



— Case 3: If the ovehearer wakes up during a ACK transmission, it will ovehear the following data message and
afterwards go back to sleep. The probability for the overhearer to wakeup during an ACK is p, = tX /¢ i

t tx
Egasew:?'Plthd-PTJr(tff?ftd)«Ps (17)

— Case 4: The ovehearer will either wakes up during data transmission or after the end of it. In both cases when the
sender wakes up and senses the channel, it will sense it as free because the sender was sleeping when data packet
transmission begun. Therefore the overhearer performs an entire polling and go back to sleep. The probability for
this event to happen is 1 — p, — pp.

Eé‘(ase4,o =t P+ (tf - tl) - Py (18)

o Case 5 Similarly to Case 1, if the overhearer is quasi-synchronized with the transmitter it will overhear the first preamble
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Figure 5. Global buffer size A=1. Overhearing situations for Case 5. X-MAC protocol
even if the receiver is still sleeping. The energy cost is:
X _ X
ECase5,o - ECasel,o (19)

o Cases 6,7,8: If neither the receiver nor the overhearer are synchronized with the sender, it may happen that the receiver
wakes up before the overhearer. Therefore, similarly to cases 2,3 and 4 we have different situations. Cases 6,7,8 are
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Figure 6. Global buffer size A=1. Overhearing situations for Cases 6, 7 and 8. X-MAC protocol



respectively similar to 2,3 and 4:

Eluses.0 = Edaser.o (20)
Elusero = Eduses.0 1)
Efuses.0 = Elases.0 (22)

o Case 9: If the overhearer wakes up before the intended receiver, it will receive a preamble and go back to sleep. The cost

in this case is:
X +tX X+t

Edaseso =1ty - Prt = Pt (ty = == = 1) Py (23)

2

The overall energy cost is the sum of the costs of each case weighted by the probability of the case to happen

9
E§(1> =N, - ZpCasei : Eé’(aseip (24)

i=1

LA-MAC (B =1)

In the present analysis we do not consider adaptive wakeup schedule of senders presented in section [REF PROTOCOL
DESCRIPTION SECTION]. Therefore, wakeup schedules are assumed random. Even if this is a worst case for LA-MAC,
it helps to better compare it with other protocols. When sender wakes up, polls channel and send preambles as in X-MAC.
However differently from X-MAC, after early ACK reception, the sender goes back to sleep and waits for Schedule message
to be sent. When the intended receiver receives one preamble, it clears it and completes its polling period in order to detect
other possible preambles to clear. Immediately after the end of polling period, the receiver processes requests and broadcasts
the Schedule message. In LA-MAC, overhearers go to sleep as soon as they receive any unicast message (preamble, ACK or
data) as well as the Schedule. Due to lack of synchronization, expected number of preambles per slot follows X-MAC with
different size of preambles tlf and ACK tZ. When the sender wakes up, it perform an entire channel polling before starting
transmitting strobed preambles. When the receiver wakes up, it polls the channel. With probability p = ¢;/¢; the sender and
receiver are quasi-synchronized; so with probability p the sender is still polling the channel when the receiver wakes up.

When the sender wakes up, it polls the channel and starts sending preambles to wakeup the receiver. With probability p,
the first preamble that is sent will wake up the receiver, so the sender will immediately receive an early ACK. Otherwise, if
nodes are not synchronized (probability (1 — p)) the sender will wake up its destination in average after v~ preambles. EF(1)
is similar to the cost of X-MAC plus the cost of receiving the Schedule.

Ef(0)=0-p)-~"-th -Pi+p-th -P+tl -P+tg-Pi+ty- P, (25)
Cost of reception depends on the duration of preamble, ACK, data and Schedule messages.
EF(1) = (t) +ta) - P+ (ts +1tg) - P, (26)

When the sender wakes up, it performs a full polling period before the beginning of the strobed preambles. Moreover the
degree of synchronization between sender and receiver (called active nodes) also influences the consumption. If active nodes
are not synchronized, the sender will poll the channel (% — 1) times in order to wait for early ACK. Differently from X-MAC,
the receiver will complete its polling period even if it clears one preamble, so its radio will remain in polling state the duration
of a full polling period less the time for preamble reception and ACK transmission.

Ef() = ((ti+ (1 =p)- (7" = 1) t5) + (i — t; — ) - @7)
When the active nodes are not transmitting, receiving or polling the channel they can sleep.
E{() =2 tp =i+ A =p) "ty +pty +t7 + (1 =p)- (0 = 1)ty Hta+ty) — (L +tatty) P (28)

As in X-MAC as soon as overhearers receive some messages they go back to sleep. Therefore their energy consumption
depends on the probability that such nodes wake up while the channel is busy or not. All the possible combinations of wakeup
schedules with relative probabilities are shown in figure 7 .

o Case 1: Sender, receiver and overhearer are quasi-synchronized. The overhearer will sense a preamble that is not intended
to it and goes back to sleep. Probability of this event is p - p



Figure 7.

Figure 8.

Case 1
Case 2
Case 3
Case 4
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Case 6
Case 7
Case 8
Case 9
Case 10
Case 11
Lamac. Tree of different wakeup cases.
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Lamac. Possible wakeup instants of overhearers. Case 1
EL ft—l~P+tL~P + (¢ ftlftLyP (29)
Casej,o — D) l D T f 9 P s

o Case 2, 3, 4, 5: the receiver is synchronized with Sender. Nevertheless, the overhearer is not synchronized with the sender.
When the overhearar wakes up, it can receive different messages (preamble, ACK, Schedule or data) as well as clear

channel.

& preamble
BR AcK
N data
Schedule

Tx polling [ polling

Rx polling polling

o polling polling

Figure 9. Lamac. Possible wakeup instants of overhearers. Case 2

Case 2 If the ovehearer wakes up during a preamble transmission, it will receive in average half of the preamble
and overhear the following ACK. Afterwards it will go back to sleep. Probability of this event is p - (1 — p) - pe,
where p. = t£ /t; represents the event that wakeup instant of the overhearer is slightly after the end of polling of
the sender.

th th
Eluseso =5 Pitta - Dot (tr =5 —t3) - P (30)

Case 3: If the ovehearer wakes up during an ACK transmission, it will sense a silent period and ovehear the following
schedule message. Afterwards it goes back to sleep. Probability of this event is p - (1 — p) - pa, where pg = tL /ts
includes the event that wakeup instant of the overhearer happens at least after the transmission of a preamble. py



neglects the time that elapses between the end of the ACK and the end of channel polling of the receiver. In other
words, pg supposes that schedule message is sent immediately after the transmission of ACK.

L L

t,; ty
Eéaseg,o:E’B“i’tg'Pr‘i’(tf*E*tg)'PS (31)

— Case 4: If the overhearer wakes up during the transmission of the Schedule, it will hear the following data and then
go to sleep. Probability of this event is p - (1 — p) - p., where p. = t,/t; assumes that the wakeup instant of the
overhearer happens in average during the middle of schedule transmission.

t t
Efusero = " Pittar Prt(ty = 5 —ta) - Py (32)

— Case 5 The ovehearer will either wakes up during data transmission or will sense a free channel because both
sender and receiver are already sleeping. Therefore the overhearer performs an entire polling and goes back to sleep.
Probability of this event is p- (1 — p) - (1 — p. — Pa — Pe)-

Eéases,o:tl P)l‘f'(tf—tl)P‘5 (33)

« Case 6: Similarly to Case 1, if the overhearer is quasi-synchronized with the sender with probability (1 — p) - p, the energy
cost is:

t t
EéaSEG,o:§l'-Pl+t£'Pr+(tf_§l—t£)'Ps (34)

e Cases 7,8,9,10: If neither the receiver nor the ovehearer are synchronized with sender, it may happen that the receiver
wakes up before the overhearer. We distinguish the situations of quasi-synchronization of the couple overhearer-preambles
and lack of synchronization.

& preamble
B8 ACK
N data
Schedule
Tx Z W 7 R N polling
Rx polling
o polling

Figure 10. Lamac. Possible wakeup instants of overhearers. Cases 7,8,9, 10.

In cases 7 and 8, overhearer is quasi-synchronized with the receiver.
— Case 7: There is a probability to overhear a preamble. Such a probability is (1 —p) - (1 —p) - 1/2 - p.. Consumption
of this case is the same of Case 2.
Eé’ase7,o = EL (35)

Casesz,o

— Case 8: There is a probability to overhear an ACK. Such a probability is (1 —p) - (1 —p) - 1/2 - p4. Consumption of
this case is the same of Case 2.
Eé’ase,g,o = Eéasegno (36)

If the overhearer and the receiver are not synchronized:
— Case 9: There is a probability to overhear a Schedule. Such a probability is (1 —p) - (1 —p) - 1/2 - p.. Consumption
of this case is the same of Case 4.
Eé’aSEQ,a = Eéase4,o (37)

— Case 10: There is a probability to overhear a data message. Such a probability is (1—p)-(1—p)-1/2-(1—pe—pg—Dpe)-
Consumption of this case is the same of Case 5.

L L

ECasem,o = ECase5,o (38)

o Case 11: Otherwise, if the overhearer wakes up before the intended receiver, it will receive one preamble (whichever

preamble amongst y%) and go back to sleep. The cost in this case is:
th+tk

Eé’asell,o: 2 Pl"‘t;epr"‘(tf_

th+tk
F = ty) - Py (39)



The overall energy cost is the sum of the costs of each case weighted by the probability of the case to happen

11

EOL(l) =N, - ZpCasei . Eé‘asei,o (40)
i=1

C. Global buffer contains two messages (B = 2)

If A=2, there can be either one sender with two messages to deliver, or two senders with each only one message. The
others devices may overhear some channel activity. The number of overhearers will be N, = N — 1 if there is just one sender,
N, = N — 2 otherwise. The probability that two messages are in different buffers is equal to (N — 1)/N.

B-MAC (B =2)

The overall power consumption for transmission and reception when A > 1 is linear with the global number of packets in
buffer, independently on how packets are distributed in the different buffers,i.e., independently of the number of senders. In
fact, due to the long preamble to send (t;’) = ty), there can be only one sender per frame. Thus, we have the following relation:
EB(A) = A-EB(1) = A- (EF(1) + EF () + EF (1) + EZ(1) + EZ(1)).

Such a relation depicts the limitations of B-MAC protocol, since high-loaded traffic can hardly been addressed.

X-MAC (B =2)

After the reception of the first data message, the receiver remains in polling state for an extra back-off time ¢; during which
it can receive a second message. The energy consumed for the transmission of the first packet is the same as the energy EX (1)
defined in the previous subsection; then the cost of the transmission for the second message must be added.

Differently from B-MAC, the distribution of messages in the buffers impacts X-MAC protocol behaviour. With probability
1/N both packets are in the same buffer; otherwise two different senders are implicated, so we need to study how wakeup
instants of the active agents are scheduled with respect to each others. Wakeup instant of different agents are all independent.
We assume that the frame begins at the wakeup instant of the first transmitter; scenarios that may happen are illstrated on
Figure 11 with their happening probability:

lp +1q Case 1
Case 2

Case 3

(N-1)/
Case 4

> eta Case 5

sleep Case 6

X
- (¥ +))Case 7

Case 8

Figure 11. X-MAC protocol: Probability tree of wakeup combinations with global buffer size A=2. There are one sender and one or two transmitters.

o Case 1: All three agents are quasi-synchronized. The very first preamble sent by the first transmitter is cleared by the
receiver who sends an ACK; the second transmitter hears both the preamble and the ACK. Probability of this scenario is

PCase; = (N_ 1)/N'p'p-

Euee,1(2) =t -Pi+tl -Pot(ty +15) - Po+2-tq- P 41)

Eé'(asel,'r(2) = (tg))( +2- td) - Py +taX Py 42)
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Figure 12. X-MAC protocol, global buffer size A=2: Overhearing situations for Case 1.
X 17BN
ECase, 1(2) = (i + 5t 5) 'y 43)
t t
Eluse, s(2) =Bty — (ti+1; +15 +1tq) — (5 F N+t 4 ta) — (5 F X+ tX +2-tq)) - P (44)

Depending on wakeup instants of overhearers several situations may happen. If the overhearer is quasi-synchronized with
one of the three active agents (receiver or one of the two senders), then it will sense a busy channel (cf. figure 12).
We assume that an overhearer polls the channel for some time and then overhears a message that can be a preamble,
an ACK or a data. For simplicity, we assume the overhearer polls the channel during in average a half polling frame
and then overhears a data (the largest message that can be overheard). Probability to wakeup during a busy period is

piflsel’ Ao = (tff +tX +2-tq)/ts. Otherwise, the overhearer wakes up while channel is free; it polls the channel and
then goes back to sleep.

t t
Egasel,o(Q) =N, - (pgfzsel,A=2 ’ (5 B+t P+ (tf - 5 - td) 'PS) + (1 _pgflsel,A=2) : (tl B+ (tf - tl) : PS)) (45)
o Case 2: First sender and receiver are quasi-synchronized, contrary to second sender (cf. figure 13). The only possibility for
the second sender to send data in the current frame is to manage to catch the ACK of the receiver during its polling period.
This event happens with probability ¢* = (¢, —¢X)/ts. Probability of this scenario is pcase, = (N —1)/N-p-(1—p)-g*~.

¥4 preamble

%% ACK
N data
Tx1 [ polling m ! polling
1 1
Rx i polling i polling
i o
™2 | N
' h
1
|
o1 | polling
1
02 i || polling [
03 i : polling

Figure 13. X-MAC protocol, global buffer size A=2: Overhearing situations for Case 2.



Energy consumption of this second scenario is quite the same as the one of Case 1 but event probability is different. Since
the second sender is not quasi-synchronised, it cannot hear the full preamble sent by the first sender and has a shorter

polling period.

Eé'(asez,l(Q) = Eé’(asel,l(Q) -

E()](asez,s(Q) = Eé(asel,s(Q) +

Eé'(aseg,t(2) = Eé’(asel,t(Q) —1

Eé{aseQ,r (2) = Eé‘(asel,r(Q)

bt — X

tl+t§

X
P By

- P
D) l

- P,
9 l

(40)

(47)

(48)

(49)

We assume that the probability of busy channel is the same as the previous scenario. So, overhearing consumption is

unchanged.

Eé{a563,s(2) = (3 : tf - (tl + ti)( + taX +td) —t = (

Eé'(aseg,o(2) = Eé{asel,o(z)

o Case 3: With probability 1 — ¢, the second sender wakes up too late and cannot catch the ACK. In this case, it goes
back to sleep and it will transmit its data during the next frame. So, energy cost is the sum of the transmission cost for
the first packet in the current frame and for the second packet in the following frame. This second frame is the same as
EX(1). This scenario happens with probabiliy pcgse, = (N —1)/N -p- (1 —p) - (1 — ¢%).

Eé(aéeg,t(2):tfpt+taxP7+tht+EtX(1)

Eé(aseg,r(2) :t;( 'R’+tf P +ty- P, JrEg((l)

t
Blfasest(2) = (it 10+ 5) - P+ B (1)

t
2

+tX +tX +ta)) - P+ EX (1)

(50)

(G

(52)

(53)

(54)

In the second frame, the first sender has nothing to send any more and can be count as an overhearer. Then the number
of overhearers should be updated between two frames but energy cost per overhearer is unchanged in comparison to the
one for a unique message in global buffer (A+1):

Eé‘(aseg,o(2) = (NO + (NO + 1)) :

B3 (1)

o

N, 1

(55)

o Case 4: First and second senders are quasi-synchronized but the receiver wakes up later. In this scenario, the first sender
sends a strobed preamble until the receiver wakes up and sends an ACK; the second sender hears the whole strobed
preamble and then sends its data during the back-off time. Between short preambles, senders poll channel waiting for an
ACK from receiver. Probability of this scenario is pcgse, = (N —1)/N - (1 —p) - p.
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02

03
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1 '
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Figure 14. X-MAC protocol, global buffer size A=2: Overhearing situations for Case 4.



Elreet@) =7 X (Pi+P)+2t5 P +2:tq- P (56)

Eé’(ase4,r(2) = (t;( +2- td) : PT + tf . Pt (57)

t X+t
Eagent(@) = (ti+ 5 +2- (7% = 1) 15 + 2——) - B (58)
ECuae4,5(2):(3tf_(tl+fY (tp +ta)+td)_(§+’7 (tp +ta)+td)_(7+tp +ta +2td))Ps (59)

2
When receiver wakes up later than both senders, the probability that an overhearer wakes up during a transmission
of a preamble is higher than with previous scenarios. If this happens, the overhearer performs a very short polling,
overhears a message (most probably a preamble) and then goes back to sleep. For simplicity we assume that the overhearer
will perform half of (tff + tX) of polling and than overhears an entire preamble. Probability of busy channel is thus
p§18€4,A:2 = (’YX ’ (t;{( + taX) +2- td)/tf

tX X
2

Eé(ase4,o(2) = NO'(p():fLse4,A:2'( Pl+t;( 'PT+(tf7

£)- P+ (1= sos ) (t1- Pt (t7—11)-Py))
(60)
o Cases 5, 6, 7: Second sender and receiver are not synchronized with first sender; the behaviour of the protocol depends

on which device among the second sender and the receiver will wake up as first.
— Case 5: Receiver wakes up as first. Similarly to Case 2, the only possibility for the second transmitter to send
data in the current frame is to catch the ACK of the receiver during its polling. This event happens with probability
< = (t—tX)/t . However, there is also the possibility for Tz, to catch the preamble sent by T’z that just precedes

X 44X
b Tl x
2

X4t

the overheard ACK. Such eventuality can happen with probability uX = ZPtXﬁ This scenario happens with
) 2

probability pegse; = (N —1)/N - (1 —p)- (1 —p) - % g

¥4 preamble

ACK

Tx1 4 G N E polling
Rx i polling !
Tx2 i IEE*?‘:»?
E [ busy channel i |
o1 i polling E polling
02 i polling i [l
03 , ! polling
Figure 15. X-MAC protocol, global buffer size A=2: Overhearing situations for Case 5.
Efases1(2) = (v 10 +ta) - Pe+ - Pt (0™ -ty +437) - Pt ta- By 1)
Efusesr(2) = (6 +2-1a) - P+ 17 - P, (62)
tX X tX X tX
Eé‘ases’l(z) = (t + (7X —1) -tf + % o 1927“ +(1— uX) . %) P, (63)

X X X
Bfasens@ = Bty — (t4 7% (6 + 0 4 1) = (0¥ - T 4 (1= w¥) - % ¥ 1 4 1)
(e X X 120 10)) - Py
(64)



As in the previous case, the overhearer perceives a very busy channel because of the transmission of preambles; so
when it wakes up it will perform half of (tff +tX) in polling state before overhearing an entire preamble. Probability
of busy channel is pX .. = X os-

Eluses 0(2) = Epses 0(2) (65)

— Case 6: Receiver wakes up as first. Similarly to Case 3, with probability 1 — ¢, the second sender wakes up too late
and cannot catch the ACK from the receiver. Thus it goes back to sleep and will transmit its data during the next
frame. This scenario happens with probability pcase, = (N —1)/N-(1—p)- (1 —p)- - (1 —¢¥).

Eé'(aseg,t(2):’}/x't;('Pt—’_taX'P”‘—’_td'Pt—’—EiX(l) (66)
Efasesr(2) = (4 +ta) - P+ 13 - P+ EX(1) (67)

X X t;( +tllX X
ECaSEG,l(Q):(tl—’—(’y_l)ta)Pl+tlPl+TPl+El (1) (63)
Edusess(2) = Bty — (i +7™ (6 +2) +ta) +t+ (P + 15 +17 +ta) - P+ BX (1) (69)
Eé(aseg,o(Q) = Eé’(ase3,o(2) =2 Ej((l) (70)

— Case 7: Second transmitter wakes up as first, it hears a part of the strobed preamble until the receiver wakes up

and sends its ACK. In average, when the second transmitter wakes up, it performs a short polling whose duration
o+t X
2

preambles before the receiver wakes up and stops the strobed preamble by sending its ACK. Probability of this

scenario is poase, = (N —1)/N-(1—p)- (1 —p) - %

is the one between two successive short preambles: . After that, it hears an average number of LLJ short

o

Edaseri(2) = (v 15 +ta) - P15 P+ (L5 6 +15) Pt ta P, (71)
Eé(ase7,r(2> = (t;z)f—’—td)PT—i_tf Py +tq - Pr (72)
X b+t t + b
Blasera@ = (4 0% = 1)) - Pt (15 ) =)0 + 255) - Ay 2= Ry (73)
X X X | X tz)»(""té( o X | X i))(""t;( X | X
ECase7,s(2) = (3tf_(tl+’y '(tp +ig )+td)_(7+|_7J(tp +ig )+td)_(7+tp +t, +2td))PS

2 2

(74)
From the overhearers point of view, this case is equivalent to Cases 4 and 5.

Efasero(2) = Edgse,.0(2) (75)

o Case 8: There is only one sender that sends two messages in a row during the extra back-off time. This last scenario
happens with a probability equal to pogses = %

Eluses t(2) = EX(1) +ta- Py (76)
Elusesr(2) = EX(1) + ta- P, (77)
Eluses(2) = B (1) —ta- P, (78)
Elase,s(2) = EX(1) —tq - P (79)

When the sender is unique, energy consumption of the overhearers can be assumed quite the same as the one in case of
a global buffer with one packet to send (A=1).

Efuses.0(2) = ES (1) (80)

The overall energy cost is the sum of the costs of each scenario, weighted by the probability of the scenario to happen (as
showed in the figure 11):

8
EX (2) = chasei : Eé'(asei (2) (81)
i=1

LA-MAC (B =2)



When global buffer contains more than one message, there can be one or several senders. In this section we deal with the
case A = 2. Energy consumption E”(2) depends on the number of senders as well as on how wake-up are scheduled. All
different combinations of wake-up instants with their probabilities are given on figure 16. With probability (N — 1)/N there
are two senders, otherwise there is a single sender. Cases 1-7 refer to situations in which two senders are involved, whereas
case 8 refers to a scenario with one sender.

Case 1

Case 2
Case 3

Case 4

Case 5

Case 6

Case 8

Figure 16. LA-MAC protocol, global buffer size A=2: Probability tree of wakeup combinations.

o Case 1: The three agents are quasi-synchronized. The very first preamble is instantly cleared by the receiver; the second
transmitter hears this preamble and the ACK. This scenario happens with a probability equal to pcase, = (N—1)/N-p-p.

Schedule
Tx1 [ _poling [z N polling
Re | (poling 71! [poling ]
T™e | [ polndZey N [poliing ]
! busy channel I
o1 i polling i polling
02 polling | [Cpolling ]
03 ' polling i [ pollir
04 poling
05 polling
Figure 17. LA-MAC protocol, global buffer size A=2: Overhearing situations for Case 1.
L _4+L L L L
EC’asel,t(Q) *tp 'Pt+ta 'PT+(tp +ta) '(PT+Pt)+tg'Pt+td'Pt (82)
Eé‘ase1,r(2) = E{J(l) + (té + td) P+ tg - Py (83)

t
Elager1(2) = (BF () = (ty +17) - P) + 5 - B (84)



t
Blasers(2) = (BE() = ta) = (ty = 5 — 1y —t7 —ty —ta) - Ps (85)

As far as overhearers are concerned, several situations may happen depending on the instants of wakeup of the overhearer
For simplicity we assume that if the overhearer is quasi-synchronized with one of the three active agents (sender one, two
or receiver), it will sense a busy channel (cf. figure 17). We assume that the overhearer will poll the channel for some
time and then ovehear a message (that can be a preamble, an ACK, a Schedule or a data), for simplicity we assume that
the ovehrearer polls the channel for an average time equal half the duration (¢;) and then it will overhear a data (the
largest message that can be sent). Probability to wakeup during a busy period is pfasel’ Ay = (2- (t{; +th+tg)+t,)/ty.
Otherwise, if the overhearer wakes up while channel is free, it will poll the channel and then go to sleep.

t t
Efaser0(2) = Dhnser ama (é “Pi+ty- P+ (ty — gl —ta) - Ps) 4 (1= phiger aza)/tg) - (t1- P+ (t5 — 1)) - Ps) (86)

o Case 2: The first transmitter and receiver are quasi-synchronized. However the second sender, is not. The only possibility
for it to send data in the current frame is to send a preamble during the polling of the receiver plus the probability to
receive an ACK . This event happens with probability ¢© = 1/v% + (t; — t,)/ts.

Efusess(2) = EF(1) + (tg +2-t2) - Po+ (th +tq) - Py (87)
Efgsesr(2) = EF() + (th +t4) - P +tL - Py (88)
t
Eé’asez,l(2) = (ElL(l) - (t;xl; + tg) . Pl) + 510 ' [)l (89)
t
Efgse,s(2) =EFQ) = (t; — 2 —th —th —t,—ty) - P, (90)

2

We assume that the probability of busy channel is the same as the previous case. So consumption is assumed to be the
same as the previous case.

Efuser.o(2) = Efpee, 0(2) 1)

o Case 3: with probability 1 — ¢”, the second sender wakes up too late and can not catch the acknowledge. In this case it
will go back to sleep and it will transmit its data during the next frame. ADD FIGURE FOR THIS CASE

Efgee,(2) =2-E*(1) (92)

o Case 4: First and second senders are quasi-synchronized but the receiver wakes up later. In this case, the first sender will
send a strobed preamble and the second will hear all the preambles until the receiver wakes up and sends the ACK.
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o ACK
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Figure 18. Global buffer size A=2. Overhearing situations for Case 4. LA-MAC protocol
Efuse,(2) = BF () +9% -ty - P42 t0 - Pt ty Pt (t +ta) - Py (93)
Efgse,r(2) = BX(1) + (t; +ta) - Pr+tg - Py (94)
4]
Efase,(2) = (BF(1) = (ty +10) - P) + (0" = 1) -t + 5) - P (95)
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t
Easess(2) = By (1) = (ty = (0" + 1) - (4 +1) =ty —ta— 5) - s (96)
If the receiver wakes up later than the couple of senders, the probability that an overhears wakes up during a transmission
of a preamble is high. If this happens, the overhearer performs a very short polling, overhears a message (most probably
a preamble) and then it goes back to sleep. For simplicity we assume that the overhearer will perform half of (t£ +tL) of
polling and than overhears an entire preamble. Probability of busy channel is p, ., = v - (t5 +t5) + (th +t5) +t,+2-14

ty +ty th+tl

Eéa564,o(2) :pgaseéll ( ‘Pl—’_tgPT—’_(tf_ _t;‘e)'PS)+(1_chase4)'(tl 'Pl+(tf_tl)PS) 97

e Cases 5, 6, 7: The second transmitter and the receiver are not synchronized with the first transmitter, the behaviour of the
protocol depends on which agent will wakes up as first among the second transmitter and the receiver.

— Case 5: the receiver wakes up as first, similarly to Case 2, the only possibility for it to send data in the current frame
is to listen to the ACK of the receiver, during its polling. This event happens with probability g% = 1/~%.
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Figure 19. Global buffer size A=2. Overhearing situations for Case 5. LA-MAC protocol
ECase5 t(2) ‘ECaseg7 (98)
ECCL8€5 (2) = ECCLSEQ,T (99)
ECuaes l(2) ECuseg, (100)
ECase5,s(2) = ECaseg,s (101)

As in the previous case, the overhearer will perceive a very busy channel because of the transmission of preambles so
when it will wake up, it will perform half of (tﬁ +tL) in polling state and than it will overhear an entire preamble.
Probability of busy channel is pZ, .5 = ploses =75 - (b5 +tE) + (L + L)+t +2 - tg

Efuses.0(2) = Epse, 0(2) (102)

— Case 6: the receiver wakes up as first, similarly to Case 3, with probability 1 — ¢”, the second sender wakes up too
late and can not catch the acknowledge. In this case it will go back to sleep and it will transmit its data during the
next frame.

Efases(2) = Efqse, =2+ E*(1) (103)
— Case 7: the second transmitter wakes up as first, will hear a part of tBe strobed preamble until the receiver wakes up
and sends the ACK. In average, the second transmitter will hear L%J preambles.
L
Blpuers(2) = BEQ) + || -t P4 240 Pt (b +1a) - Pty - Py (104)
Efgse, r(2) = Br (1) + (ty +ta)  Pr+tg - Py (105)



L L L | 4L o L tz% +t<€
ECase7,l(2) = (El (1> - (tp + ta) : Pl) + ((L?J - 1) : ta + 2 ) B
L th+tk
Y a
EéaSE7,s(2) = EGL(l) - (tf - ((L?J + 1) ' (t]I; + tg) -2 9 - tg - td) - P

From the overhearers point of view, this case is equivalent to Cases 4 and 5.
Eé’ase77o(2> = Eéase47o(2)

o Case 8: there is only one sender that will send two messages in a row.

L) +ta- P,
L _ L

ECaseg,r(2) - Er (1) +ta- Pr
Eé’aseg,l(z) = (ElL(l) —tq- Pl)
EéaSES,s(Q) = EL(l) —ta- PS

When the sender is unique, overhearer consumption can be assumed the same as the case of A=I.

Efiases o(2) = By (1)
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(106)

(107)

(108)

(109)
(110)
(111)
(112)

(113)

The overall energy cost is the sum of the costs of each case weighted by the probability of the case to happen (as showed

in the figure 11):
8

EL(2) = chasei : Eé’asei
i=1
D. Global buffer contains more than two messages (B > 2)
B-MAC (B > 2)
X-MAC (B > 2)

LA-MAC (B > 2)
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Figure 20. Energy analysis and OMNeT++ simulations versus the global buffer size.

(114)
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V. NUMERICAL VALIDATION

We have implemented the analyzed MAC protocols in the OMNeT++ simulator [20] for numerical evaluation. Each numerical
value is the average of 100 runs and we show the corresponding confidence intervals at 95% confidence level. We assume that
devices use the CC1100 [21] radio stack with bitrate of 20Kbps. The values of power consumption for different radio states
are specific to the CC1100 transceiver considering a 3V battery. In the following, we assume N = 9 senders. The periodical
wakeup period is the same for all protocols: ¢y = t; +ts = 250 ms. Also the polling duration is the same for all protocols:
t; = 25 ms, thus the duty cycle with no messages to send is 10%. We provide numerical and analytical results for buffer size
B € [1,50].

0.98 b

—HB— B-MAC and LA-MAC Delivery Ratio
0.96 - —©— X-MAC Delivery Ratio
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Figure 21. Delivery ratio versus the global message buffer. In X-MAC, most collisions happen when messages are sent after the back-off time.

We compare the protocol performance with respect to several criteria:

o Latency [s]: the delay between the beginning of the simulation and the instant of packet reception at the sink (we present

the latency averaged over all nodes).

o Energy Consumption [Joules]: the averaged energy consumed by all nodes due to radio activity.

o Delivery Ratio: the ratio of the number of received packet by the sink to the total number of packets sent.

In Figure 20, we show the comparison between the proposed energy consumption analysis and numerical simulations for
different values of the global buffer size. We assume that at the beginning of each simulation all messages to send are already
buffered. Each simulation stops when the last message in the buffer is received by the sink. Figure 20 highlights the validity of
the analytical expressions for energy consumption—we can see that the curves reflect the main trends. The simulation results
exceed the analytical data because the simulation reflects the detailed behavior for the protocols, which cannot be captured in
simple expressions. As expected, B-MAC is the most energy consuming protocol: as the buffer size increases, the transmission
of a long preamble locally saturates the network resulting in high energy consumption and latency (cf. Figure 22). In X-MAC,
short preambles mitigate the effect of the increasing local traffic load, thus both latency and energy consumption are reduced
with respect to B-MAC. Even if X-MAC is more energy efficient than B-MAC, Figure 21 shows that even for small buffer
sizes, the delivery ratio for this protocol is lower than 100 % most likely because packets that are sent after the back-off collide
at the receiver. LA-MAC is the most energy saving protocol and it also outperforms other protocols in terms of latency and
the delivery ratio. We observe that when the instantaneous buffer size is lower than 8 messages, the cost of the SCHEDULE
message is paid in terms of a higher latency with respect to X-MAC (cf. Figure 22); however, for larger buffer sizes the cost of
the SCHEDULE transmission is compensated by a high number of delivered messages. In Figure 23, we show the percentage
of the time during which devices spend in each radio state versus the global buffer size. Thanks to efficient message scheduling
of LA-MAC, devices sleep most of the time independently of the buffer size and all messages are delivered.

VI. CONCLUSIONS

In the present paper, we have analyzed the energy consumption of preamble sampling MAC protocols by means of a simple
probabilistic modeling. The analytical results are then validated by simulations. We compare the classical MAC protocols
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(B-MAC and X-MAC) with LA-MAC, a method proposed in a companion paper. Our analysis highlights the energy savings
achievable with LA-MAC with respect to B-MAC and X-MAC. It also shows that LA-MAC provides the best performance in
the considered case of high density networks under traffic congestion.
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