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Abstract. Identifying local similarity between two or more sequences, or identifying repe-
titions occurring at least twice in a sequence, is an essential part in the analysis of biologi-
cal sequences and of their phylogenetic relationship. Finding fragments that are conserved
among several given sequences, or inside a unique sequence, while allowing for a certain
number of insertions, deletions, and substitutions, is however known to be a computation-
ally expensive task, and consequently exact methods can usually not be applied in practice.
The filter we introduce in this paper, called Ed’Nimbus, provides a possible solution to
this problem. It can be used as a preprocessing step to any multiple alignment method,
eliminating an important fraction of the input that is guaranteed not to contain any ap-
proximate repetition. It consists in the verification of a strong necessary condition. This
condition concerns the number and order of exactly repeated words shared by the approx-
imate repetitions. The efficiency of the filter is due to this condition, that we show how to
check in a fast way. The speed of the method is achieved thanks also to the use of a simple
and efficient data structure, that we describe in this paper, as well as its linear time and
space construction. Our results show that using Ed’Nimbus allows us to sensibly reduce the
time spent in a local multiple alignment. The Ed’Nimbus software is freely available on the
web: http://igm.univ-mlv.fr/∼peterlon/officiel/ednimbus/

1 Introduction

Multiple comparison is an essential part of the analysis of biological sequences and of their phylo-
genetic relationship. In particular, local multiple alignment is a powerful way to detect functional
elements while identifying (multiple) repetitions inside a sequence is fundamental, for instance,
in the investigation of transposition or duplication events. Finding fragments that are conserved
among several given sequences or inside a unique sequence (i.e. finding repetitions) while allow-
ing for a certain number of insertions, deletions, and substitutions, is however known to be a
computationally expensive task, and consequently exact methods can usually not be applied in
practice.

When comparing biological sequences in order to find features such as promoter or regulatory
regions [2, 15], transposable elements or other types of long repetitions [17, 26], or to precisely
identify the different rearrangements that may have happened [4, 7, 30], it is therefore important
to be able to deal in a fast and accurate way with the huge amount of data represented by one or
more whole genomes. Filtering, lossless or with possible loss, has appeared as one important way
of dealing with part of the problem. The main idea behind it is to eliminate in a first, hopefully
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of Research, the ARC BIN project from the INRIA, the ANR project REGLIS, and the GALILEO
project of the Italian-French University.



quick step, many portions of the input sequences before any further potentially costly investigation.
Given a definition of what is the ultimate goal of the sequences comparison (for instance, it may
be to identify all long repetitions of a certain type), lossless filters eliminate only those portions
of the input data that are guaranteed not to contain the sought elements (in this example, the
repetitions). Lossless filters produce therefore no false negatives. Filters that are not lossless cannot
provide such guarantee and are thus heuristics.

In the last few years, there has been an increasing number of papers on the topic of filtering
sequences prior to aligning them. This trend has been motivated by the fact that the problem of
aligning biological sequences has scaled up considerably with the increasing number of genomes,
notably of eukaryotes, that are being entirely sequenced and annotated. Filters, lossless or not, have
thus been devised for comparing one string with itself [23], two strings pairwise [1, 6, 24, 25, 31, 32]
or more than two strings among them at the same time [29]. Most filters rest on the idea that
sequences that are reasonably similar have some parts that match exactly.

The fragments matching exactly that have been considered for building efficient filters have
been, like in the Blast strategy [3], mostly single blocks (also called seeds) or a set of blocks
separated by a fixed or flexible distance (also called spaced-seeds) as in [8–10,24, 27, 29, 31, 32].

The authors of this paper have also contributed to the area in the past, notably in the context of
identifying long repetitions allowing for substitutions only [29]. Results in terms of both specificity
(that is, percentage of filtered data) and time were promising, but the tool Nimbus presented
in [29] was meant as a lossless filter preceeding an alignment where no insertions or deletions were
allowed, which is in general less relevant in biology.

In this paper, we eliminate this drawback by introducing a new filter, called Ed’Nimbus, that
is lossless like Nimbus and has the same good performances while working with edit distance, that
is, with insertions and deletions allowed besides substitutions. The other main characteristics of
our filter, besides the fact that it is lossless and works within an edit distance framework, are that:
1. it is a filter that may be used, and indeed was conceived, for doing a multiple comparison, 2.
it considers multiple seeds, and 3. it considers such multiple seeds taking into account both their
number and the relative order among them.

Furthermore, Ed’Nimbus can take as input either m sequences or one unique sequence. In the
first case, we want to find long approximate repetitions present in r ≤ m of the input sequences,
and in the second case, we are looking for fragments occurring r times in the unique input sequence.
The filter we present may however be used in more general contexts (for instance, as a first step
in a multiple alignment algorithm) as we show with one application.

To the best of our knowledge, there is no lossless method that filters data for finding long
multiple repetitions using edit distance. Among existing methods for finding repetitions, most use
multiple seeds that have been shown in [9] to be particularly efficient for this task. Some deal with
edit distance [1,6,8,10,27,32] but for pairwise comparison only. Other methods [5,6,11,20] quickly
find multiple repetitions, but are heuristics and use a phylogenetic tree to drive the alignment.
Hence, Ed’Nimbus is the first lossless filter for finding multiple repetitions within an edit distance
framework.

It is worth stressing that Ed’Nimbus is meant as a preprocessing step to any method that
searches for long approximate repetitions, or that performs a multiple alignment based on the
detection of such repetitions. The goal of Ed’Nimbus is to reduce the input size for these methods
in order to obtain a significant overall speed up.

The paper is organised as follows: we start by presenting the necessary condition we use for
our lossless filter in Section 2. In Section 3, after having detailed the data structure used, we
present the filtering algorithm and a complexity analysis. We then give in Section 4 the results
of some tests: in Section 4.1 we show the specificity and time requirement of Ed’Nimbus, and
in Section 4.2, we present some preliminary applications of Ed’Nimbus as a preprocessing of a
multiple alignment.

Although Ed’Nimbus can identify repetitions either common to a set of sequences or that
appear various times in a unique sequence, for clarity of exposition and because of space limitations,
we address only, in Sections 2 and 3, the case of finding repetitions common to a set of sequences.
The case of a unique sequence is treated in a very similar way and leads to the same performances.



2 Preliminary Definitions

A sequence is a set of zero or more symbols from an alphabet Σ. A sequence s of length n on Σ
is represented also by s[0]s[1] . . . s[n− 1], where s[i] ∈ Σ for 0 ≤ i < n. The length of s is denoted
by |s|. We denote by s[i, j] the word s[i]s[i + 1] . . . s[j] of s. In this case, we say that the word
s[i, j] occurs at position i in s. We define a k-factor as a word of length k. A k-factor is said to
be shared by two or more sequences if it occurs in all of them. We define a k-hit as a k-factor
that is shared by at least two sequences. If s = uv for u, v ∈ Σ∗, we say that u is a prefix of s
and that v is a suffix of s.

Definition 1. Given r sequences s1, . . . , sr, a length L, and a distance d, we call an (L, r, d)-
repetition a set of integers {δ1, . . . , δr} such that

∀ i ∈ [1, r] : 0 ≤ δi ≤ |si|− L and
∀ i, j ∈ [1, r] : dE(si[δi, δi + L − 1], sj[δj, δj + L − 1]) ≤ d.

The symbol dE stands for the edit distance between two sequences, that is, the minimum number
of letter insertions, deletions and substitutions that transforms one into the other.

Given m input sequences, let us suppose we want to find words of length L that occur in at
least r ≤ m sequences with at most d edit operations1 between each pair of the r repetitions,
where L, d and r are given by the user. In other terms, let us suppose we want to identify all
the (L, r, d)-repetitions in a set of r ≤ m input sequences. The goal of the Ed’Nimbus filter is to
very quickly eliminate from the input sequences as many positions as possible that cannot belong
to such repetitions. This operation can be seen as a preprocessing that drastically reduces the
search space for any method that looks for approximate repetitions or performs local multiple
alignments. Moreover, since (as we shall see in Section 4.1) Ed’Nimbus actually removes almost
every sequence position that does not contain an (L, r, d)-repetition, it can also be used alone as
a heuristic method with a very low false positive rate, and no false negatives (since it is lossless).

The main idea of our filter is based on checking a necessary condition concerning the amount
of k-hits that an (L, r, d)-repetition must contain. Let p be the minimum number of possibly
overlapping k-hits that an (L, 2, d)-repetition must have. Pevzner and Waterman showed in [31]
that:

p = L − (d + 1) × k + 1.

That is, if two words of length L have edit distance at most d, then they share at least
p = L − (d + 1) × k + 1 k-factors.

Moreover, such k-hits obviously have also to occur in the same order in the two words of length
L, even if not necessarily at the same distance from one another. In particular, a word of length
L of the input can be part of an (L, r, d)-repetition only if it shares at least p k-hits in the same
order, with words of length L that belong to at least r− 1 other input sequences. Notice that this
property is a weaker condition than having r or more words of length L that pairwise share at
least p k-hits in the same order.

The idea of Ed’Nimbus is to check this (weaker) property for each possible starting position
of a word of length L, and to discard those that do not satisfy this necessary condition.

3 Ed’Nimbus

The efficiency of Ed’Nimbus in checking the necessary condition we just indicated, is partly due
to the use of a data structure, called the k-factor array. We start by presenting it, before giving
the idea of the method (Section 3.2) and a detailed description of the algorithm (Section 3.3) with
its complexity (Section 3.4).

1 By edit operations we denote insertions, deletions and substitutions.



3.1 The k-factor array

The k-factor array is an array providing in constant time all positions in a text of a given k-factor.
We show in this section how to construct this data structure.

Given a sequence s of length n, for i ∈ [0, n−1], let s[i . . . ] denote the suffix starting at position
i. Thus s[i . . . ] = s[i, n − 1]. The suffix array of s is the permutation π of {0, 1, . . . , n − 1}
corresponding to the lexicographic order of the suffixes s[i . . . ]. If ≤

l
denotes the lexicographic

order between two words, then s[π(0) . . . ]≤
l

s[π(1) . . . ]≤
l

. . .≤
l

s[π(n − 1) . . . ]. In general, another

information is stored in the suffix array: the length of the longest common prefix (lcp) between
two consecutive suffixes (s[π(i) . . . ] and s[π(i + 1) . . . ]) in the array. The construction of the
permutation π of a text of length n is done in linear time and space [18,21,22]. A linear time and
space lcp row construction is presented in [19].

The k-factor array is a modification of the suffix array, to which we add two columns: the
label and the index. A label is an integer ∈ [0, |Σ|k], and there is a label for each distinct k-factor
occurring in the input sequences. All suffixes starting with the same k characters have the same
label at the corresponding position in the array label, while all suffixes starting with different k
characters have distinct labels. In order to give each distinct k-factor a different label, the lcp
array is used. The label of the k-factor corresponding to the ith suffix in the suffix array, called
label[i], is created as follows for each i ∈ [1, n − 1]:

label[i] =






0 if i = 0
label[i− 1] + 1 if lcp[i] ≤ k
label[i− 1] otherwise

The second novelty of the k-factor is the index array, that allows to quickly retrieve the
positions of all k-factors having a certain label. The index array is constructed such that index[i]
represents the index of the first occurrence of the suffix starting with a k-factor labelled i. The label
and index arrays are created simultaneously in linear time and space. An example of a k-factor
array is given in Figure 1.

i lcp π associated suffix label
0 0 2 AACCAC$ 0
1 1 6 AC$ 1
2 2 0 ACAACCAC$ 1
3 2 3 ACCAC$ 1
4 0 7 C$ 2
5 1 1 CAACCAC$ 3
6 2 5 CAC$ 3
7 1 4 CCAC$ 4

index
0 0
1 1
2 4
3 5
4 7

Fig. 1. The k-factor array, with the label and index array for the text ACAACCAC and k = 2.

In order to avoid problems due to k-factors occurring at one of the k − 1 last positions of
the text, one can consider that the text is followed by as many special symbols ($ for instance)
alphabetically smaller than all others.

In the next section, we present an overview of the method of which we give a detailed description
later in Section 3.3.

3.2 Overview of the method

Ed’Nimbus takes as input the parameters L, r and d, and m (with m ≥ r) input sequences:
s0, s1, . . . , sm−1. Given such parameters, first, if the user does not specify it, it fixes the value of



k to 62 to obtain the most suitable value of p. Secondly, this value is used to actually filter, that
is, to detect portions of the input that satisfy the required condition, and hence that can contain
an (L, r, d)-repetition. The goal of this section is to explain how the filtering works.

We remind that the condition that should be checked for each position of each sequence, is
whether the word of length L starting at that position shares at least p = L − (d + 1) × k + 1
k-hits, that occur in the same order and within a window of size L, with at least r− 1 other input
sequences. More formally, for each sequence sj and for each one of its words sj [i, i + L − 1] of
length L (with i ∈ [0, |sj| − L]), let t(sj , i) be the number of distinct sequences s′ '= sj where
∃ i′ ∈ [0, |s′|− L] such that sj [i, i + L − 1] and s′[i′, i′ + L − 1] have at least p k-hits occurring in
the same order. We should compute t(sj , i) for each j ∈ [1, m] and each i ∈ [0, |sj|−L], and keep
only the positions that belong to the following set:

{i ∈ [0, |sj|− L] | j ∈ [1, m], t(sj , i) ≥ r − 1}.

A first approach to do this would, for each sequence sj in turn, use a single sliding window of
size L that refers to a candidate repetition in sj (we call this window the reference window)
and, for this reference window, check whether its k-factors are k-hits shared, in the same order,
with words of length L belonging to at least r−1 other input sequences. This first approach would
therefore count, for each sequence sj and each of its positions i ∈ [0, |sj|− L], and for each other
sequence s′ and each one of its positions i′ ∈ [0, |s′| − L], the number of k-hits of sj [i, i + L − 1]
and s′[i′, i′ + L − 1] that occur in the same order.

However, as is done in [8], in order to avoid considering all positions in all other sequences
except s, we can divide those remaining sequences into blocks of length 2L (instead of L) that
overlap in at least L positions3, and then perform the following two steps:

1. Detect the blocks with which the reference window shares at least p k-factors (without looking
at their relative order). We call such blocks the good blocks. This step is done using the
k-factor array (as described in Section 3.1) that allows us to access in constant time the list
of positions in the input sequences where a given k-factor occurs.

2. Keep, among the good blocks, only those that share at least p k-hits occurring in the same
order. If these are in at least r − 1 distinct input sequences, then the position of the reference
window is considered as a starting point for a possible repetition. Otherwise, it is rejected by
the filter.

This second approach is the one adopted in Ed’Nimbus. We call the first approach Naive.
Strictly speaking, this is a slight abuse of language since Naive is not a naive version of exactly
the same algorithm as Ed’Nimbus because the two check different things.

Indeed, considering O(N/L) blocks of size 2L rather that all O(N) words of length L, leads
to a factor L gain in the time complexity, but also in a loss of specificity. Since the resulting
verified necessary condition is slightly weaker, we could keep parts of the sequences that would
have been discarded by Naive. However, in Section 4.1, we compare the specificity and the time
costs of Ed’Nimbus and of Naive in order to show that the small extra false positive ratio is by
far compensated by the speed of Ed’Nimbus.

Before that, Section 3.3 describes the Ed’Nimbus algorithm in more detail.

3.3 The algorithm

In this section, we describe how exactly the filter works, showing which operations it performs
in the initialisation step and each time the window is moved, and how the necessary condition is
checked for each position of the window.
2 The value of k is chosen according to an evaluation based on preliminary tests, that we do not describe

in this paper. Notice, however, that the choice of k has possible effects on the efficiency (both in terms
of time cost and filtration ratio) of the filter, but not on its correctness.

3 That is, blocks of length 2L starting every L positions: each block overlaps both the previous and the
next in L positions, hence ensuring that each word of length L is entirely included in at least one block.



The algorithm begins with the construction of a k-factor array as described in Section 3.1. A
unique k-factor array is created for all the sequences as if they were concatenated, thus providing
a unique and uniform labelling of the k-factors.

At each moment, the reference window refers to a word of length L in one of the input sequences,
and all the other sequences are divided into overlapping blocks of length 2L. We keep an array
called hits that stores in hits[b] the number of k-hits shared by the word of length L inside the
window and the block b. Furthermore, we use an array called nbGoodBlocks having as length the
number of input sequences, and containing in nbGoodBlocks[i], for the reference windows, the
number of good blocks in the sequence si. Both arrays are initially set to zero in all positions.

For each input sequence sj , the window of length L is initially placed at position 0. In all
the other sequences, we consider blocks of length 2 × L that overlap by L positions, i.e. every L
positions (0, L, 2 × L, . . . ), a block of length 2 × L starts. concerning the initial position of the
window in the following way. For each k-factor (say, labelled l) found inside the reference window,
for each block bi where l occurs4, hits[bi] is incremented by one. With this increment, if hits[bi]
becomes equal to p, then bi becomes a good block. In this case, if sj is the sequence containing
this good block, then nbGoodBlocks[j] is incremented by one.

For each one of the other O(N) positions of the reference window, we perform the following
two steps:

1. Sliding the reference window:
When sliding the reference window, a k-factor is removed and another one is introduced. We pick
the labels of both and read in the k-factor array the list of blocks they belong to; for the former,
we decrease the corresponding entries in the array hits, while for the latter we increase them.

After decrementing its value, if hits[bi] becomes equal to p − 1, then it means that bi is no
longer a good block. In this case, if sj denotes the sequence containing bi, then nbGoodBlocks[j]
is decremented by one. Symmetrically, we do as described above for all entries hits[bi] that are
incremented.

2. Checking the relative order of the k-hits:
Using the nbGoodBlocks array, we check if at least r−1 sequences contain at least one good block.
If this is the case, we check whether there are enough good blocks where the k-hits occur in the
same order. Thus, for each good block b, we have to check whether at least p (out the hits[b])
k-hits are in the same order. This consists in computing the longest common subsequence (LCS)
between the reference window and the considered block, after both have been rewritten using the
alphabet of the labels associated with the k-factors5. If the LCS is greater or equal to p, then the
condition is satisfied. More precisely, we proceed as follows. For each good block on a sequence
where no good block has already been found containing at least p k-hits in the same order:

– Compute the LCS between this block and the reference window, both rewritten using the
k-factor labels alphabet.

– If this is greater or equal to p, then mark the sequence where the block occurs as containing
a possible repetition.

If at the end of the step, less than r − 1 sequences contain a good block with at least p k-hits in
the same order, then it means that the reference window cannot be an approximate repetition,
and the corresponding position is discarded.

Notice that in this way, we check whether the word inside the current window has at least r−1
possible matches (that is blocks in which there are enough k-hits in the same order), but we do
not check any similarity condition between pairs of such r − 1 matches. This is a main reason for
the speed of the filter.

We now list all possible cases that can lead to false positives, that is, all cases where a word of
length L corresponding to a currently examined window is not discarded although it is not part
of an (L, r, d)-repetition.
4 This information is available in the k-factor array and accessible in constant time.
5 In other words, at each possible position i of the sequence, we replace the letter at that position, say

α, with the label representing the k-factor that begins at i.



First, it may happen that the reference window respects the necessary condition with r − 1
blocs while the r− 1 blocks are pairwise distant by more than d edit operations. Second, it can be
that the block of size 2L does contain a real match, but that this has length greater than L. Third,
a possible match may not be a real match: having p k-hits in the same order is only a necessary
condition for two words of length L to be no more than d edit operations apart.

We can observe that the first case becomes more unlikely as the value of r is higher. The second
case, apparently leading to many false positives, creates in fact only few. We show in Section 4 that
in practical cases, the false positives due to this reason are rare. However, we show in Section 4
that the specificity of the filter is quite good in practice.

3.4 Complexity analysis

Let us assume Ed’Nimbus has to filter m sequences, each of length n, and let us recall that N
denotes the total input size n × m.

Space Complexity: The k-factor array construction can be done in linear time and space w.r.t.
the data length (see Section 3.1). The hits array has size

⌊
N
L

⌋
(that is the number of blocks). We

use another array to store the results (the positions of the windows where a possible repetition
occurs), which is simply an array of N booleans. Thus, the total space complexity is in O(N),
that is, linear in the input size.

Time complexity: We take into consideration two distinct cases. The first case, called dense,
corresponds to sequences that contain a great number of highly similar repetitions. The second
case, called sparse, corresponds to sequences containing only a few repetitions that are weakly
similar. Furthermore, we assume that every possible k-factor exists in the sequences, considering
that each k-factor occurs on average at N

|Σ|k positions instead of N positions. This assumption is
realistic when filtering long DNA sequences (the goal of the filter) with small k-factors (k ! 8).

For each of the O(N) positions of the sliding window, we do the following (we consider sepa-
rately the two parts described in Section 3.3).

– Sliding the window: removing and adding one k-factor costs as much as the number of blocks of
which the entry in the array k-hits has to be updated, that is, O( N

L×|Σ|k ) both in the dense and
in the sparse case. Notice that on sequences composed only of ’A’ for instance, this complexity
grows to O(N

L ).
– Checking the relative order of the k-hits: this means computing the LCS of the windows against

all the good blocks. Denoting by G the number of good blocks found for the current window,
we thus have to compute G times the LCS between a word of length L against another of
length 2L. We compute the LCS using the method of [16] and described in [14] that takes time
in O(l log l′) to compute LCS(u,v), where l is the number of letters of u times the number of
their occurrences in v, and l′ is the length of LCS(u,v). In our case, l′ is at most L, while l is
at most 2 × L2 (in the dense case), and can be assumed to be L in the sparse case.
Summing up, in the dense case, this step takes O(L2 × log L × G) time, whereas it takes
O(L × log L × G) time in the sparse case.

Since we have to perform up to N times the two steps above, the overall time complexity is

O
(
N ×

( N

L × |Σ|k︸ ︷︷ ︸
sliding

+L2 × log L × G︸ ︷︷ ︸
LCS

))
= O

( N2

L × |Σ|k
+ N × L2 × log L × G

)
(dense case)

and

O
(
N ×

( N

L × |Σ|k︸ ︷︷ ︸
sliding

+L × log L × G︸ ︷︷ ︸
LCS

))
= O

( N2

L × |Σ|k
+ N × L × logL × G

)
(sparse case)



In the dense case, G can theoretically be as high as the total number of blocks, that is )N
L *.

This leads to an overall complexity in O( N2

L|Σ|k +N2×L× log L). Notice, however, that it is enough
to detect r− 1 blocks that conserve the order of the k-factors and, in particular, that when one of
them is found in a input sequence, no other good block of that sequence will have to be checked.
Moreover, since we are in the dense case, we can expect that this happens soon enough to actually
save many LCS computations with respect to the worst case in the complexity indicated above.

Comparatively with the time complexity in O
(
N2×L+Y

)
with Y = N×L2×log L×G (dense

case) or Y = N × L × log L × G (sparse case) of the Naive algorithm mentioned in Section 3.2,
the Ed’Nimbus algorithm represents a very good improvement, as confirmed by the tests shown
in Section 4.1.

4 Experimental Results

In the next two sections, we show the time actually required by Ed’Nimbus on real biological
sequences. As a first test (Section 4.1), we evaluate the growth of the execution time with respect
to the input size, as well as the specificity with respect to time. Then, as a second test (Section 4.2),
we show the use of the filter as a preprocessing step to a multiple local alignment algorithm. All
tests were done on a 1.2 GHz Pentium 3.

4.1 Testing specificity and speed

We performed tests that show how much time Ed’Nimbus requires what is its specificity in
practice.

For both evaluations (time and specificity), we compared the performance of Ed’Nimbus with
respect to the Naive algorithm (Section 3.2). The specificity of Naive is higher than the one
of Ed’Nimbus because the Naive algorithm checks the condition (Section 2) on words both of
length L, while Ed’Nimbus does it on the current window (of length L) and blocks of length 2L.
Ed’Nimbus may thus detect false positives that Naive does not, leading to a weaker specificity.
We show in this section that the difference in specificity is negligible, while the difference in speed
is very high in favour of Ed’Nimbus.

We start with an experiment that aims to show how the execution time grows with respect to
the input size. We generated for this 4 random DNA sequences of the same length, and we planted
in each sequence a repetition of length L = 100 whose copies in the sequence have pairwise edit
distance exactly equal to 10. We ran both Ed’Nimbus and Naive with parameters L = 100,
d = 10, r = 4, k = 6. We did the same test for a length of the input sequences ranging from
n = 100 to n = 6000, that is for a total input size, equal to N = 4 × n, ranging from 400 to
24000. We could not go further because the Naive algorithm took too long, in particular since
we repeated the experiment 50 times for each input size in order to report an average value. In
Figure 2, we report the time taken by the two algorithms, expressed in seconds, with respect to
the size of the input sequences. Observe that the difference is significant (the values are plotted in
logarithmic scale).

The goal of this experiment was only to show how the time consumption grows with the input
size for the two algorithms. We now show how the two methods behave in terms of specificity, still
keeping an eye on the time costs. This is more relevantly done on real biological sequences. We thus
considered the DNA sequence of the Neisseria meningitidis strain MC58. Neisseria genomes are
known for the abundance and diversity of their repetitive DNA in terms of size and structure [12].
The size of the repeated elements range from 10 bases to more than 2000 bases, and their number,
depending on the type of the repeated element, may reach more than 200 copies. This fact explains
why the N. meningitidis MC58 genomic sequence has already been used as a test case for programs
identifying repetitive elements like in [23]. On half of the sequence (about 1 Mb: more was not
feasible for the Naive algorithm), we ran Ed’Nimbus, looking for repetitions of length L = 100,
distant pairwise by at most d = 10 edit operation, occurring at least r = 5 times, using k = 5. It
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Fig. 2. Time spent by Ed’Nimbus and the naive algorithm w.r.t. the input size, in logarithmic scale. In
all tests there are 4 input sequences of growing size (x axis), and we filter (100, 4, 10)-repetitions, with
k = 6.

kept 7.3% of the input, after filtering, in about 8 minutes of computation. On the same sequence
with the same parameters, the Naive algorithm kept 7.2% of the input, running for 7529 minutes
(more than five days).

The results show that the ratio between time and specificity is very good for Ed’Nimbus on
real DNA sequences.
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Fig. 3. Specificities of Ed’Nimbus and Naive. In all tests, there are 5 input random sequences (of length
10000), each containing a repetition of length 100 distant pairwise from 10 to 26 edit operations.

We then performed some tests on randomly generated sequences to check how both Ed’Nimbus
and Naive behave when the input sequences contain repetitions with more edit operations than
the limit specified by the user. We thus created a set of 5 sequences each containing a repetition
of length 100, distant pairwise by 10, 12, 14, . . . , 22, 24 edit operations. On those sequences, we
ran Ed’Nimbus and Naive, filtering for repetitions of length L = 100, r = 5, d = 10 with k = 5.
Each test was computed 50 times, the average results are given in Figure 3. The results show that,
first, even if Naive has better specificity than Ed’Nimbus, the difference is low, and second, the
filter is fully efficient even when the edit distance between the repetitions is 14 more than the
limit specified by the user. Over this value, no repetition is detected anymore. However, one can
notice that with these parameters, having 6 more edit operations leads to filtering ≈ 50 % of the
repetitions.



We performed additional tests validating the good specificity of Ed’Nimbus coupled with a
low time and memory usage. On one random sequence of length 2.2 Mb containing 3, 5, or 100
known planted repetitions with 10 edit operations pairwise, we ran Ed’Nimbus looking for (L, r, d)
repetitions with r =3, 5, and 100, L = 100, d = 10 and k = 6. Furthermore, we performed the
same tests on the MC58 sequence described above. Each test was computed 50 times, the average
results are given in Figure 4. In this Figure, one can notice that on random DNA sequences of
length 2.2 Mb, depending on the parameters, the time consumption is a few minutes and the
memory usage is limited to less than 100 Mb.

Sequence filtered 3 Repetitions 5 Repetitions 100 Repetitions MC58
Space Used (Mb) 71 70 72 82

Time (Min.) 1.22 1.23 1.25 2.5
r = 3 Kept 0.01 % 0.02 % 0.48 % 15.5 %

False Positive Ratio 0.006 % 0.01 % 0.25 % unknown
Time (Min.) 1.22 1.23 1.24 2.55

r = 5 Kept 0 % 0.01 % 0.24 % 9.11 %)
False Positive Ratio 0 % 0.02 % 0.47 % unknown

Time (Min.) 1.22 1.01 1.4 4.3
r = 100 Kept 0 % 0 % 0.17 % 3.5 %

False Positive Ratio 0 % 0 % 0.4 % unknown

Fig. 4. Ed’Nimbus behaviour on four types of sequences of length 2.2 Mb, while filtering in order to
find r = 3, 5 and 100 repetitions of length L = 100, distant pairwise by at most d = 10 edit operations.

4.2 Applications

We finally used Ed’Nimbus for the one of the main purposes we have designed it for: as a pre-
processing step for performing a multiple local alignment. On m sequences of length n, this task
can be done with dynamic programming using O(2mnm) time and O(nm) space, where r is the
number of sequences where a repetition must occur in order to contribute to the alignment. In
practice, this is unfeasible for large and/or numerous sequences. As a consequence, the solutions
proposed are mostly heuristics (as for example Mulan [28]) that do not guarantee to avoid false
negatives. The alternative we suggest is to use any exact local alignment method after a prepro-
cessing filtering of the input sequences done using Ed’Nimbus. The filtered data still contains the
repetitions plus possibly a few other positions (as we have seen in Section 4.1), but it should now
have become feasible, and much faster, to perform an exhaustive search for repetitions. Indeed,
we expect that the preprocessing hugely reduces the overall execution time.

GATA3 is a gene that is involved in various development processes [28]. Since some such
processes are identified, and differ among distinct species, it is interesting to perform a comparative
analysis of this gene in different species by doing a multiple local alignment. We applied this idea
to the GATA3 gene locus of 8 species (human, mouse, rat, chicken, frog, zebrafish, and tetraodon).
The total size of the 8 input sequences is about 65000 bp.

We first ran Glam [13], a multiple local alignment method6 to find repetitions of length 100,
taking 10 minutes and 45 seconds. We then ran Ed’Nimbus on the same sequences with L = 100,
d = 8, r = 3 and k = 6. It took only 7.e−10 minutes to output filtered data on which we ran Glam
finding the same repetition as in the previous case in 24 seconds, that is, almost 27 times faster
with a very fast preprocessing.

6 Notice that we chose Glam as a representatively good software for multiple alignment, but the filter
could be used as a preprocessing step to any other multiple alignment algorithm.



5 Conclusion

We presented in this paper a novel lossless filtration technique designed to precede any exact tool
for finding long multiple approximate repetitions distant by a bounded number of substitutions,
insertions and deletions. The repetitions may be common to several sequences or present inside
one single sequence. As we have seen, the filter runs very fast and uses linear space to discard
parts of the data that can not contain repetitions since they do not satisfy a necessary condition
based on the number of exactly repeated words such repetitions must share and the way they are
arranged. The speed of the method is achieved also thanks to the use of a simple and efficient data
structure that is presented in the paper.

We showed in Section 4.1 that the specificity of the filter is very good. Moreover, we have
described in Section 4.2 that using Ed’Nimbus allows us, on some preliminary applications, to
apply exact multiple alignment methods in a short time.

Needless to say that Ed’Nimbus can also be used as a preprocessing step for a heuristic multiple
alignment method, with the only purpose of speeding up the execution time.

As a next step of future work, we want focus on analisying how many among what we consider
as false positives, are actually occurrences of what would be real repetitions is the constraint
of all having the same length L would be relaxed. Indeed, flexible values for the length of the
repetitions filtered, as done for instance in [32], would be interesting in practice, as well as natural
for Ed’Nimbus. As a matter of fact, we believe that many of what we considered here false positives
are actually occurrences of repetitions that have length, say, between L and L+d, actually realising
the desiderable flexibility.

On this current version, Ed’Nimbus, available at http://igm.univ-mlv.fr/∼peterlon/officiel/ednimbus/
is useful either as a preprocessing step for any (multiple) local alignment, or, thanks to its high
specificity, as a heuristic for finding long multiple repetitions.
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