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Abstract—Simulation is a popular approach for empirically
evaluating the performance of algorithms and applications in
the parallel computing domain. Most published works present
results without quantifying simulation error. In this work we
investigate accuracy issues when simulating the execution of
parallel applications. This is a broad question, and we focus
on a relevant case study: the evaluation of scheduling algorithms
for executing mixed-parallel applications on clusters. Most such
scheduling algorithms have been evaluated in simulation only.
We compare simulations to real-world experiments in a view
to identify which features of a simulator are most critical for
simulation accuracy. Our first finding is that simple yet popular
analytical simulation models lead to simulation results that
cannot be used for soundly comparing scheduling algorithms. We
then show that, by contrast, simulation models instantiated based
on brute-force measurements of the target execution environment
lead to usable results. Finally, we develop empirical simulation
models that provide a reasonable compromise between the two
previous approaches.

I. INTRODUCTION

Experimentation plays an important role in computer sci-

ence, and in particular in parallel and distributed computing.

They are used to prove or disprove conjectures, validate a

model, or quantify the performance of a particular design un-

der realistic conditions. Methodologies range from executing

a real-world application on a real-world platform to modeling

the application behavior in a simulator [1]. Simulations are not

as realistic as real-world experiments, which we simply term

“experiments” in this work. Simulations are attractive because

they allow reproducibility of results, provide an objective basis

for application comparison, and afford the capacity to explore

a broad range of scenarios (some of them not tractable in

experiments) in a reasonable amount of time.

Parallel and distributed applications consist of computation,

communication, and possibly I/O activities. Consequently, all

three must be accurately modeled by a simulator. Simula-

tion models used in practice range from analytical models

to operational models. For instance, the execution of an

application task can be simulated using a simple analytical

model based on computational complexity, or via execution

of actual application code on a cycle-accurate simulator.

Similarly, network communication can be simulated using a

simple latency/bandwidth affine model of data transfer time,

or using a packet-level simulator. The motivation for analytical

models is clear: they can be computed quickly and scalably

(e.g., a few minutes of simulation on a single computer could

suffice for simulating an application that runs for several hours

on hundreds of cluster nodes). Consequently, the vast majority

of published simulation results in the parallel application

scheduling literature are obtained with analytical simulation

models. In particular, simulation tools used routinely in the

community use analytical, some of which have been validated

against operational models [2].

The key question we investigate in this work is whether

relying on analytical simulation models leads to scientifically

valid conclusions. This is a somewhat disturbing question to

ask given the sheer number of published results that rely on

such models. It is also a broad question that does not have a

single answer since the answer depends on the applications and

platforms at hand. Consequently, we focus on a relevant case

study: scheduling algorithms for executing mixed-parallel ap-

plications on clusters. Like most scientific workflows, mixed-

parallel applications can be represented as task graphs, but

these tasks are data-parallel computations. By combining the

task-parallelism offered by the workflow structure and data-

parallelism within each task, mixed parallelism increases po-

tential parallelism and can thus lead to higher scalability and

performance. Mixed parallelism can be implemented in many

scientific applications [3]. In recent years several algorithms

have been proposed for scheduling mixed-parallel applications

on clusters [4], [5], [6], [7], and most of these algorithms have

been evaluated via simulations. Several of these simulations

were enabled by the SimGrid toolkit [8], a state-of-the-art

tool for performing discrete event simulations of distributed

parallel systems using analytical simulation models. There are

several other toolkits for building discrete event simulator, e.g.,

GridSim [9]. However, it is not the objective of this work to

compare several simulation toolkits for their simulation qual-

ity. As all simulators entail an abstraction error, we are rather

interested in answering if simulation results in this domain of

scheduling allow the scientist to transfer the solution into a

real runtime environment.

In this work, we compare SimGrid simulations with ex-

periments on a real-world cluster in the context of mixed-

parallel application scheduling. By comparing simulations to

experiments, we can quantify the simulation error and, more

importantly, identify its root causes. We also investigate to

which extent simulation models should capture application-



and platform-specific overheads in order to improve accuracy

so that a valid comparison of the scheduling algorithms is pos-

sible. We refine our simulation model accordingly, first using

a brute-force approach that measures all possible overheads

and later using empirical models that use interpolation for

estimating overheads. From these developments we then infer

guidelines for sound simulation practices.

This paper is organized as follows. Section II describes

our case study. Section III presents our application execution

environment and Section IV presents our simulation envi-

ronment. Section V compares simulations to experiments.

Section VI shows how simulation accuracy can be improved

so that simulations lead to meaningful results. Section VII

gives a method for obtaining a simulation model that is less

involved than that in Section VI, but still produces reasonable

results. Related work is discussed in Section VIII and overall

conclusions are drawn in Section IX.

II. CASE STUDY

A. Problem Statement and Algorithms

We target the scheduling of a mixed-parallel application

onto a cluster with N identical compute nodes and a dedi-

cated interconnect. The application consists of tasks with data

dependencies, represented as a Directed Acyclic Graph (DAG).

Each task is moldable, i.e., it can be executed with an arbitrary

number of processors (within some bounds in practice). An

MPI data-parallel application is an example of a moldable

task. An example mixed-parallel application is multiple such

applications in a scientific workflow.

Many algorithms to schedule mixed-parallel applications on

homogeneous clusters to minimize application execution time,

or makespan, have been proposed [5], [6], [7], [10], [11], [12],

[13]. All these algorithms decompose the scheduling in two

phases. In an allocation phase, they determine task allocations,

i.e., the number of processors that should be used to execute

each task. In a mapping phase, they select the respective

processor set on which a task is executed. Previously published

results show that the Critical Path and Area-based schedul-

ing (CPA) algorithm [7] has a low computational complexity

and leads to good results when compared to its competitors.

Two extensions to CPA are used in this work: Heterogeneous

CPA (HCPA) [12] and Modified CPA (MCPA) [5]. The origi-

nal CPA algorithm produces task allocations that can become

too large, thereby degrading overall performance. Both HCPA

and MCPA remedy this problem using different solutions and

thus leading to different schedules. See [5], [12] for full details

on these algorithms.

B. Problem Instances

A problem instance for the scheduling consists of a platform

and a mixed-parallel application. For all our experiments we

use a cluster, located at the University of Bayreuth, Germany,

which comprises N = 32 nodes (each with two 2GHz AMD

Opteron 246) interconnected with a Gigabit Ethernet switch.

We had dedicated access to this cluster and could install our

own application execution framework and scheduler. The vast

Table I
PARAMETERS USED FOR GENERATING RANDOM DAGS.

parameter values

number of tasks 10
number of input matrices (DAG width) 2, 4, 8
ratio addition / multiplication tasks 0.5, 0.75, 1.0
matrix size (# elements per dimension) 2,000, 3,000
number of samples 3

total DAG instances 54

majority of the production workflows today consist of non-

moldable, purely sequential tasks. It would be possible to

enhance such a workflow with mixed-parallelism, admittedly

at the expense of development time and effort, and use

this workflow as the target application for our case study.

Instead, since our goal is to study simulation accuracy rather

than obtaining novel results regarding scheduling algorithms

themselves, we generate random DAGs, as described hereafter.

In our random DAGs, tasks are either matrix additions or

matrix multiplications. Both these computational kernels can

be easily parallelized using standard parallel algorithms [14].

We use a vanilla 1D parallelization: if a n × n matrix of

size n is mapped onto p processors, each processor holds n/p
columns. For n×n square matrices, the time complexity of the

addition is O(n2) and that of the multiplication is O(n3). We

can thus easily generate applications with different computa-

tion to communication ratios (CCRs) by varying the fraction

of tasks that implement matrix addition or multiplication. we

have implemented matrix multiplication and addition in Java

using the MPIJava (v1.2.5) library, using the mpich2 (v1.0.8)

native communication library.

Our DAG generator operates as follows. First, it randomly

picks the number of entry tasks between 1 and log
2
(v), where

v denotes the number of input matrices. So as to generate

DAGs of different widths (i.e., potential task parallelism), v is

a parameter that we set to 2, 4, or 8. Each entry tasks operates

on two matrices and produces a new matrix as output. The

number of tasks in subsequent levels of the DAG is picked

between one and the logarithm of the number of matrices so

far, i.e., the input matrices and those produced by previous

tasks. The DAG generation ends when a specified total number

of tasks has been generated. We control the CCR by setting the

ratio of matrix additions to matrix multiplications (e.g., a ratio

of 0.2 for 10 tasks leads to 2 additions and 8 multiplications).

We generate instances by setting this parameter to 0.5, 0.75,

or 1.0. A fourth parameter specifies the size of the processed

matrices and has an impact on the overall execution time. We

consider n × n square matrices of double precision elements

with n = 2,000 and n = 3,000, for 30MB and 68MB of

data per matrix. The scheduling algorithms do not consider

memory constraints, and these sizes ensure that all data will

fit into the main memory of a processor. For each instantiation

of the above parameters we generate three sample DAGs, for

a total of 54 DAGs. Table I gives a summary of the DAG

generator parameters and their values.



III. EXECUTION FRAMEWORK

We use the TGrid software for running experiments on our

cluster [15]. TGrid is Java-based because initially designed

for heterogeneous platforms. TGrid is ideally suited to our

case study because it supports the execution of interdependent

multiprocessor tasks, i.e., mixed-parallel applications. TGrid

consists of a runtime environment and of a development

library. The library makes it possible to implement parallel

tasks with MPIJava and provides mechanisms for defining data

dependencies between tasks. The runtime environment spawns

and monitors tasks accordingly to a given schedule. We have

implemented a module on top of TGrid to execute a mixed-

parallel application according to a given schedule that specifies

task execution order and which processors to use for each task.

In a mixed-parallel application, different parallel tasks may

use different data distributions (e.g., 1-D, 2-D, block-cyclic).

Data redistribution is thus often necessary when transferring

output data from a task to its dependents. Implementing data

redistribution is often difficult. Fortunately, TGrid provides a

component for transparent data redistribution. This component

determines the source and target processors for each data

element, determines the messages that have to be transferred,

and performs all necessary point-to-point data transfers.

IV. SIMULATION FRAMEWORK

Our simulator is based on SimGrid [8], a framework specifi-

cally designed for the evaluation of scheduling algorithms. The

simulator takes as input a platform specification, an application

specification and a scheduling algorithm, and outputs an

application execution trace.

The platform specification for our 32-node cluster is con-

structed as follows. Since our application execution framework

is Java-based and that our application tasks are simple linear

algebra kernels, we have quantified the compute speed of

the cluster by benchmarking a matrix multiplication running

on the JVM on our cluster. Accordingly, the compute speed

of each node is set to 250 MFlop/s. The interconnection

network is represented by four parameters: the bandwidths and

latencies of the the cluster’s switch and those of the private

links connecting each node to the switch. Since our cluster

uses a Gigabit Ethernet interconnect, these bandwidths are

set to 1Gb/s and the latencies to 100µs. Note that SimGrid

simulates contention between network communications that

share a network link [2].

SimGrid provides a model (called Ptask L07) to simulate

the execution of parallel tasks. In this model, a user-provided

array a describes the number of floating point operations that

each processor has to execute and a user-provided matrix

B describes the communication pattern (i.e., the number of

bytes exchanged between each pair of processors). This model

makes it possible to simulate fully parallel tasks (a 6= 0,

B = 0), data redistribution tasks (a = 0, B 6= 0), and parallel

tasks with communication (a 6= 0, B 6= 0). We use this model

to instantiate simulation models representative of those used

in the scheduling literature, as explained hereafter.

1) Modeling Task Execution Time: The traditional approach

is to rely on analytical models of application execution times,

which we can implement in SimGrid. Recall that our imple-

mentations of parallel tasks use 1D data distributions. Let n
denote the dimension of the matrices, and p the number of

processors on which a parallel task is executed. For the parallel

matrix multiplication, each processor executes 2n3/p floating

point operations and sends n2/p data elements per commu-

nication step. The number of operations to be performed for

a parallel matrix addition is n2/p, and no communication is

needed. We use these quantities to instantiate the computation

array and communication of the Ptask L07 parallel task model

in SimGrid. Our initial experiments showed that the time to

perform matrix additions is negligible. The O(n2) complexity

does imply a lower execution time than matrix multiplication,

and in practice this time is so small that it has no effect on

the overall schedules. For this reason we artificially increase

the complexity of matrix additions by repeating them several

times. More precisely, each matrix addition is executed n/4

times, leading to a total of n
4
· n

2

p
operations. Even after this ad-

justment, there is still a factor 8 between the number of floating

point operations requires for matrix multiplications and matrix

additions. Consequently, our additions and multiplication tasks

still have significantly different CCRs. All results hereafter are

obtained with this adjustment.

2) Modeling Data Redistribution Time: To model the data

redistribution time between subsequent tasks, we create data

distribution tasks defined in the Ptask L07 model by a commu-

nication matrix that contains the number of bytes exchanged

by each processor pair. Our use of 1D data distributions for all

our parallel tasks allows us to determine exactly the content

of this communication matrix by computing the overlapping

intervals between two matrix distributions.

V. SIMULATIONS VS. EXPERIMENTS

A. Methodology

As described in Section II-B, we generate 54 random ap-

plication DAGs of matrix addition and multiplication parallel

tasks. Each such DAG is passed to our simulator, along with

a scheduling algorithm and the platform specification. The

simulator outputs the computed schedule and the (simulated)

application makespan. The computed schedule specifies the

order in which the tasks must be executed as well as the

processors used for each task. We then execute the application

on the physical cluster following this schedule, and measure

the achieved makespan. We can then compare the simulated

makespan to the experimental makespan. We present results

of this comparison for all random DAGS, both for the HCPA

and MCPA scheduling algorithms, and attempt to answer the

question: can simulation results be used to predict real trends

regarding which algorithm is preferable?

B. Results

Figure 1 shows results for all DAGs with input matrices of

size n = 2,000. Each point on the x-axis corresponds to one

specific DAG. The y-axis shows the makespan achieved by



HCPA relative to that achieved by MCPA, in percentage (a

negative value means that HCPA leads to a shorter makespan

than MCPA). For each DAG, two bars are shown. The black

bar is for simulation results and the white bar is for experimen-

tal results. We sorted the DAGs on the x-axis by increasing

relative simulated makespan to make the figure easier to read.
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Figure 1. HPCA makespan relative to that of MCPA using analytical models
(n = 2,000).

Simulation results differ from experimental results signifi-

cantly, to the point that simulation results simply cannot be

used to predict the relative performance of the two scheduling

algorithms. For 16 out of the 27 DAGs shown in the figure,

or 60%, relying on simulations to compare HCPA and MCPA

lead to a result that is the opposite of the experimental result.

For larger matrices, n =3,000, simulations lead to erroneous

comparisons between HCPA and MCPA in 7 out of the 27

DAGs, or 26% (results not included here). We conclude that

our simulator simply does not produce meaningful results.

C. Analysis

When analyzing the simulated and real-world schedules,

we found that some tasks have negligible execution time in

simulations but not in experiments, meaning that simulated

execution times are often grossly underestimated. Furthermore,

data redistributions take significantly longer in experiments.

We have isolated three causes for these discrepancies:

a) Task execution time: Our task implementations do not

use highly-optimized kernels, e.g., assembly or finely tuned

BLAS implementations. This contributes to less predictable/-

modelable task execution time, while optimized BLAS li-

braries often perform close to peak performance. Our Java

code is often far from peak performance and turns out to be

sensitive to number of processors and the size of the matrices,

which is not capture by the simulated analytical models.

b) Task startup overhead: Starting a task in TGrid is

expensive as it entails starting a Java Virtual Machine (JVM)

on each processor via SSH. This overhead is not captured in

the simulated analytical models.

c) Data redistribution overhead: In TGrid, for a process

to communicate with a process from a different context (i.e.,

another MPI task) it must first register to a local subnet

manager component and then retrieve information regarding

other processes from that component. There is a single subnet

manager and the time to retrieve information increases with the

number of processes assigned to a task. Again, this overhead

is not captured by the simulated analytical models.

The three culprits above pertain to our execution environ-

ment. Another environment would possibly obviate some of

these factors or reveal new ones. Regardless, the overall mes-

sage here is that, unsurprisingly, to be meaningful a simulator

must account for specifics of the environment. Yet, simulators

used in the scheduling literature are typically generic and can

thus easily lead researchers to draw erroneous conclusions.

VI. REFINING THE SIMULATION MODELS

A. Task Execution Times Based on Profiles

One of the reasons why our simulator leads to inaccurate

results is because it uses flawed analytical models of (parallel)

task execution times. The graph on the left-hand side of

Figure 2 shows the relative error of the analytical performance

model for matrix multiplication when compared to our Java

implementation for n = 2,000 and n = 3,000. The x-axis

shows the number of processors allocated to the task. We see

that the error fluctuates without clear patterns up to 60%. One

may argue that this negative result is due to our use of Java.

To counter this argument, we have also conducted experiments

with PDGEMM, a parallel matrix multiplication implementa-

tion from the LibSci scientific library. The graph on the right-

hand side of Figure 2 shows similar results obtained on a Cray

XT4 (Franklin, LBNL) for three matrix sizes (1024, 2048, and

4096). The analytical model is 2n3

p
· 1

FLOPS
, where FLOPS

is the flop rate measured on the machine, which is at 4165.3
MFLOPS. The average prediction error oscillates at about 10%

and goes up to 20%.

We conclude that, even for a task as simple as paral-

lel matrix multiplication, task execution time is not easily

captured by a simple analytical model. Instead, one should

use “black box” simulation models that are built directly

from experimental measurements. Accordingly, we modify our

simulator using a brute-force approach by which we simply

profile each task on our cluster for all possible allocations

(p = 1, . . . , 32) and matrix sizes (n = 2,000, 3,000). The

simulator can then simulate task execution times by looking

up a table of profiled execution times.

B. Task Startup Overhead

The TGrid framework spawns an MPI process by connect-

ing to remote hosts via SSH, starting on that host a JVM and a

task container, which then registers with the local TGrid server.

This server sends byte code to the container, which executes it.

We measured the task startup overhead for parallel tasks as the

execution time of an application that consists of p = 1, . . . , 32
no-op processes. Since the byte code of a real process would

be larger than that for a no-op process, our measured task

startup overheads are underestimations.

Figure 3 shows the startup overhead for p = 1, . . . , 32,

averaged over 20 trials. Surprisingly, the average startup time
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model: 1D matrix multiplication in Java (on the left-hand side) and PDGEMM
matrix multiplication in C (on the right-hand side).

0 5 10 15 20 25 30

0
.8

1
.0

1
.2

1
.4

1
.6

number of processors

st
ar

tu
p

o
v
er

h
ea

d
[s

]

Figure 3. Task startup overhead for allocations from p = 1 to p = 32.

is not monotonically increasing with the number of processors.

The simulator simulates task startup overhead by looking up

a table that records these average values.

C. Redistribution Overhead

In TGrid, source and destination tasks do not know each

other prior to the start of the redistribution. As explained

earlier, a subnet manager component is used to establish com-

munication between all relevant tasks, which causes overhead

not captured in the original analytical model. We measure this

overhead as the time to perform a data redistribution for a

mostly empty matrix so that the overall data transfer times

are negligible, but designed so that each processor must send

at least one byte of data. This ensures that the maximum

number of protocol messages will be transferred. Figure 4

shows the overhead versus the number of sending (p(src)) and

receiving (p(dst)) processes, averaged over 3 trials. We see

that the overhead depends mostly on p(dst). We thus compute

this overhead for a given p(dst) value averaged over all p(src)

values. The simulator simulates data redistribution overhead

by looking up a table that records these average values.

D. Experimental Evaluation

We ran all simulations for the generated DAGs with a new

simulator that uses the refinements to the simulation model

described in the previous three sections. The simulator now
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Figure 4. Data redistribution overhead. p(src): number of source processors.
p(dst): number of destination processors.

uses task profiles for simulating task execution times, with an

added startup overhead depending on the size of the allocation.

The time for redistributing data is still based on the SimGrid

simulation, but an extra redistribution overhead is added.

Results are presented in Figure 5, which is similar to

Figure 1. The chart on the left-hand side if for all DAGs

with n = 2,000 increasing relative makespans obtained in

simulation. The simulation outcome (i.e., whether HCPA out-

performs MCPA or not) is erroneous for only two cases, and

in these cases the difference between the relative makespans

is well bellow 10%. For results for n = 3,000, shown on

the right-hand side, the simulation outcome is erroneous in

only three cases. The simulation and experimental results

are in general agreement and happen to show that HCPA

produces shorter schedules than MCPA for n = 2,000, while

no algorithm is a clear winner for n = 3,000. We conclude that

the refined simulator makes it possible to draw scientifically

sound conclusions regarding the relative performance of the

scheduling algorithms.

VII. DERIVING AN EMPIRICAL MODEL

The downside of our refined simulator is that it relies on

extensive (and thus time-consuming) measurements of the tar-

get platform. The measurements of the task startup overheads

and of the data redistribution overheads are independent on the

nature of the tasks. They can thus be obtained once and for

all on a given platform (and possibly scaled to simulate hypo-

thetical target platforms). Unfortunately the measurements of

task execution times are application and problem size specific.

Even if, as in our case, only two computation kernels and two

problem sizes are used, obtaining the complete profiles for

all numbers of processors is time consuming, expensive, and

ultimately not practical. In this section we attempt to derive

empirical models of task execution times and of the overheads

that (i) rely only on a few measurements for construction a

regression; and (ii) lead to simulation results accurate enough

that they can be used to draw valid conclusions.
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Figure 6. Fitting Results. Left: Regression model with outliers at p = 8 and
p = 16 and n = 3,000. Right: Final regression model without outliers for
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A. Regression Models

Our goal is to obtain an regressive models of task execution

times, both to matrix multiplication and addition, given the

number of processors p. We initially based our regression

on measured execution times for p = {1, 2, 4, 8, 16, 32}
because such powers-of-two values are commonly used in

performance analysis. A single regression model does not

suffice because overhead start dominating task execution times

when p ≥ 16. Consequently, we use two models: a non-

linear a · 1/p + b model for p ≤ 16, and a linear a · p + b
model for p > 16. Unfortunately, even with these two models,

the fit to experimental data is of poor quality. Consider the

results shown on the left-hand side of Figure 6 for matrix

multiplication and n = 3,000. The poor quality of the fit

comes from unexpected “outliers” at p = 8 and p = 16. For

these numbers of processors, our Java implementation suffers

from abnormally long execution times. For p = 8, although

the parallel execution is load-balanced, the computation of

the local matrix updates for the multiplication are simply

slower. We have observed this phenomenon repeatedly for

many trials. We conclude that the likely causes are memory

hierarchy effects, which are notoriously difficult to model, and

especially with the JVM. For p = 16, the computation is not

well balanced. This is due to our vanilla implementation of

the 1D matrix multiplication, which leads to noticeable load

imbalance for n = 3000 and p = 16 processors (the last

processor is simply allocated two many matrix rows/columns).

This outlier is thus less “interesting” and would not be present

with a better matrix multiplication implementation. Both these

outliers highlight the difficulty of deriving high-quality models

of parallel task execution times in practice.

To side-step the outlier problem for now, we have used dif-

ferent data points for building our regression model (replacing

8 and 16 by 7 and 15). In practice, one could address this

problem by obtaining a larger number of measurements for

the regression, and/or possibly identify outliers, still without

requiring a full profile. The modified fit is shown on the right-

hand side of Figure 6 both for n = 2,000 and n = 3,000. This

regressive model is based on only 6 measurements as opposed

to 32 measurements for the simulator in Section VI. For larger

clusters one would likely need to perform more measurements

in order to derive a robust model. A similar regression analysis

for HPC applications on large clusters has shown that 15 to

20 measurements are needed to get robust fits [16]. Note also

that for practical uses one would have to include the matrix

size into the model as an independent variable, which we did

not do in this case study.

Straightforward regressions can be used to model matrix

additions (a single a · 1/p+ b model), task startup overheads,

and redistribution overheads. Table II provides a summary of

all these empirical models.

B. Experimental Evaluation

Results with our empirical simulation models are shown

in Figure 7. Simulation results match well with experimental

ones, especially for n = 2,000 in which case errors on task

execution time have less impact on the overall makespan. For

n = 2,000, the simulation result regarding which of HCPA

or MCPA achieves the lowest makespan is incorrect in only

one case out of 27. For n = 3,000, the conclusion is incorrect

in 6 cases. This is twice as many incorrect results as when

using the brute-force simulation approach in Section VI, but

still well below the 60% error rate with the purely analytical

simulation models in Section IV. When analyzing schedules



Table II
REGRESSION MODELS (INCLUDING p VALUES FOR INSTANTIATION AND REGRESSION COEFFICIENTS).

time to model functions regression values

execution time (multiplication) p = {2, 4, 7, 15} p = {15, 24, 31}
n = 2000 a · 1

2p
+ b c · p+ d (a, b, c, d) = (239.44, 3.43, 0.08, 1.93)

n = 3000 a · 1

p
+ b c · p+ d (a, b, c, d) = (537.91,−25.55,−0.09, 11.47)

execution time (addition) p = {2, 4, 7, 15, 24, 31}
n = 2000 a · 1

p
+ b (a, b) = (22.99, 0.03)

n = 3000 a · 1

p
+ b (a, b) = (73.59, 0.38)

p = {1, 16, 32}
redistribution startup a · p+ b (a, b) = (7.88, 108.58)
task startup time a · p+ b (a, b) = (0.03, 0.65)
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Figure 7. HPCA makespan relative to that of MCPA using empirical models. Left-hand side: n = 2,000. Right-hand side: n = 3,000.
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Figure 8. Makespan simulation error for the three different simulation
models. Left-hand side: HCPA results. Right-hand side: MCPA results.

for n = 3,000, we found that the largest discrepancies seen

on the right-hand side of Figure 7 are for cases in which a

scheduling algorithms allocates p = 16 processors to several

tasks. For this number of processors, recall that we have

found our implementation of matrix multiplication to lead to

unexpectedly poor performance (the outliers in Figure 6). Our

regressive task execution time model in this case is a poor fit

to experimental results, which explains the discrepancies.

To provide a global view of simulation errors for the

three versions of our simulator (analytical, profile-based, and

empirical), Figure 8 shows error statistics over all experiments

for both each scheduling algorithm in a box-and-whisker

fashion. The purely analytical version leads to errors larger

than the two other versions by orders of magnitude, while

the empirical version provides a reasonable alternative to the

profile-based version. We conclude that the empirical models

provide a good trade-off between the time and effort needed

to instantiate them and the provided simulation accuracy. In

the scope of our case study, simulation based on these models

is accurate enough to draw valid conclusions regarding the

HCPA and MCPA algorithms. Such conclusions would simply

not have been achievable with purely analytical models.

VIII. RELATED WORK

There is a large literature on simulation techniques and

models for (predicting the performance of) parallel applica-

tions. Not surprisingly, many authors have proposed simula-

tors for MPI applications ranging from analytical simulators

(e.g., [17]) to operational simulators (e.g., [18]). An overar-

ching conclusion from such works is that reasonable simu-

lation accuracy requires extensive and possibly application-

specific measurements on a representative real-world execution

environment. Yet, most published results in the scheduling

literature are obtained with purely analytical simulation mod-

els. In this work we used a case study to quantify how

such models should be evolved to achieve scientifically sound

results. We have proposed empirical models that rely on simple

regressions, which has also been done by other authors, and

recently in [16]. Beyond those authors that have proposed a



simulator, some have performed studies to compare simula-

tions to experiments. For instance, the work in [19], which

also uses SimGrid, compares simulations and experiments for

a heat propagation application. However, the impact of the

execution environment on the simulation errors is not studied.

IX. CONCLUSIONS

Simulation is an attractive proposition for studying the

performance of parallel applications, and particular popular

for studying scheduling algorithms. However, since simula-

tion errors exist and are typically not quantified, it is not

clear whether simulation results lead to scientifically valid

conclusions. In a case study, we have compared two state-of-

the-art algorithms for scheduling mixed-parallel applications,

using both simulations and real-world experiments. We have

created three versions of our simulator, which are all built

on top of the SimGrid framework. Thus, simulators and case

study are bound to the features provided by SimGrid. The

first simulator relies on purely analytical models such as those

commonly used in the scheduling literature. We found that this

simulator simply does not produce scientifically meaningful

results. Root causes of simulation errors were identified and

boil down to a need to account for specifics of the target

execution environment. We thus developed a second version of

the simulator based on a brute-force approach: instantiate the

simulation based on extensive and possibly application specific

profiles measured on the execution environment. This simula-

tor produces dramatically better accuracy (under 10% error on

average) and can be used to draw valid conclusions regarding

the two scheduling algorithms. Since obtaining full profiles

may be impossible in practice, we have developed a third

version of our simulator based on empirical (regression-based)

models built from sparse profiles. This simulator provides a

good compromise between the first two versions, leading to

results dramatically better than those of the first version while

still enabling meaningful scientific conclusions.

Although the vast majority of published results in the

scheduling literature are obtained with analytical simulation

models, our findings should provide a strong recommendation

for the use of empirical simulation models that are connected

to the target execution environment. Alternately, these models

could be instantiated for an existing execution environment and

scaled to simulate an hypothetical execution environment. In

our case study, idiosyncrasies of our application’s implemen-

tation made it difficult to build valid empirical models due to

outliers. Arguably, our use of Java and of a vanilla application

implementations was the root cause for these outliers, and

our results could be improved with better implementations.

Indeed, others have successfully applied regression techniques

for parallel application performance modeling [16]. Never-

theless, we expect that many relevant real-world applications

and platforms may suffer from outlier problems and that

deriving reasonable empirical models from sparse performance

profiles is challenging. Addressing this challenge is, however,

necessary for running valid simulations without resorting to

costly complete performance profiles.
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